1. Field of the Invention
This invention relates to a process for forming fibers and fibrous webs. In particular, very fine fibers can be made and collected into a fibrous web useful for selective barrier end uses such as filters, battery separators, and breathable medical gowns.
2. Background of the Invention
Rotary sprayers used in conjunction with a shaping fluid and an electrical field are useful in atomizing paint for coating a target device. The centrifugal force supplied by the rotary sprayers produces enough shear to cause the paint to become atomized and the shaping fluid and electrical field draw the atomized paint to the target device. This process has been optimized for the production of atomized droplets. Defects occur when too many atomized droplets agglomerate into larger entities. The prior art teaches toward making atomized droplets and not larger entities.
There is a growing need for very fine fibers and fibrous webs made from very fine fibers. These types of webs are useful for selective barrier end uses. Presently very fine fibers are made from melt spun “islands in the sea” cross section fibers, split films, some meltblown processes, and electrospinning. What is needed is a high throughput process to make very fine fibers and uniform fibrous webs.
The present invention provides a high throughput process to make very fine fibers and uniform webs by the use of a high speed rotary sprayer.
In a first embodiment, the present invention is directed to a fiber forming process comprising the steps of supplying a spinning solution having at least one polymer dissolved in at least one solvent to a rotary sprayer having a rotating conical nozzle, the nozzle having a concave inner surface and a forward surface discharge edge; issuing the spinning solution from the rotary sprayer along the concave inner surface so as to distribute said spinning solution toward the forward surface of the discharge edge of the nozzle; and forming separate fibrous streams from the spinning solution while the solvent vaporizes to produce polymeric fibers in the absence of an electrical field. A shaping fluid can flow around the nozzle to direct the spinning solution away from the rotary sprayer. The fibers can be collected onto a collector to form a fibrous web.
In a second embodiment, the present invention is directed to a fiber forming process comprising the steps of supplying a spinning solution having at least one polymer dissolved in at least one solvent to a rotary sprayer having a rotating conical nozzle, the nozzle having a concave inner surface and a forward surface discharge edge; issuing the spinning solution from the rotary sprayer along the concave inner surface so as to distribute said spinning solution toward the forward surface of the discharge edge of the nozzle; and forming separate fibrous streams from the spinning solution while the solvent vaporizes to produce polymeric fibers in the presence of an electrical field. A shaping fluid can flow around the nozzle to direct the spinning solution away from the rotary sprayer. The fibers can be collected onto a collector to form a fibrous web.
a is a scanning electron micrograph of poly(ethylene oxide) fibers made without an electrical field according to the process of the present invention.
b is a scanning electron micrograph of the fibers of
a is a scanning electron micrograph of poly(ethylene oxide) fibers made with an electrical field according to the process of the present invention.
b is a scanning electron micrograph of the fibers of
The invention relates to a process for forming fibers from a spinning solution utilizing a rotary sprayer.
The spinning solution comprises at least one polymer dissolved in at least one solvent. Any fiber forming polymer able to dissolve in a solvent that can be vaporized can be used. Suitable polymers include polyalkylene oxides, poly(meth)acrylates, polystyrene based polymers and copolymers, vinyl polymers and copolymers, fluoropolymers, polyesters and copolyesters, polyurethanes, polyalkylenes, polyamides, polyaramids, thermoplastic polymers, liquid crystal polymers, engineering polymers, biodegradable polymers, bio-based polymers, natural polymers, and protein polymers. The spinning solution can have a polymer concentration of about 1% to about 90% by weight of polymer in the spinning solution. Also, in order to assist the spinning of the spinning solution, the spinning solution can be heated or cooled. Generally, a spinning solution with a viscosity from about 10 cP to about 100,000 cP is useful.
Optionally,
Optionally, an electrical field can be added to the process. A voltage potential can be added between the rotary sprayer and the collector. Either the rotary sprayer or the collector can be charged with the other component substantially grounded or they can both be charged so long as a voltage potential exists between them. In addition, an electrode can be positioned between the rotary sprayer and the collector wherein the electrode is charged so that a voltage potential is created between the electrode and the rotary sprayer and/or the collector. The electrical field has a voltage potential of about 1 kV to about 150 kV. Surprisingly, the electrical field seems to have little effect on the average fiber diameter, but does help the fibers to separate and travel toward a collector so as to produce a more uniform fibrous web.
This process can make very fine fibers, preferably continuous fibers, with an average fiber diameter of less than 1,000 nm and more preferably from about 100 nm to 500 nm. The fibers can be collected on a collector into a fibrous web. The collector can be conductive for creating an electrical field between it and the rotary sprayer or an electrode. The collector can also be porous to allow the use of a vacuum device to pull vaporized solvent and optionally shaping gas away from the fibers and help pin the fibers to the collector to make the fibrous web. A scrim material can be placed on the collector to collect the fiber directly onto the scrim thereby making a composite material. For example, a spunbond nonwoven can be placed on the collector and the fiber deposited onto the spunbond nonwoven. In this way composite nonwoven materials can be produced.
In the description above and in the non-limiting examples that follow, the following test methods were employed to determine various reported characteristics and properties.
Viscosity was measured on a Thermo RheoStress 600 rheometer equipped with a 20 mm parallel plate. Data was collected over 4 minutes with a continuous shear rate ramp from 0 to 1,000 s−1 at 23° C. and reported in cP at 10 s−1.
Fiber Diameter was determined as follows. Ten scanning electron microscope (SEM) images at 5,000× magnification were taken of each nanofiber layer sample. The diameter of eleven (11) clearly distinguishable nanofibers were measured from each SEM image and recorded. Defects were not included (i.e., lumps of nanofibers, polymer drops, intersections of nanofibers). The average fiber diameter for each sample was calculated and reported in nanometers (nm).
Hereinafter the present invention will be described in more detail in the following examples.
Example 1 describes making a poly(ethylene oxide) continuous fiber without the use of an electrical field. Example 2 describes making a poly(ethylene oxide) continuous fiber with the use of an electrical field. Example 3 describes making a poly(vinyl alcohol) continuous fiber with the use of an electrical field.
Continuous fibers were made using a standard Aerobell rotary atomizer and control enclosure for high voltage, turbine speed and shaping air control from ITW Automotive Finishing Group. The bell-shaped nozzle used was an ITW Ransburg part no. LRPM4001-02. A spinning solution of 10.0% poly(ethylene oxide) viscosity average molecular weight (Mv) of about 300,000, 0.1% sodium chloride, and 89.9% water by weight was mixed until homogeneous and poured into a Binks 83C-220 pressure tank for delivery to the rotary atomizer through the supply tube, The pressure on the pressure tank was set to a constant 15 psi. This produced a flow rate of about 2 cc/min. The shaping air was set at a constant 30 psi. The bearing air was set at a constant 95 psi. The turbine speed was set to a constant 40,000 rpm. No electrical field was used during this test. Fibers were collected on a Reemay nonwoven collection screen that was held in place 10 inches away from the bell-shaped nozzle by stainless steel sheet metal. The fiber size was measured from an image using scanning electron microscopy (SEM) and determined to be in the range of 100 nm to 500 nm, with an average fiber diameter of about 415 nm. An SEM image of the fibers can be seen in
Example 2 was prepared similarly to Example 1, except an electrical field was applied. The electrical field was applied directly to the rotary atomizer by attaching a high voltage cable to the high voltage lug on the back of the rotary atomizer. The rotary atomizer was completely isolated from ground using a large Teflon stand so that the closest ground to the bell-shaped nozzle was the stainless steel sheet metal backing the Reemay collection belt. A +50 kV power supply was used in current control mode and the current was set to 0.02 mA. The high voltage ran at about 35 kV. The lay down of the fiber was much better than in Example 1 in that the coverage was very uniform over the collection area. The fiber size was measured from an image using SEM and determined to be in the range of 100 nm to 500 nm, with an average fiber diameter of about 350 nm. An SEM image of the fibers can be seen in
Continuous fibers were made using a 65 mm “Eco Bell” serrated bell-shaped nozzle on a Behr rotary atomizer. A spin solution of 15% Evanol 80-18 poly(vinyl alcohol) and water by weight was mixed until homogeneous and poured into a pressure tank for delivery to the rotary atomizer through the supply tube. The viscosity of the spinning solution was 2,000 cP at 23° C. The pressure on the pressure tank was set to a constant pressure so that the flow rate was measured to be 17 cc/min. The shaping air was set at 100 SL/min. The turbine speed was set to a constant 50,000 rpm. An electrical field was applied directly to the rotary atomizer and the high voltage was set to 50 kV. Fibers were collected on a spunbond/meltblown/spunbond (SMS) composite nonwoven collection screen that was held in place 21 inches away from the bell-shaped nozzle by grounded stainless steel sheet metal. The fiber size was measured from an image using SEM and determined to be in the range of 100 nm to 600 nm with an average fiber diameter of 415 nm. SEM image of the fibers can be seen in
This application is a divisional under 35 U.S.C. §§120 and 121 of U.S. application Ser. No. 11/593,959, filed Nov. 7, 2006, which claims benefit to U.S. Provisional Application No. 60/786,632, filed on Mar. 28, 2006, all of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3085749 | Schweitzer et al. | Apr 1963 | A |
3097085 | Wallsten | Jul 1963 | A |
3565979 | Palmer | Feb 1971 | A |
4211736 | Bradt | Jul 1980 | A |
4288317 | deRuvo et al. | Sep 1981 | A |
4405086 | Vetter | Sep 1983 | A |
4798335 | Tachi et al. | Jan 1989 | A |
4861653 | Parrish | Aug 1989 | A |
4919333 | Weinstein | Apr 1990 | A |
4937020 | Wagner et al. | Jun 1990 | A |
5114631 | Nyssen et al. | May 1992 | A |
5494616 | Voelker | Feb 1996 | A |
5693280 | Pellegrin | Dec 1997 | A |
5934574 | van der Steur | Aug 1999 | A |
6187891 | Rautschek et al. | Feb 2001 | B1 |
6524514 | Volokitin et al. | Feb 2003 | B1 |
6752609 | Volokitin et al. | Jun 2004 | B2 |
7118698 | Armantrout et al. | Oct 2006 | B2 |
20020089094 | Kleinmeyer et al. | Jul 2002 | A1 |
20040000604 | Vetter et al. | Jan 2004 | A1 |
20040219345 | Armantrout et al. | Nov 2004 | A1 |
20050106391 | Lawrence | May 2005 | A1 |
20050136190 | Tani et al. | Jun 2005 | A1 |
20060228435 | Andrady et al. | Oct 2006 | A1 |
20070038290 | Huang et al. | Feb 2007 | A1 |
20100219563 | Chang et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
14723732 | Mar 2003 | CN |
0 306 033 | Mar 1989 | EP |
0 584 060 | Sep 1996 | EP |
1999304 | Dec 2010 | EP |
2 096 586 | Oct 1982 | GB |
09 192545 | Jul 1997 | JP |
WO 9220330 | Nov 1992 | WO |
WO03042436 | May 2003 | WO |
WO2005061763 | Jul 2005 | WO |
WO2007110783 | Oct 2007 | WO |
Entry |
---|
Martin Dauner, “Nanofibers for Filtration and Separation”, 3rd international symposium, “How to Enter Technical Textiles Markets 3”, Ghent, Belgium, Nov. 17-18, 2005. |
International Newsletter Ltd., the 3rd international symposium How to Enter Technical Textiles Markets 3 Brochure and Registration Form and list of particpants scheduled for Nov. 17-18, 2005 at Ghent, Belgium. |
Martin Dauner, “Fortschritte in der Nanofaser-Erzeugung”, 20. Hofer Vliesstoffage 2005, Hof, Germany, Nov. 9-10, 2005. |
Internet posting at http://www.hofer-vliesstoffiage.de/vortrag-2005.php of presentations for 20. Hofer Vliesstoffage 2005, see link to item 02; Program Schedule for 20. Hofer Vliesstoffage 2005 at Hof, Germany, Nov. 9-10, 2005. |
Martin Dauner, “Centrifuge Spinning—a new technology to improve polymeric filter media”, 8. Symposium Textile Filter, Chemnitz, Germany, Mar. 7-8, 2006 (slides and paper). |
Listing of Abstracts and Topics for 8. Symposium Textile Filter, Chemnitz, Germany, Mar. 7-8, 2006. |
Purchase Order from Bollig & Kemper GmbH Co. KG to Reiter GmbH Co. KG for Hochrotationsspruhsystems CENTERBELL dated Aug. 15, 2005; and Delivery Note from Reiter GmbH Co. KG to Bollig & Kemper for Hochrotationsspruhsystems dated Sep. 21, 2005. |
Reiter GmbH Co. KG, Operating Manual for “Hochrotationssystem HR Center Bell mit Glockenhaube”, pp. 1-6. |
ITWRansburg, Service manual LN-9264-08 for AerobellTM, pp. 1, 35, and 51, Oct. 2008. |
Translated (from German to English) portions of Opposition Brief filed on Sep. 29, 2011 by Reiter GmbH + Co. KG Oberflachentechnik opposing European Patent EP 1 999 304 B1. |
Office Action Dated Oct. 11, 2011 for parent U.S. Appl. No. 11/593,959, filed Nov. 7, 2006 and response thereto. |
Number | Date | Country | |
---|---|---|---|
20100032872 A1 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
60786632 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11593959 | Nov 2006 | US |
Child | 12580513 | US |