Solvent-cast microprotrusion arrays containing active ingredient

Information

  • Patent Grant
  • 10238848
  • Patent Number
    10,238,848
  • Date Filed
    Wednesday, July 1, 2015
    9 years ago
  • Date Issued
    Tuesday, March 26, 2019
    5 years ago
Abstract
In an aspect of the invention, an array of microprotrusions is formed by providing a mold with cavities corresponding to the negative of the microprotrusions, casting atop the mold a first solution comprising a biocompatible material and a solvent, removing the solvent, casting a second solution atop the first cast solution, removing the solvent from the second solution, and demolding the resulting array from the mold. The first solution preferably contains an active ingredient.
Description
TECHNICAL FIELD

This invention relates generally to drug delivery using microneedles or other microprojections.


BACKGROUND

Arrays of microneedles were proposed as a way of administering drugs through the skin in the 1970s, for example in expired U.S. Pat. No. 3,964,482. Microneedle arrays can facilitate the passage of drugs through or into human skin and other biological membranes in circumstances where ordinary transdermal administration is inadequate. Microneedle arrays can also be used to sample fluids found in the vicinity of a biological membrane such as interstitial fluid, which is then tested for the presence of biomarkers.


In recent years it has become more feasible to manufacture microneedle arrays in a way that makes their widespread use financially feasible. U.S. Pat. No. 6,451,240 discloses some methods of manufacturing microneedle arrays. If the arrays are sufficiently inexpensive, for example, they may be marketed as disposable devices. A disposable device may be preferable to a reusable one in order to avoid the question of the integrity of the device being compromised by previous use and to avoid the potential need of resterilizing the device after each use and maintaining it in controlled storage.


Despite much initial work on fabricating microneedle arrays in silicon or metals, there are significant advantages to polymeric arrays. U.S. Pat. No. 6,451,240 discloses some methods of manufacturing polymeric microneedle arrays. Arrays made primarily of biodegradable polymers have some advantages. U.S. Pat. No. 6,945,952 and U.S. Published Patent Applications Nos. 2002/0082543 and 2005/0197308 have some discussion of microneedle arrays made of biodegradable polymers. A detailed description of the fabrication of a microneedle array made of polyglycolic acid is found in Jung-Hwan Park et al., “Biodegradable polymer microneedles: Fabrication, mechanics, and transdermal drug delivery,” J. of Controlled Release, 104:51-66 (2005).


Despite these efforts, there is still a need to find simpler and better methods for the manufacture of polymeric arrays and in particular arrays made of biodegradable polymers. A particular desideratum is a method which works at a relatively low temperature so that temperature sensitive actives may be delivered by means of such arrays.


SUMMARY OF THE INVENTION

In an aspect of the invention, an array of microprotrusions is provided comprising an approximately planar base and a plurality of microprotrusions, wherein the array comprises a plurality of layers arranged roughly parallel to the plane of the base, at least two of the plurality of layers comprise different polymers, a first layer of the plurality of layers is contained in the microprojections, and optionally at least one layer of the plurality of layers comprises an active ingredient.


In a further aspect of the invention, an array of microprotrusions is formed by (a) providing a mold with cavities corresponding to the negative of the microprotrusions, (b) casting a solution comprising a biocompatible material and a solvent atop the mold, (c) removing the solvent, (d) demolding the resulting array from the mold, and (e) taking at least one measure to avoid the formation or adverse effects of bubbles.





FIGURES


FIG. 1 is an exemplary chart of skin penetration efficiency from the arrays described in Example 11.



FIG. 2 is a scanning electron micrograph of a microneedle produced by processes of the invention.



FIG. 3 depicts schematically a cavity in a mold being filled by means of droplets. The figure is not to scale and in particular the cavity and the droplets are shown with a very different scale from the dispensing head and the apparatus which moves the dispensing head.



FIG. 4 depicts schematically in cross-section a microprojection in which the diameter of the microprojection decreases more rapidly with distance from the base closer to the base compared to further away from the base.



FIGS. 5A-5C depict schematically in cross-section five exemplary types of microprojection arrays of the invention.



FIG. 6 depicts schematically possible shapes of the layer comprising the tips of microneedles after casting.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Before describing the present invention in detail, it is to be understood that this invention is not limited to specific solvents, materials, or device structures, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.


As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include both singular and plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “an active ingredient” includes a plurality of active ingredients as well as a single active ingredient, reference to “a temperature” includes a plurality of temperatures as well as single temperature, and the like.


Where a range of values is provided, it is intended that each intervening value between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the disclosure. For example, if a range of 1 μm to 8 μm is stated, it is intended that 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, and 7 μm are also disclosed, as well as the range of values greater than or equal to 1 μm and the range of values less than or equal to 8 μm.


In this application reference is often made for convenience to “skin” as the biological membrane through which the active is administered. It will be understood by persons of skill in the art that in most or all instances the same inventive principles apply to administration through other biological membranes such as those which line the interior of the mouth, gastro-intestinal tract, blood-brain barrier, or other body tissues or organs or biological membranes which are exposed or accessible during surgery or during procedures such as laparoscopy or endoscopy.


In this application reference is also made to “microneedles” as the type of microprotrusion or microprojection which is being employed. It will be understood by persons of skill in the art that in many cases the same inventive principles apply to the use of other microprotrusions or microprojections to penetrate skin or other biological membranes. Other microprotrusions or microprojections may include, for example, microblades as described in U.S. Pat. No. 6,219,574 and Canadian patent application no. 2,226,718, and edged microneedles as described in U.S. Pat. No. 6,652,478.


In general it is preferred that the microprojections have a height of at least about 100 μm, at least about 150 μm, at least about 200 μm, at least about 250 μm, or at least about 300 μm. In general it is also preferred that the microprojections have a height of no more than about 1 mm, no more than about 500 μm, no more than about 300 μm, or in some cases no more than about 200 μm or 150 μm. The microprojections may have an aspect ratio of at least 3:1 (height to diameter at base), at least about 2:1, or at least about 1:1. A particularly preferred shape for the microprojections is a cone with a polygonal bottom, for example hexagonal or rhombus-shaped. Other possible microprojection shapes are shown, for example, in U.S. Published Patent App. 2004/0087992. Microprojections may in some cases have a shape which becomes thicker towards the base, for example microprojections which have roughly the appearance of a funnel, or more generally where the diameter of the microprojection grows faster than linearly with distance to the microprojection's distal end. Such a shape may, for example, facilitate demolding. FIG. 4 schematically depicts in cross-section a microprojection 40 of this type. As may be seen in the figure, the diameter D of the microprojection's intersection with a plane parallel to the base 46 decreases as the plane moves away from the base 46. In addition, this diameter decreases more rapidly close to the base, in zone 44, than it does further away from the base, in zone 42.


Where microprojections are thicker towards the base, a portion of the microprojection adjacent to the base, which we may call “foundation,” may be designed not to penetrate the skin.


The number of microprotrusions in the array is preferably at least about 100, at least about 500, at least about 1000, at least about 1400, at least about 1600, or at least about 2000. The area density of microprotrusions, given their small size, may not be particularly high, but for example the number of microprotrusions per cm2 may be at least about 50, at least about 250, at least about 500, at least about 750, at least about 1000, or at least about 1500.


In an aspect of the invention, an array of microprotrusions is formed by (a) providing a mold with cavities corresponding to the negative of the microprotrusions, (b) casting atop the mold a solution comprising a biocompatible material and a solvent, (c) removing the solvent, (d) demolding the resulting array from the mold. The solution preferably contains an active ingredient.


The molds used to form the microneedles in methods of the invention can be made using a variety of methods and materials. In contrast to other methods of making microneedle arrays, for the methods of the invention no particularly high degree of heat resistance is necessarily required of the mold.


The mold may, for example, conveniently comprise a ceramic material. Alternatively, for example, the mold may comprise a silicone rubber or a polyurethane. The mold may alternatively comprise a wax. A particular silicone rubber system which may be used is the Sylgard® system from Dow Corning (Midland, Mich.), for example Sylgard 184. Nusil MED 6215 is an alternative system available from NuSil Technology (Carpinteria, Calif.). The mold may conveniently be made of or comprise a porous material.


There are a number of ways of making the molds. The molds can be made, for example, by casting the liquid mold material over a master microneedle array and allowing the material to dry and harden. In some cases, curing of the material may take place during the drying process. For some materials curing agents may be added. Silicone rubbers and polyurethane are two types of materials that can be used to make molds in this way.


The molds can be made by heating the mold material until it melts. The liquid is then cast over the master microneedle array and allow the material to cool and harden. Waxes and thermoplastics are two classes of materials that can be used to make molds in this way.


The molds can be made by pressing the master microneedle array into the mold material. For this manufacturing technique, the mold material is preferably much softer than the microneedle array. The mold material can be heated to soften it. Waxes and thermoplastics are two types of materials that can be used to make molds in this way.


The molds can be made by plating metal (such as nickel, copper or gold) onto a master microneedle array.


The molds can be made by machining the cavities into the mold material. Electrostatic discharge machining (EDM) can be used to make cavities in metals. Reactive ion etching (RIE) can be used to create the cavities, for example, in silicon and other semiconductors.


The step of casting may be performed by a number of methods known to those of skill in the art. Example 1 describes briefly a way of performing the step of casting. Goals of casting include roughly uniform coverage of the surface of the mold on which the microneedle array is expected to be formed.


The solution which is cast preferably comprises one or more polymers in a solvent and an active ingredient. The polymers should be biocompatible. The polymers are preferably biodegradable. By this term we mean that a polymer will degrade under expected conditions of in vivo use (e.g., insertion into skin), irrespective of the mechanism of biodegradation. Exemplary mechanisms of biodegradation include disintegration, dispersion, dissolution, erosion, hydrolysis, and enzymatic degradation.


For example, suitable biocompatible, biodegradable, or bioerodible polymers include poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactic acid-co-glycolic acid)s (PLGAs), polyanhydrides, polyorthoesters, polyetheresters, polycaprolactones (PCL), polyesteramides, poly(butyric acid), poly(valeric acid), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyethylene glycol (PEG), block copolymers of PEG-PLA, PEG-PLA-PEG, PLA-PEG-PLA, PEG-PLGA, PEG-PLGA-PEG, PLGA-PEG-PLGA, PEG-PCL, PEG-PCL-PEG, PCL-PEG-PCL, copolymers of ethylene glycol-propylene glycol-ethylene glycol (PEG-PPG-PEG, trade name of Pluronic® or Poloxamer®), dextran, hetastarch, tetrastarch, pentastarch, hydroxyethyl starches, cellulose, hydroxypropyl cellulose (HPC), sodium carboxymethyl cellulose (Na CMC), thermosensitive HPMC (hydroxypropyl methyl cellulose), polyphosphazene, hydroxyethyl cellulose (HEC), other polysaccharides, polyalcohols, gelatin, alginate, chitosan, hyaluronic acid and its derivatives, collagen and its derivatives, polyurethanes, and copolymers and blends of these polymers. A preferred hydroxyethyl starch may have a degree of substitution of in the range of 0-0.9.


The polymers used in the invention may have a variety of molecular weights. The polymers may, for example, have molecular weights of at least about 5 kD, at least about 10 kD, at least about 20 kD, at least about 22 kD, at least about 30 kD, at least about 50 kD, or at least about 100 kD.


Preferred solvents for casting include water, alcohols (for example, C2 to C8 alcohols such as propanol and butanol), and alcohol esters, or mixtures of these. Other possible non-aqueous solvents include esters, ethers, ketones, nitrites, lactones, amides, hydrocarbons and their derivatives as well as mixtures thereof.


In the step of casting the solution on the mold, it is commonly desired to avoid the presence of bubbles of air between the solution and the mold when it is cast. A number of techniques may be employed within the methods of the invention for avoiding these bubbles.


The mold itself, or portions of it, may be subject to surface treatments which make it easier for the solution to wet the mold surface. For example, the mold surface can be coated with a surfactant such as Jet Dry, polysorbate, docusate sodium salt, benzethonium chloride, alkyltrimethylammonium bromide or hexadecyltrimethylammonium bromide (CTAB). Wettability of silicone mold surfaces may be improved by covering them with a solution of hydroxypropylcellulose (HPC) in organic solvent.


The mold surface can be coated with a salt such as calcium carbonate. Calcium carbonate can conveniently be formed in situ from calcium bicarbonate. The mold surface is coated by covering it with a solution containing equivalent quantities of calcium chloride and sodium bicarbonate to form calcium bicarbonate solution in situ. Ultrasonic energy is then applied to precipitate the calcium carbonate salt which is formed as calcium bicarbonate decomposition product under these conditions.


The wettability of the mold surface can also be improved by radiofrequency (RF) or plasma treatment. Alternatively, it is possible to attach to the surface appropriate small molecules, for example in a reaction which is triggered by ultraviolet light. Exemplary small molecules are vinyl monomers comprising carboxyl, primary or secondary or tertiary amine and/or hydroxyl groups, for example acrylic acid, methacrylic acid, allyl amine, or hydroxyethyl methylacrylate (HEMA).


Surface treatments suitable for inducing hydrophilicity are described also in U.S. Published Patent Application No. 20060097361.


A wetting agent, for example Dow Corning Q2-5211, can be added to the mold itself as it is being formed. Q2-5211 is described by Dow Corning as a low molecular weight nonionic silicone polyether surfactant. Being mixed in with the mold as it is formed, the wetting agent becomes part of the mold.


A surfactant such as alkyltrimethylammonium bromide (Cetrimide), hexadecyltrimethylammonium bromide (CTAB), benzethonium chloride, docusate sodium salt, a SPAN-type surfactant, polysorbate (Tween), sodium dodecyl sulfate (SDS), benzalkonium chloride, or glyceryl oleate can be added to the solution.


An anti-foaming agent can be added to the solution. Exemplary antifoaming agents include Dow Corning's FG-10 antifoam Emulsion, Antifoam C Emulsion, 190 fluid, and 193C fluid.


The cavities can be filled with a wetting liquid that easily flows into the cavities and will be absorbed by the mold. The wetting liquid could be ethyl acetate or silicone fluid when the mold is made of silicone rubber. The drug solution is cast over the wetting liquid and is drawn into the cavities as the wetting liquid is absorbed.


The drug solution can be cast onto the mold while a vacuum is applied over the cavities. A low-pressure bubble covered with a liquid film of drug solution can form in the cavities. When the vacuum is removed, the higher pressure over the liquid film will shrink the bubble in the cavity and push the drug solution in behind it.


Alternatively, the mold may be designed to possess a porosity sufficient to allow air to escape from bubbles that may be found between the solution and the mold, but not sufficient for the solution itself to enter the mold's pores.


A further technique which may be employed to avoid air bubbles is to place the mold under compression prior to casting. The compression may be, for example, from two opposite sides. The compression will tend to reduce the volume of the cavities into which the solution must enter. The solution is then cast on the compressed mold. The compression is then released. Upon releasing the compression, the solution is drawn into the cavities as they expand to their normal volume. This process can be performed across the entire mold simultaneously or can be performed on sections of the mold.


The step of casting may alternatively be carried out under an atmosphere which passes more readily through the solution than air would, for example carbon dioxide or another gas whose solubility is greater than that of nitrogen or oxygen, the major constituents of air.


If a bubble is not prevented from forming in a cavity, several methods can be used to remove the bubble. For example, the bubble may be dislodged by vibrating the mold with the drug solution on it.


Pressurization of the cast solution and mold may help eliminate bubbles. In general, the gas in a bubble is expected to diffuse into the liquid over a period of time. When this happens, drug solution is expected to flow into the cavity due to gravitational pull and hydrostatic pressure. The filling and diffusion processes can be accelerated by pressurization. Drying of the liquid is preferably slowed during this period so the liquid can flow into the cavity as the gas from the bubble diffuses into the liquid. Pressurization can be accomplished by placing the mold with the drug solution on it into a pressure vessel. Pressurization may involve a pressure of at least about 3 psi, about 5 psi, about 10 psi, about 14.7 psi, or about 20 psi above atmospheric.


The Epstein-Plesset equation for the time to the dissolution of a bubble in a liquid gives at least a qualitative understanding of the bubble dissolution taking place when the mold and cast solution are pressurized. However, generally the bubbles in mold cavities will have roughly a conical shape and the bubbles hypothesized by Epstein and Plesset were spherical.


Thus, for example, an exemplary method of casting dispenses the solution on the mold over the cavities. A vacuum is applied, causing air trapped in cavities to expand. The air bubbles flow towards the surface of the solution, which in turn flows down into the cavities. When the pressure is returned to atmospheric, the expanded air left in the cavities compresses down.


Another exemplary method of casting dispenses the solution on the mold over the cavities. An overpressure is applied, for example about 0.5 atmospheres, about 1 atmosphere, or about 1.5 atmospheres, causing air bubbles trapped in cavities to contract. The higher pressure causes the air trapped in the bubbles to dissolve into the liquid and causes the bubbles eventually to disappear. After a suitable time the overpressure can be removed. In order to prevent the formulation from drying during this process, the environment surrounding the mold can be humidified.


A vacuum can be applied after the drug solution is cast over the cavities to make the bubbles expand which increases the force pushing them up through the drug solution. The bubbles then rise to the surface of the liquid and the liquid fills the cavities. Drying of the liquid is preferably slowed during this period so the liquid can flow into the cavity as the bubble rises.


It is possible to combine many of the bubble prevention or elimination methods which are listed above.


During the process of solvent removal, the volume of the cast solution will naturally diminish. With an appropriate choice of solvents, it is possible for the distal ends of the microprojections—those furthest from the base—to become finer as a result of solvent removal. Fineness in these tips may be favorable, all else being equal, for easier penetration of the skin, and may thus be desired. A tip diameter of less than about 10 μm, 5 μm or 2 μm is desirable. A tip diameter of less than about 1.5 μm is desirable, as is a tip diameter of less than about 1 μm.


The solvent removal may be accomplished, for example, by heat, vacuum, or convection. The solvent removal may be assisted by covering the cast solution with an absorbent material.


Particularly where the active ingredient is macromolecular, it is desirable to avoid extensive use of heat in the solvent removal step because of the possibility of irreversible denaturation of the active. For example, it is preferable if no temperature above about 100° C. is used (except perhaps for a brief period), more preferably no temperature above about 90° C., and more preferably no temperature above about 85° C. or 80° C. is employed. More preferably, no temperature above about 50° C., 40° C. or 37° C. is employed.


Cast microprojection arrays may be removed from the mold by using a de-mold tool which has a rolling angle of about 1-90 degrees from the plane. A double-sided adhesive is placed on the back of microprojection array with one side for adhering to the array and the other side for adhering to the de-mold tool. The array is removed from the mold by gently rolling the de-mold tool over the adhesive on the back of the array with a slight the rolling angle, such as about 1-90 degrees, preferred about 5-75 degrees, more preferred about 10-45 degrees. The microprojection array is then gently peeled off from the de-mold tool.


In an aspect of the invention, an array of microprotrusions is provided comprising an approximately planar base and a plurality of microprotrusions, wherein the array comprises a plurality of layers arranged roughly parallel to the plane of the base, at least two of the plurality of layers comprise different polymers, and optionally at least one layer of the plurality of layers comprises an active ingredient.


Arrays of the invention may be designed, for example, such that at least one layer of the array adheres to human skin.


There are a number of reasons why arrays with multiple layers may be desirable. For example, it is often desirable that, compared to the whole volume of the microprojection array, the microprojections themselves have a higher concentration of active ingredient. This is so, for example, because the microprojections can be expected in many cases to dissolve more rapidly, being more hydrated than the base of the array. Furthermore, in some protocols for array application, the array may be left in for a short period of time during which essentially only the microprojections can dissolve to a substantial extent. The desirability of placing a higher concentration of active in the projections themselves is particularly acute when the active is costly. A way to achieving a higher concentration of active in the projections themselves is to have a first layer which includes the microprojections or a substantial proportion of the microprojections, and a second layer which includes the base or a substantial proportion of the base.



FIG. 5A depicts schematically in cross-section two exemplary microprojection arrays of the invention. In the first microprojection array 50, there is a base 58 and a plurality of microprojections such as 56. The microprojection array comprises two layers 52 and 54 (shaded). As may be seen, the microprojections themselves fall entirely within layer 52, so that layer 54 does not contain any microprojections. In the second microprojection array 60, there are also a plurality of microprojections such as 66. The microprojection array comprises two layers 62 and 64 (shaded). However, in array 60 the layer 62 encompasses only a portion of the microprojections which comprises their tips or distal ends. The layer 64 encompasses the portion of the microprojections not contained in layer 62 and also encompasses the totality of the base 68.



FIG. 5B depicts two further types of microprojection arrays schematically in cross-section. In microprojection array 70, there are also a plurality of microprojections such as 76. The microprojection array comprises three layers 72, 74 and 78. However, in array 70 the layer 72 encompasses only a portion of the microprojections which comprises their tips or distal ends. Layer 72 may have a higher concentration of drug substance than layer 74. Layer 74 encompasses only a portion of the microprojections. Layer 78 encompasses the portion of the microprojections not contained in layers 72 or 74. It encompasses the totality of the base. In this type of microprojection array, the depth of drug substance delivered through the microprojection array can be controlled by tailoring the length of portion of tip 72.


In a further type of microprojection array 80 shown schematically in cross-section in FIG. 5B, there is also a plurality of microprojections such as 88. The microprojection array comprises a layer 82 which includes the distal ends of the microprojections. That layer, however, encloses deposits such as 84 which contain active. The layer 82 may be made of a material which serves to control the rate at which the active is released from the deposits 84. There are two further layers 86 and 90. Layer 86 may be made of a material eroding more rapidly than other layers, for example so as to allow separation of the microprojections 88 in use. Layer 90 encompasses the base of the array.


Example 8 discloses fabrication procedures by which microprojection arrays of the type of array 80 may be made. The materials for layer 82 need to be chosen so that the enclosure of the deposits 84 can be achieved. Exemplary polymers suitable for use in layer 82 include poly(lactic acid), poly(glycolic acid), poly(lactic acid-co-glycolic acid), poly(caprolactone), polyanhydrides, polyamines, polyesteramides, polyorthoesters, polydioxanones, polyacetals, polyketals, polycarbonates, polyphosphoesters, polyorthocarbonates, polyphosphazenes, poly(malic acid), poly(amino acids), hydroxycellulose, polyphosphoesters, polysaccharides, chitin, and copolymers, terpolymers and mixtures of these.


A further type of three-layer microprojection array 100 is shown schematically in cross-section in FIG. 5C. In array 100 there are also a plurality of microprojections such as 106. The microprojection array comprises three layers 102, 104 and 108. In array 100 the middle layer 104 may be made of a material eroding more rapidly than other layers, for example so as to allow separation of the microprojections 106 in use. In that event the drug substance is preferably contained in layer 102.


While FIGS. 5A-5C depict planar interfaces between the layers making up the microprojection arrays, in reality these interfaces may have a curvature. FIG. 6 depicts certain possible shapes 110 and 112 that the top of the lowermost layer 114 of an array may assume. Each of these shapes may be referred to generally as a “meniscus,” although some people might strictly speaking limit that term to the shape of a liquid partially filling a cavity and not extend it to the shape of a cast composition in a cavity after solvent removal. It is known that the form of the meniscus of a liquid is affected by its density and by surface tension parameters, and may be modified by the use of surface-active agents. For the surface of a solvent-cast formulation in a cavity, it is further possible to affect the form of the surface by means of differential drying conditions, for example making it have greater or lesser curvature or to lie deeper or higher in the cavity. Example 10 provides some illustrations of drying regimes which can affect the form of the surface of the solvent-cast film following solvent removal.


In a method of the invention, the solution comprising the active is cast so that it fills the cavities of a mold partially or fills no more than the cavities. This solution is dried. A further solution with a lower or zero concentration of active, constituting a second layer, is then cast over the solution comprising the active. The polymers used in the first layer are preferably not soluble in the solvent used for the second layer. The second layer preferably uses a different polymer or polymers from the ones used in the first layer. This procedure may produce an array which array has two layers and in which the microprojections are enriched in active. In such an array, the active would not be expected to substantially diffuse into the first layer.


The second layer may comprise, for example, cellulose acetate butyrate, cellulose acetate, cellulose acetate propionate, ethyl cellulose, nitrocellulose, hydroxypropyl methyl cellulose phthalate, polystyrene, polyacrylates (such as acrylate/octylacrylamide copolymers, Dermacryl 97), polymethacrylates (such as Eudragits E, RL, RS, L100, S100, L100-55), or poly(hydroxyl alkanoates). Preferably the second layer may comprise biocompatible, biodegradable polymer(s) such as PLA, PGA, PLGA, polycaprolactone and copolymers thereof. Preferably where the first layer is cast in an aqueous solvent, the second layer is cast in an organic solvent. Preferred solvents for the second layer include alcohols, for example isopropyl alcohol and ethanol, and esters, for example ethyl acetate, heptane, or propyl acetate, or other solvents such as acetonitrile, dimethylsulfone (DMSO), N-methylpyrrolidone (NMP), or glycofurol.


In a multi-layer microprojection array, the first layer, instead of being placed into the mold by a method such as bulk casting, may alternatively be transported into each individual mold cavity as an individual droplet. In recent decades systems have been developed for putting down many small drops automatically onto substrates in a regular pattern. Such systems may operate, for example, on a piezoelectric or bubble jet principle. An early application of these capabilities was inkjet printing in which ink was impelled towards a substrate such as a sheet of paper according to a computer-controlled pattern. A variety of other types of liquids, including liquids containing biomolecules, have also been deposited by such techniques. Exemplary patents discussing this type of technology include U.S. Pat. Nos. 6,713,021, 6,521,187, 6,063,339, 5,807,522, and 5,505,777. Commercial products for such applications are available, for example, from BioDot, Inc. (Irvine, Calif.), MicroFab Technologies, Inc. (Plano, Tex.), and Literx Corporation (Pleasanton, Calif.).


A typical dispensing arrangement (see FIG. 3) uses a dispensing head 10 which is movable in an X-Y plane by means of a suitable apparatus 20. The dispensing head commonly comprises a reservoir of liquid, a pre-dispensing zone, and an opening into the pre-dispensing zone. The liquid in the pre-dispensing zone does not pass through the opening on account of surface tension. A transducer, typically piezoelectric, is operatively connected to the pre-dispensing zone. In operation, a pulsing of the transducer reduces the volume of the pre-dispensing zone and so imparts sufficient energy to the liquid in the pre-dispensing zone that surface tension is overcome and a drop is dispensed.


In addition to piezoelectric transducers, other ways of impelling the liquid from a dispensing head have been discussed in the literature. For example, a gas may be used, or the movement of a member driven by a magnetic field.


A major consideration favoring the placement of the first layer in the form of droplets into the mold cavity is the potential savings of drug substance that can result if the first layer is the only drug-containing layer. This can be of particular value if the drug substance is expensive.


A consideration in the placement of the first layer in the form of droplets is the variability in the size of the droplets which is placed in each cavity. It is preferred that the droplet volumes have a coefficient of variation of no more than about 25%, no more than about 15%, no more than about 10%, no more than about 5%, or no more than about 2%.


It is also desirable that the droplets arrive fairly precisely into the centers of the mold cavities so that following the process of filling they are located near the bottoms of the cavities. Cavity openings may typically have diameters on the order of approximately 100 μm. It may therefore be desired, for example, that the droplet center lie within a radius of about 15, 25, or 35 μm around the center of the cavity opening. As will be seen by the person of skill in the art, a number of factors go into determining whether this degree of precision can be achieved routinely. For example, the molds should have a dimensional stability which makes this degree of precision achievable. Their alignment relative to the dispensing device should also be controllable to the requisite degree of precision.


Preferably the droplets would displace the air in the mold cavities so air would not be trapped inside the mold cavities under the formulation. Each droplet preferably enters the cavity into which it is transported without splashing or bouncing (i.e., remains in the cavity after being transported into it). In order to achieve this, it may be desirable to control the energy or velocity or momentum of the droplets at the time that they strike the cavity. Additional drops of formulation could be added to the cavities either before or after the formulation that was previously dispensed has dried. FIG. 3 depicts three droplets 22, 24, 26 in succession being transported into a cavity 30 which already contains liquid 32.


The diameter of the droplets is preferably smaller than the opening of the microneedle cavity in the mold. For example, a typical microneedle may be 200 μm long with a hexagonal base and a 10° draft on each face. The base of this microneedle would then be 71 μm from face to face. The volume of this microneedle is approximately 280 pL. The cavity in the mold to make this microneedle has approximately the same dimensions. A drop of fluid used to fill the cavity is preferably smaller in diameter than the opening of the cavity. To meet this constraint, the drop should consequently be less than 71 μm in diameter. A 71 μm diameter sphere has a volume of 187 pL. Thus, it may be desirable to dispense droplets in the range from about 50 pL to about 100 pL, about 150 pL, about 200 pL, about 250 pL, about 300 pL or about 500 pL, or about 1 nL.


The biodegradability of a microneedle array may be facilitated also by the inclusion of sugars. Exemplary sugars which may be included in a microneedle array include dextrose, fructose, galactose, maltose, maltulose, iso-maltulose, mannose, lactose, lactulose, sucrose, and trehalose. Sugar alcohols, for example lactitol, maltitol, sorbitol, and mannitol, may also be employed. Cyclodextrins can also be used advantageously in microneedle arrays, for example α, β, and γ cyclodextrins, for example hydroxypropyl-β-cyclodextrin and methyl-β-cyclodextrin. Sugars and sugar alcohols may also be helpful in stabilization of certain actives (e.g., proteins) and in modifying the mechanical properties of the microprojections by a plasticizing-like effect.


The biodegradability of a microneedle array may be facilitated by inclusion of water-swellable polymers such as crosslinked PVP, sodium starch glycolate, celluloses, natural and synthetic gums, or alginates.


In a multilayer array, the sugars and other polymers which facilitate biodegradability may be located only in a layer or layers which encompass the microprojections.


The microneedle arrays of the invention are suitable for a wide variety of drug substances. Suitable active agents that may be administered include the broad classes of compounds such as, by way of illustration and not limitation: analeptic agents; analgesic agents; antiarthritic agents; anticancer agents, including antineoplastic drugs; anticholinergics; anticonvulsants; antidepressants; antidiabetic agents; antidiarrheals; antihelminthics; antihistamines; antihyperlipidemic agents; antihypertensive agents; anti-infective agents such as antibiotics, antifungal agents, antiviral agents and bacteriostatic and bactericidal compounds; antiinflammatory agents; antimigraine preparations; antinauseants; antiparkinsonism drugs; antipruritics; antipsychotics; antipyretics; antispasmodics; antitubercular agents; antiulcer agents; anxiolytics; appetite suppressants; attention deficit disorder and attention deficit hyperactivity disorder drugs; cardiovascular preparations including calcium channel blockers, antianginal agents, central nervous system agents, beta-blockers and antiarrhythmic agents; caustic agents; central nervous system stimulants; cough and cold preparations, including decongestants; cytokines; diuretics; genetic materials; herbal remedies; hormonolytics; hypnotics; hypoglycemic agents; immunosuppressive agents; keratolytic agents; leukotriene inhibitors; mitotic inhibitors; muscle relaxants; narcotic antagonists; nicotine; nutritional agents, such as vitamins, essential amino acids and fatty acids; ophthalmic drugs such as antiglaucoma agents; pain relieving agents such as anesthetic agents; parasympatholytics; peptide drugs; proteolytic enzymes; psychostimulants; respiratory drugs, including antiasthmatic agents; sedatives; steroids, including progestogens, estrogens, corticosteroids, androgens and anabolic agents; smoking cessation agents; sympathomimetics; tissue-healing enhancing agents; tranquilizers; vasodilators including general coronary, peripheral and cerebral; vessicants; and combinations thereof.


In general certain drug substances (e.g., nitroglycerin) will transport readily through skin, without any special formulation requirements. Other drug substances will transport through skin with greater difficulty and, with a practical-sized system for application, only with the assistance of enhancers. Other substances are not suitable for transdermal administration even with available enhancers and thus benefit particularly from the channels which microneedles are able to produce. Such substances include, for example, peptidic or other large molecule substances for which oral administration is also not an option.


Examples of peptides and proteins which may be used with microneedle arrays are oxytocin, vasopressin, adrenocorticotropic hormone (ACTH), epidermal growth factor (EGF), prolactin, luteinizing hormone, follicle stimulating hormone, luliberin or luteinizing hormone releasing hormone (LHRH), insulin, somatostatin, glucagon, interferon, gastrin, tetragastrin, pentagastrin, urogastrone, secretin, calcitonin, enkephalins, endorphins, kyotorphin, taftsin, thymopoietin, thymosin, thymostimulin, thymic humoral factor, serum thymic factor, tumor necrosis factor, colony stimulating factors, motilin, bombesin, dinorphin, neurotensin, cerulein, bradykinin, urokinase, kallikrein, substance P analogues and antagonists, angiotensin II, nerve growth factor, blood coagulation factors VII and IX, lysozyme chloride, renin, bradykinin, tyrocidin, gramicidines, growth hormones, melanocyte stimulating hormone, thyroid hormone releasing hormone, thyroid stimulating hormone, parathyroid hormone, pancreozymin, cholecystokinin, human placental lactogen, human chorionic gonadotropin, protein synthesis stimulating peptide, gastric inhibitory peptide, vasoactive intestinal peptide, platelet derived growth factor, growth hormone releasing factor, bone morphogenic protein, and synthetic analogues and modifications and pharmacologically active fragments thereof. Peptidyl drugs also include synthetic analogs of LHRH, e.g., buserelin, deslorelin, fertirelin, goserelin, histrelin, leuprolide (leuprorelin), lutrelin, nafarelin, tryptorelin, and pharmacologically active salts thereof.


Macromolecular active agents suitable for microneedle array administration may also include biomolecules such as antibodies, DNA, RNA, antisense oligonucleotides, ribosomes and enzyme cofactors such as biotin, oligonucleotides, plasmids, and polysaccharides. Oligonucleotides include DNA and RNA, other naturally occurring oligonucleotides, unnatural oligonucleotides, and any combinations and/or fragments thereof. Therapeutic antibodies include Orthoclone OKT3 (muromonab CD3), ReoPro (abciximab), Rituxan (rituximab), Zenapax (daclizumab), Remicade (infliximab), Simulect (basiliximab), Synagis (palivizumab), Herceptin (trastuzumab), Mylotarg (gemtuzumab ozogamicin), CroFab, DigiFab, Campath (alemtuzumab), and Zevalin (ibritumomab tiuxetan).


Macromolecular active agents suitable for microneedle array administration may also include vaccines such as, for example, those approved in the United States for use against anthrax, diphtheria/tetanus/pertussis, hepatitis A, hepatitis B, Haemophilus influenzae type b, human papillomavirus, influenza, Japanese encephalitis, measles/mumps/rubella, meningococcal diseases (e.g., meningococcal polysaccharide vaccine and meningococcal conjugate vaccine), pneumococcal diseases (e.g., pneumococcal polysaccharide vaccine and meningococcal conjugate vaccine), polio, rabies, rotavirus, shingles, smallpox, tetanus/diphtheria, tetanus/diphtheria/pertussis, typhoid, varicella, and yellow fever.


In a further aspect of the invention, it may be desired that the microprojections of the array detach from the array following insertion of the array into skin.


One major advantage of detaching and dissolving microprojections is elimination of sharp disposal requirements. Another advantage of detaching and dissolving microprojections is elimination of needle stick injury. Another advantage of detaching and dissolving microprojections is elimination of misuse, for example needle sharing, since the substrate without microprojections or with microprojections whose tips have been blunted due to biodegradation will not penetrate the skin. Another advantage of detaching and dissolving microprojections is the avoidance of drug misuse because drug enriched tips are dissolved in the skin and no or minimal drug is left in the array.


Detachable microprojections may be accomplished by a number of approaches. A layered approach, for example, may be used in which the array is composed of multiple layers, and a layer comprising the attachment areas of the microprojections to the array is more readily degradable than other layers. For example, the layer comprising the attachment areas of microprojections to array may be one which is more rapidly hydrated than the other layers.


Alternatively, an array made of a homogeneous material may be employed, in which the material is more readily degradable at lower pH's. Arrays made of such a material will tend to degrade more readily near the attachment points because these, being closer to the surface of the skin, are at a lower pH than the distal ends of the microprojections. (The pH of the skin's surface is generally lower than that of the skin further inwards, pH being for example approximately 4.5 on the surface and approximately 6.5 to 7.5 inward.)


Materials whose solubility is dependent on pH can be, for example, insoluble in pure water but dissolve in acidic or basic pH environment. Using such materials or combination of materials the arrays can be made to differentially biodegrade at skin surface (pH approximately 4.5) or inside skin. In the former, the whole array can biodegrade while in latter the microneedle portion of the array will biodegrade while substrate can be removed away.


Materials whose degradability in an aqueous medium is dependent on pH may be made, for example, by utilizing the acrylate copolymers sold by Rohm Pharma under the brand name Eudragit, which are widely used in pharmaceutical formulation. A further example of a material with pH variable solubility is hydroxypropyl cellulose phthalate.


Microneedle arrays made of materials with pH dependent solubility may have additional advantages besides facilitating detachment and differential absorption. For example, they may simplify packaging and handling because of their moisture resistance and rapid hydration and bioadhesion in the buffered acidic or basic environment of the skin.


Microprojection arrays may also be made in which the microprojections have a biodegradability which varies with temperature over the range of expected use conditions, for example in the range of about 25° C. to about 40° C. This may be achieved, for example, by the use of thermosensitive or thermoresponsive polymers. For example, PLGA biodegrades more slowly at higher temperatures. Certain Pluronic polymers are able to solidify with rising temperature. A use for the variation of degradability with temperature is, for example, due to the fact that the microprojections when inserted in skin will tend to have their distal ends at a higher temperature than the portions closer to the base, including the portions (if any) which are not inserted into skin and are thus at a temperature closer to the ambient temperature. The use of a temperature-dependent biodegradability thus offers a further way to tailor the biodegradability along the length of the microprojections.


In a further aspect of the invention, it may be desired that the microneedle array or a layer of the array comprise a polymer or polymer blend with certain bioadhesive characteristics, which within a certain range of moisture will have higher adhesive strength the greater the moisture. It is particularly preferred in a multilayer array that the layer or layers in which the microneedles principally lie possess bioadhesive characteristics.


While usable microneedles may be made of a number of biodegradable polymers as indicated in the patents and patent applications cited in the background section, a polymer that has a bioadhesive character has the advantage that no additional array attachment mechanism, for example an additional adhesive arranged along the exterior perimeter of the microneedle array, may be needed. Use of a bioadhesive polymer may also facilitate detachment of the microneedles or microprojections because they will have a greater adhesion to the interior of the skin where there is greater moisture.


The bioadhesive polymers used in the methods of the invention may, for example, increase in adhesiveness from a moisture content of about 2%, about 5%, or about 10% to some upper limit of moisture content. The upper limit of moisture content beyond which adhesiveness ceases to increase is preferably at least about 20%, more preferably at least about 30%, 40%, 50% or 60% moisture content.


Exemplary polymers with bioadhesive characteristics include suitably plasticized polyvinyl alcohol and polyvinylpyrrolidone. An extensive discussion of a class of bioadhesive polymer blends is found in U.S. Pat. No. 6,576,712 and U.S. Published Patent Applications Nos. 2003/0170308 and 2005/0215727, which are incorporated by reference for their teaching of bioadhesive polymer blends and adhesion testing. Preferable bioadhesive polymers are those which possess hydrogen-bonded crosslinks between strands of the primary polymers. These crosslinks may comprise a comparatively small molecule which forms hydrogen bonds to two primary polymer strands. It is believed that certain sugars may act as a small molecule crosslinker in this manner with particular primary polymers such as polyvinyl alcohol.


The bioadhesive character of a polymer or blend may be determined by testing the bulk material for adhesion (e.g., by a peel test) at different levels of hydration. Alternatively, the bioadhesive character may also be seen if a microneedle array as applied to skin becomes more difficult to remove in minutes or tens of minutes after application, since the array may be assumed to become more hydrated during that period of time.


The bioadhesive nature of polymer may allow the polymer to form a channel or plug in the skin to keep pores open for prolonged period of time for drug diffusion. This is particularly useful if the substrate of the array is used as a drug reservoir, containing the same active ingredient or a different active ingredient from the one contained in the microneedles. The bioadhesive array can be also be used to pretreat the skin and leave bioadhesive microneedles inside the skin. This may be followed by application of a solid or liquid reservoir. Due to the channel formation, drug may freely diffuse through bioadhesive channels created and located in the skin.


A bioadhesive array embedded in skin or in another membrane may also be used as a biosensor. It may respond, for example, to biomarkers, pH, hydration, or temperature by itself. Alternatively, it may facilitate the flow of matter from inside the skin through the bioadhesive channel and onto the base or a reservoir placed in the skin adjacent to the array. For example, if the rate of dissolution of microprojections in skin is correlated with some property of the skin (e.g., pH), that property may be measured by embedding microprojections in skin for a measured period of time and then observing the degree to which they have dissolved.


Because microprojection arrays penetrate human skin, it may be desirable to take steps which tend to eliminate the presence of microorganisms in the array. Such steps include, for example, the use of a formulation with high sugar concentration which will act as an osmotic agent to dehydrate microorganisms in the formulation. An alternative technique is the use of a non-physiological pH (e.g., below pH 6 and above pH 8) to retard growth and destroy microbial viability. The formulation may be made with organic solvents which are then dried in order to dehydrate microorganisms. Apart from the dehydration effect, the use of organic solvents is also inherently bactericidal since they disrupt bacterial cell membranes. In addition, the microprojection arrays may be packaged in a sealed, low oxygen environment to retard aerobic microorganisms and eventually destroy their viability. The arrays may also be packaged in a low moisture environment to dehydrate microorganisms.


A further technique to deal with microorganisms is to include a pharmaceutically acceptable antibacterial agent in the formulation or the packaging. Examples of such agents are benzalkonium chloride, benzyl alcohol, chlorbutanol, meta cresol, esters of hydroxyl benzoic acid, phenol, and thimerosal.


As a further alternative, a surfactant or detergent can be added to the formulation to disrupt the cell membrane of any microorganisms to kill them. A desiccant could be added to the packaging to dehydrate microorganisms and kill them.


Antioxidants may be added to the formulation, for example to protect the active from oxidation. Exemplary antioxidants include methionine, cysteine, D-alpha tocopherol acetate, DL-alpha tocopherol, ascorbyl palmitate, ascorbic acid, butylated hydroxyanisole, butylated hydroxyquinone, butylhydroxyanisole, hydroxycomarin, butylated hydroxytoluene, cephalin, ethyl gallate, propyl gallate, octyl gallate, lauryl gallate, propylhydroxybenzoate, trihydroxybutyrophenone, dimethylphenol, ditertbutylphenol, vitamin E, lecithin, and ethanolamine.


In the evaluation of solvent cast or other microneedle arrays, various figures of merit may be employed. A simple visual figure of merit is the completeness of the array under microscopic examination: are any of the microneedles of an unsuitable shape, for example broken off or with unduly blunt or fine ends? It is desirable that no more than about 20%, no more than about 10%, preferably no more than about 5%, and more preferably no more than about 2% of the microneedles have an unsuitable shape upon demolding.


An alternative figure of merit may be obtained by setting up a consistent test for skin penetration efficiency. An exemplary test requires the placement of the microneedle array upon a test sample of cadaver skin, the insertion of the array with a reproducible or standardized force, and the withdrawal of the array after a period of time. At that time the percentage of openings in the skin sample that are deemed to allow adequate transport of material may be taken as a figure of merit. A material that may be used to test adequacy of transport is India ink. It is desirable that at least about 80%, preferably at least about 90%, and more preferably at least about 95% of the openings in the skin allow adequate transport of material.


A further figure of merit for microneedle arrays is transepidermal water loss (TEWL) after application of the array, which is conveniently expressed in units of mass per unit area and time. TEWL measurement has a number of dermatological applications. Commercially available instruments exist for the measurement of TEWL, for example from Delfin Technologies Ltd., Kuopio, Finland. TEWL is conveniently measured before and after the application of a microneedle array to a human test subject, the ratio of the two measured values being an indication of the degree to which the microneedle array disrupts the barrier function of the skin.


For microneedle arrays it may be desired that the ratio of TEWL's after and before application of the microneedles be at least about 1.5, at least about 2.0, more preferably at least about 2.5.


In practice, it may often be helpful for the microneedles produced by processes of the invention to be applied to the skin by means of some mechanism which helps insure a greater uniformity in the skin penetration efficiency. Such mechanisms may include, for example, the applicators disclosed in U.S. Provisional Patent Application No. 60/881,905, which is incorporated by reference.


It is to be understood that while the invention has been described in conjunction with the preferred specific embodiments thereof, the foregoing description is intended to illustrate and not limit the scope of the invention. Other aspects, advantages, and modifications within the scope of the invention will be apparent to those skilled in the art to which the invention pertains.


All patents, patent applications, and publications mentioned herein are hereby incorporated by reference in their entireties. However, where a patent, patent application, or publication containing express definitions is incorporated by reference, those express definitions should be understood to apply to the incorporated patent, patent application, or publication in which they are found, and not to the remainder of the text of this application, in particular the claims of this application.


The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to implement the invention, and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.) but some errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in ° C. and pressure is at or near atmospheric.


EXAMPLE 1
General Process for Array Casting

The mold to be used to form a microneedle array is cleaned with water or other suitable solvent and dried in an incubator. The mold is then placed in a Petri dish. One dispenses a small amount of formulation, for example, 20 μL, on the mold. The formulation may contain, for example, 25% bovine serum albumin (BSA), 20% polyvinyl alcohol, 27% trehalose, and 28% maltitol in water solvent, such that the formulation has, for example, 20% solids content as applied. The formulation is spread manually over the mold using a transfer pipette with a trimmed tip. The formulation is then vortexed, for example for five seconds, using a commercial vibrating instrument to even out the formulation. The mold with the formulation covering it is placed iri a pressure vessel under 1 atm for about 10 minutes. Pressure is then removed. The mold is placed in an incubator at a temperature of 32° C., for about 1 hr. The array may then be demolded, for example using double-sided adhesive tape, and optionally attached to a backing.


EXAMPLE 2
General Process for Casting Two-Layer Arrays

Following the drying step of Example 1, an additional layer is cast on the mold using similar procedures. The additional layer may, for example, consist of 75 μL of 20 wt % Eudragit EPO in a 3:1 mixture of ethanol and isopropyl alcohol. The additional layer may be spread out, for example, using a glass slide. The mold is placed in a pressure vessel and pressurized at 1 atm for 2 minutes. The pressure is released and the mold is allowed to dry in the pressure vessel for an additional five minutes, without disturbing. The mold is again dried in the incubator for 1 hr at 32° C., and then demolded.


EXAMPLE 3
Solvent-Cast Microneedle Arrays Comprising Polyvinyl Alcohol

Microneedle arrays were cast from polyvinyl alcohol (PVA) using bovine serum albumin (BSA) as a model drug, water as a solvent, and proportions of PVA, BSA, and other ingredients as indicated below. The general procedure of Example 1 was followed with some variations. Each array was evaluated by microscopic examination. The details of the arrays and their evaluations are given in the table below.





















PVA


Solids in
BSA in





USP,
Trehalose
Other
casting
casting



Ex. #
BSA %
%
%
ingredients
solution %
solution %
Evaluation






















A1
0
100


10
0
clear, good


A2
25
75


8.0
2.0
good


A3
25


75% 22 kD
13.3
3.3
good






PVA





A4
25
25

50%
15.8
3.9
white, good






mannitol





A5
25
25

50% HP-β-
15.8
3.9
clear, good


A6
25
25
50
CD
16.1
3.9
clear good


A7
5
25

70%
22.0
1.1
white, OK






mannitol





A8
5
32.2

62.8%
15.4
0.8
white, OK






mannitol





A9
5
32.2
62.8

15.4
0.8
clear, good


A10
5.4
29.9
44.8
19.9% HP-
15.9
0.9
clear, good






β-CD





A11
5
24.8
49.6
20.7% HP-
18.4
0.9
clear, good






β-CD





A12
5
24.8
49.5
20.7% PVP
20.6
1
clear, good






K30





A13
5
20
50
25% HP-β-
20.3
1
clear, good






CD





A14
5
20
30
15% HP-β-
20.3
1
clear good






CD, 30%









maltitol





A15
5
20
25
10% HP-β-
20.3
1.0
white, good






CD, 40%









mannitol





A16
5.1

25.6
9.9% HP-β-
28.9
1.5
white, good






CD, 39.6%









mannitol





A17
5
20.1
34.9
30%
21.8
1.1
white, goad






mannitol,









10% Lutrol









68





A18
21


52% 22K
22.8
4.8
white, good






PVA









26%









sucrose









In this table, percentages are by weight, the mannitol is always D-mannitol, and HP-β-CD means hydroxypropyl β-cyclodextrin.


The following table gives the evaluation of a further set of microneedle arrays.
























Solids









in
BSA in





PVA
Tre-
Other
casting
casting



Ex.
BSA
USP,
halone
ingre-
solution
solution
Eval-


#
%
%
%
dients
%
%
uation







A19
40
20
20
20%
15.6
6.3 
clear,






maltitol


good


A20
30
20
25
25%
18.2
5.5 
clear,






maltitol


good


A21
25
20
27
28%
16.3
4.07
clear,






maltitol


good









It is seen from the tables above that a wide variety of compositions can result in acceptable microneedle arrays.


EXAMPLE 4
Casting Two-Layer Arrays

A microneedle array with two layers can be prepared by the following steps:


1) Casting a solution comprising an active, polymer, and possibly other components in a mold. The clean mold is placed in a mold holder. One dispenses a small amount of formulation, for example, 75 μL, as a droplet on the mold, placing a cover slip on top of the droplet to help spread the liquid onto the whole surface of the mold. The formulation may contain, for example, 15% human parathyroid hormone 1-34 fragment (hPTH1-34), 65% dextran 70, 20% sorbitol in a histidine buffer solvent, such that the formulation has, for example, 30% solids content as applied. The mold with the formulation covering it is placed in a pressure vessel under ca. 50 psi for about 30 seconds. Pressure is then removed. The excess formulation is wiped with a silicone wiper with the interference between wiper edge and surface of mold about 1-10 mils. The mold is placed in an incubator at a temperature of 32° C., for about half an hour.


2) Casting an additional layer on top of the first layer in the mold. The mold with drug-containing layer cast is removed from the drying oven, any residue of dry formulation left on the base of the mold is removed by tape strip using a 3M 1516 single-sided adhesive. Then about 150 μL of “basement” solution which comprises poly(lactic acid-co-glycolic acid) (PLGA) with L/G ratio of 75/25 in acetonitrile is placed on the mold (atop the first solution). A thin film is cast using a wiper with the clearance between edge of the wipe and the surface of the mold about 10-20 mil. The mold is then placed into a pressure vessel under 10-30 psi with controlled venting for about 5 min. The mold is further dried at room temperature for about 30 min. The array may then be demolded, for example using double-sided adhesive tape, and optionally attached to a polyethylene terephthalate film as backing.


EXAMPLE 5
Solvent-Cast Microneedle Arrays Comprising Polyvinyl Alcohol, Dextran, Tetrastarch and Other Excipients

Microneedle arrays were cast from PVA with sucrose as a sugar excipient, or dextran with sorbitol as a sugar excipient, or tetrastarch with sorbitol as a sugar excipient, bovine serum albumin (BSA) as a model drug, and histidine buffer, pH 5-6, as a solvent. The proportions of polymer, sugar and drug are indicated below. The general procedure of Example 4 was followed with some variations. The details of the formulations used to form the arrays are given in the table below.
























Solids in








Casting











Ex.
Polymer
Sugar
BSA
solution













#
Type
Wt %
Type
Wt %
Wt %
Wt %
















B1
PVA
54.5
Sucrose
27.2
18.2
22


B2
PVA
54.5
Sucrose
18.2
27.2
22


B3
Dextran 70
71
Sorbitol
14
14
28


B4
Dextran 70
67
Sorbitol
20
13
30


B5
Dextran 40
75
Sorbitol
12
13
28


B6
Dextran 40
65
Sorbitol
23
12
30


B7
Tetrastarch
67
Sorbitol
20
13
30


B8
Tetrastarch
75
Sorbitol
13
12
25









The following table gives the details of formulations to form microneedle arrays with hPTH(1-34) as the drug substance.
























Solids








in







hPTH
casting












Polymer
Sugar
(1-34)
solution













Ex. #
Type
Wt %
Type
Wt %
Wt %
Wt %
















B9
PVA
52.6
Sucrose
26.3
21.1
22.8


B10
PVA
46.2
Sucrose
23.1
30.7
26


B11
Dextran 70
67.5
Sorbitol
14
18.5
33


B12
Dextran 70
64.9
Sorbitol
19.5
15.6
30.8


B13
Dextran 40
67.5
Sorbitol
14
18.5
33


B14
Dextran 40
64.9
Sorbitol
19.5
15.6
30.8


B15
Tetrastarch
67.5
Sorbitol
14
18.5
33


B16
Tetrastarch
64.9
Sorbitol
19.5
15.6
30.8


B17*
Dextran 70
64.8
Sorbitol
19.3
15.5
31.2





*ca. 0.4 wt % of methionine is added to the formulation as an antioxidant agent.






It is seen from the tables above that a wide variety of compositions can be used to form microneedle arrays in accordance with this invention.


EXAMPLE 6
Polymeric Solutions for Casting “Basement” Layers of Microneedle Arrays

Different polymeric solutions can be used for casting the basement layer for the microneedle arrays. The polymer solutions are prepared by dissolving the polymers in a solvent or solvent mixture at room temperature with polymer concentration about 15-30% by weight. The details of composition of certain polymer solutions used for casting the basement of microneedle arrays are summarized in the table below.


















Polymer

Solvent














Ex. #
Type
Wt %
Type
Wt %







C1
Eudragit EPO 100
20
Ethanol/IPA
80






3/1



C2
Eudragit EPO 100
30
Ethanol/IPA
70






3/1



C3
Eudragit EPO
20
Ethanol/IPA
80




100/PVP (1:1)

3/1



C4
PLGA (75/25)
10
Ethyl acetate
90



C5
PLGA (75/25)
15
Ethyl acetate
85



C6
PLGA (75/25)
15
Acetonitrile
85



C7
PLGA (75/25)
20
Acetonitrile
80



C8
PLGA (75/25)
30
Acetonitrile
70



C9
PLGA (65/35)
20
Acetonitrile
80



C10
PLA
20
Acetonitrile
80



C11
Polycaprolactone
20
Acetonitrile
80










In this table the following abbreviations are used: Polyvinylpyrrolidone (PVP); poly(lactic acid-co-glycolic acid) (PLGA) (L/G ratio 75/25, 65/35); poly(lactic acid) (PLA); and isopropyl alcohol (IPA).


EXAMPLE 7
Casting Microneedle Arrays with Three Layers

A microneedle array with three layers can be prepared in the following steps:


1) Casting a non-drug containing tip layer in the mold. The clean mold is placed in a mold holder. One dispenses a small amount (20 μL) of formulation solution without drug, as a droplet on the mold. The formulation may contain, for example, 70% dextran 70, 30% sorbitol in histidine buffer solvent, such that the formulation has, for example, 30% solids content as applied. The mold with the formulation covering it is placed in a pressure vessel under ca. 50 psi for about 30 seconds. Pressure is then removed. The excess formulation is wiped with a silicone wiper with the interference between wiper edge and surface of mold about 1-10 mils. The mold is placed in an incubator at a temperature of 32° C., for about half an hour.


2) Casting drug containing layer in the mold. After the step 1) above, one dispenses a small amount of formulation, for example, 75 μL, as a droplet on the mold, place a cover slip on top of the droplet to help spread the liquid onto the whole surface of the mold. The formulation may contain, for example, 15% human parathyroid hormone 1-34 fragment (hPTH(1-34)), 65% dextran 70, 20% sorbitol in histidine buffer solvent, such that the formulation has, for example, 30% solids content as applied (e.g., B12 in Example 5 above). The mold with the formulation covering it is placed in a pressure vessel under ca. 50 psi for about 30 seconds. Pressure is then removed. The excess formulation is wiped with a silicone wiper with the interference between wiper edge and surface of mold about 1-10 mils. The mold is placed in an incubator at a temperature of 32° C., for about half an hour.


3) Casting the basement layer on top of the drug-containing layer in the mold. After step 2) above, then about 150 μL of basement solution which comprises poly(lactic acid-co-glycolic acid) (PLGA) with L/G ratio of 75/25 in acetonitrile is placed on the mold (on top of the drug-containing layer). A thin film is cast using a wiper with the clearance between edge of the wipe and surface of the mold about 10-20 mil. The mold is then placed into a pressure vessel under 10-30 psi with controlled venting for about 5 min. The mold is further dried at room temperature for about 30 min. The array may then be demolded, for example using double-sided adhesive tape, and optionally attached to a polyethylene terephthalate film as backing.


EXAMPLE 8
Casting Arrays with a Rate Controlling Layer

A microneedle array with a rate controlling layer can be prepared in the following steps:


1) Casting a thin film of PLGA at the bottom of each cavity of the mold. The clean mold is placed in a mold holder. One dispenses a small amount (for example 20 μL) of PLGA solution (for example solution C4 of Example 4) as a droplet on the mold. A thin film is cast using a wiper, with the clearance between the edge of the wiper and the surface of the mold being about 1-5 mils. The mold is then placed into a pressure vessel under 10-30 psi for about 30 sec. Pressure is then removed. The excess formulation is wiped with a silicone wiper, with the interference between wiper edge and the mold surface about 1-10 mils. The mold is placed in an incubator at a temperature of 32° C., for about half an hour. Additional steps may be taken to ensure that the thin film of PLGA is spread over the sides of the mold cavity.


2) Casting a drug-containing solution. After the step 1) above, one dispenses a small amount of formulation, for example, 75 μL, as a droplet on the mold, placing a cover slip on top of the droplet to help spread the liquid onto the whole surface of the mold. The formulation may contain, for example, 15% human parathyroid hormone 1-34 fragment (hPTH(1-34)), 65% Dextran 70, 20% sorbitol in histidine buffer solvent, such that the formulation has, for example, 30% solids content as applied (e.g., B 12 in Example 5 above). The mold with the formulation covering it is placed in a pressure vessel under ca. 50 psi for about 30 seconds. Pressure is then removed. The excess formulation is wiped with a silicone wiper with the interference between wiper edge and surface of mold about 1-10 mils. The mold is placed in an incubator at a temperature of 32° C., for about half an hour.


3) Casting a thin layer of PLGA on top of the drug-containing layer in the mold. The mold with drug-containing layer cast is removed from the drying oven. Any residues of dry formulation left on the base of the mold are removed by tape strip using a 3M 1516 single-sided adhesive. One then places on the mold, on top of the drug-containing layer, about 10 μL of polymer solution which comprises poly(lactic acid-co-glycolic acid) (PLGA) with L/G ratio of 75/25 in acetonitrile. A thin film is cast using a wiper with the clearance between edge of the wipe and surface of mold about 1-5 mil. The mold is then placed into a pressure vessel under 10-30 psi with controlled venting for about 30 seconds. The mold is further dried at room temperature for about 30 min.


4) Casting a dissolvable layer on top of the thin PLGA layer. After step 3) above, one dispenses a small amount of formulation, for example, 25 μLL as a droplet on the mold and places a cover slip on top of the droplet to help spread the liquid onto the whole surface of the mold. The formulation may contain, for example, 70% Dextran 70, 30% sorbitol in histidine buffer solvent, such that the formulation has, for example, 30% solids content as applied. The mold with the formulation covering it is placed in a pressure vessel under ca. 50 psi for about 30 seconds. Pressure is then removed. The excess formulation is wiped with a silicone wiper with the interference between wiper edge and surface of mold about 1-8 mils. The mold is placed in an incubator at a temperature of 32° C., for about half an hour.


5) Casting a basement layer on top of the dissolvable layer in the mold. After step 4) above, then about 150 μL of basement solution which comprises poly(lactic acid-co-glycolic acid) (PLGA) with L/G ratio of 75/25 in acetonitrile is placed on the mold (on top of the drug-containing solution). A thin film is cast using a wiper, with the clearance between edge of the wipe and surface of mold about 10-20 mil. The mold is then placed into a pressure vessel under 10-30 psi with controlled venting for about 5 min. It is believed that this pressure treatment helps to tailor the depth where the active pharmaceutical ingredient (drug substance) is delivered. The mold is further dried at room temperature for about 30 min. The array may then be demolded, for example using double-sided adhesive tape, and optionally attached to a polyethylene terephthalate film as backing.


EXAMPLE 9
Casting Arrays for Sustained Release of Drug Substance from the Array

A microneedle array for sustained release of drug substance from the array can be prepared in the following steps:


1) Casting a drug-containing layer for sustained release of drug substance. The clean mold is placed in a mold holder. One dispenses a small amount (e.g., 75 μL) of aqueous solution which comprises hPTH(1-34), a polymeric matrix such as polyethylene glycol-co-poly(lactic acid-co-glycolic acid) (PEG-PLGA) copolymer, and excipients such as sucrose or sorbitol. The polymeric matrix is generally amphiphilic in nature. The hydrophobic segment(s) of the polymer can help control the release of drug substance. Examples of such formulations are described in the table below. The liquid formulation is spread manually on the surface of the mold with a glass cover slip. The mold with the formulation covering it is placed in a pressure vessel under ca. 50 psi for about 30 seconds. Pressure is then removed. The excess formulation is wiped with a silicone wiper with the interference between wiper edge and surface of mold about 1-10 mils. The mold is placed in an incubator at room temperature for about half an hour.


The following table gives the details of aqueous solutions to form microneedle arrays, comprising drug substance hPTH, polymeric matrix and excipients.
























Solids















in





hPTH
casting


Ex.
Polymer
Excipients
(1-34)
solution













#
Type
Wt %
Type
Wt %
Wt %
Wt %





D1
PEG-PLGA
50
Sucrose
35
15
10



(50/50(65/35))







D2
PEG-PLGA
45
Sucrose
40
15
10



(50/50(65/35))







D3
PEG-PLGA
45
Sucrose
40
15
20



(50/50(65/35))







D4
PEG-PLGA
55
Sucrose
35
10
10



(50/30(65/35))







D5
PEG-PLGA
55
Sucrose
35
10
10



(50/30(65/35))







D6
PEG-PLGA
55
Sorbitol
35
10
10



(50/30(65/35))







D7
PEG-PLGA
45
Sorbitol
40
15
10



(50/50(65/35))







D8
Pluronic F68 
50
Sucrose
35
15
25


D9
Pluronic F127
50
Sucrose
35
15
15


D10
Pluronic F68 
50
Sorbitol
35
15
25


D11
Pluronic F127
50
Sorbitol
35
15
15









In the table above, PEG-PLGA denotes a blend of polyethylene glycol and poly(lactic acid-co-glycolic acid).


2) Casting a dissolvable layer on top of the drug-containing layer in the mold. After the step 1) above, one dispenses a small amount of formulation, for example, 25 μL, as a droplet on the mold, place a cover slip on top of the droplet to help spread the liquid onto the whole surface of the mold. The formulation may contain, for example, 70% Dextran 70, 30% sorbitol in histidine buffer solvent, such that the formulation has, for example, 30% solids content as applied. The mold with the formulation covering it is placed in a pressure vessel under ca. 50 psi for about 30 seconds. Pressure is then removed. The excess formulation is wiped with a silicone wiper with the interference between wiper edge and the surface of the mold about 1-8 mils. The mold is placed in an incubator at a temperature of 32° C., for about half an hour.


3) Casting a basement layer on top of the dissolvable layer in the mold. After step 2) above, then about 150 μL of basement solution which comprises poly(lactic acid-co-glycolic acid) (PLGA) with L/G ratio of 75/25 in acetonitrile is placed on the mold (on top of the dissolvable layer) and thin film is cast using a wiper with the clearance between edge of the wipe and surface of mold about 10-20 mil. The mold is then placed into a pressure vessel under 10-30 psi with controlled venting for about 5 min. The mold is further dried at room temperature for about 30 min. The array may then be demolded, for example using double-sided adhesive tape, and optionally attached to a polyethylene terephthalate film as backing.


EXAMPLE 10
Casting Arrays with a Controlled Meniscus

The meniscus of the drug-containing layer in a solvent cast microneedle array manufacturing process might need to be controlled, for example to improve the consistency of skin penetration or improve efficiency. The meniscus can be controlled during the casting process as described below during the drying process:


The clean mold is placed in a mold holder. One dispenses a small amount (20 μL) of formulation solution without drug, as a droplet on the mold. The formulation may contain, for example, 70% Dextran 70, 30% sorbitol in histidine buffer solvent, such that the formulation has, for example, 30% solids content as applied. The mold with the formulation covering it is placed in a pressure vessel under ca. 50 psi for about 30 seconds. Pressure is then removed. The excess formulation is wiped with a silicone wiper with the interference between wiper edge and surface of mold about 1-10 mils.


One instance of controlling the meniscus of the drug-containing layer is to manage the initial drying of the drug-containing layer as follows: place the mold back in the pressure vessel under ca. 30 psi with controlled venting for 5-10 min, as an initial drying. Pressure is then removed. The mold is further dried in the incubator at a temperature of 32° C., for about 20-30 min.


Another instance of controlling the meniscus of the drug-containing layer is to manage the initial drying of the drug-containing layer as follows: the mold is placed back in a controlled humidity chamber with 50-75% RH for 5-10 min, as an initial drying. Pressure is then removed. The mold is further dried in the incubator at a temperature of 32° C., for about 20-30 min.


EXAMPLE 11
Skin Penetration Efficiency of Arrays with .About.50% Sugar Content

Two sets of arrays, E1 and E2, were prepared as described above. Arrays of type E1 were cast from a water solution of 25% by weight bovine serum albumin (BSA), 25% polyvinyl alcohol USP, and 50% trehalose. The water solution contained approximately 16.1% solids content. Arrays of type E2 were (i) cast from a water solution containing approximately 16.3% solids content, which consisted of 25% BSA, 20% polyvinyl alcohol USP, 27% trehalose, and 28% maltitol, producing a layer comprising the microneedles and a portion of the base, and then (ii) cast from 20 wt % Eudragit EPO in 3:1 ethanol:isopropyl alcohol, producing a second layer comprising a portion of the base. Both types of arrays had 200 μm high microneedles with a 400 μm spacing between microneedles. The arrays were 10 mm in diameter. Three arrays of each type were tested.


Skin penetration efficiency was tested using cadaver skin. The donor was a 77 year old white female. The skin was mounted on a foam-cork base and blotted on the stratum corneum side to remove excess moisture and to check for holes.


The microneedle arrays were placed needle-side down directly on skin, the arrays being in contact with skin for less than fifteen seconds. A portable spring-loaded impactor with a 10 mm tip was used to drive the microneedles into skin by impact loading. The impactor was used to hold arrays in skin for one minute. The arrays were then pulled out of the skin. A certain effort was required to pry the arrays out of the skin, confirming that the arrays possessed bioadhesive properties. India ink was used to stain the sites to confirm penetration.



FIG. 1 depicts the skin penetration efficiency measurement for a E2 array. Small squares (two in the figure) are used to mark places where penetration was deemed insufficient. Skin penetration efficiency was rated at 99.6%. Skin penetration efficiency is estimated by counting the number of relatively dark stained areas (holes) in the microneedle-treated skin region relative to the number of microneedles on the array used to treat the skin.


EXAMPLE 12
TEWL, SPE and Dissolution Tests of Arrays

The following data pertain to microneedle arrays of type E3, cast from a water solution (approximately 20.3% solids content) comprising BSA 5 wt %, PVA USP 20 wt %, hydroxypropyl β-cyclodextrin 15 wt %, trehalose 30 wt %, and maltitol 30 wt %. Data are also given for arrays of type E2 from Example 11 and for polysulfone (PSF) arrays, which do not dissolve.
























Needle



Appli-




Dissolution














Array
cation
Pre
Post
TEWL

%
%


Type
Time
TEWL
TEWL
Ratio
SPE
Array
Length

















E3
2 min
10.9
16.9
1.6
>90%
100% 
80%


E3
2 min
5.8
16.9
2.9
>90%
90%
80%


E3
2 min
4.6
18.3
4.0
>90%
90%
80%


E3
2 min
3.7
22.9
6.2
>90%
90%
80%


E3
2 min
8.5
20.4
2.4
>90%
90%
70%


E2
2 min
8.9
26.9
3.0
>90%
90%
80%


E2
2 min
6.4
25.2
3.9
>90%
90%
80%


E2
2 min
5.5
23.1
4.2
>90%
90%
80%


E2
2 min
4.7
17.2
3.7
>90%
90%
60%


E2
2 min
7.4
18.3
2.5
>90%
90%
70%


PSF
2 min
6.0
26.8
4.5
>90%
NA
NA


PSF
2 min
6.3
18.5
3.0
>90%
NA
NA


PSF
2 min
4.9
15.1
3.1
>90%
NA
NA









In this table the TEWL data were obtained using anesthetized laboratory rats. The SPE (skin penetration efficiency) is measured by using India ink. The % Array needle dissolution value indicates the percentage of microneedles in the array that showed some dissolution, whereas the % Length indicates the percentage of the total length of the microneedles which dissolved. The dissolution was estimated by observing the needles under the microscope after use.


EXAMPLE 13
Surface Treatment to Improve Wetting

Sylgard 184 silicone elastomer from Dow Corning (Midland, Mich.) was given a surface treatment to improve wetting as follows. A quartz glass ring surrounded by a polyurethane ring were placed atop a 5 mm thick sheet of Sylgard 184. These formed a basin in which a monomer solution was placed. Methacrylic acid 1.58 g, water 14.42 g, benzyl alcohol 0.14 g, and NaIO4 0.0022 g were placed in the basin. A total dose of 9.98 J/cm2 of ultraviolet radiation was applied using an H type ultraviolet bulb three inches above the substrate. A conveyor was used to move the substrate past the ultraviolet bulb at 4 feet/minute for four passes. A UV Fusion Systems Model P300M was used for the ultraviolet exposure.


Wetting was measured by placing 10 μL drops of particular liquids on the treated and untreated silicone elastomer. The results are given in the following table (standard deviations in parentheses, N=3):















Drop Size on Untreated
Drop Size on Treated


Liquid
Surface (mm2)
Surface (mm2)







n-propanol
27.8 (2.2)
30.5 (2.4)


50% n-propanol
18.8 (1.7)
25.8 (1.2)


water
 9.3 (0.5)
13.2 (2.1)









A similar experiment was carried out in which the Sylgard 184 was pretreated with a 1% solution of benzophenone in heptane and dried for 15 minutes at 32° C. A solution containing acrylic acid 5 g, benzyl alcohol 0.35 g, NaIO4 0.035 g, and water 45 g was applied to pretreated Sylgard 184. In both cases doses of approximately 9.6 J/cm2 of ultraviolet light were applied in a similar manner to the preceding experiment. The results are given in the following table:















Drop Size with Methacrylic
Drop Size With Acrylic


Liquid
Acid Solution (mm2)
Acid Solution (mm2)



















n-propanol
52.2
(2.0)
56.7
(8.7)


50% n-propanol
250.0
(20.0)
150.0
(10.5)


water
37.5
(4.0)
31.7
(6.3)









EXAMPLE 14
Test of Super Wetting Agent

A mixture of 10 g Sylgard base, 1 g Sylgard catalyst, and 0.55 g Q2-5211 was prepared, the base and catalyst being mixed first and the Q2-5211 being added subsequently. This mix was then spread over a PET liner at 0.60 mm thickness. The mix was cured for a period of hours at 165° F. The wet-out of the Q2-5211 sample was estimated by recording the spreading of a single drop of BSA (bovine serum albumin) casting solution through video. It was found that that there was a .about.260% increase in drop area compared to a control. The casting solution had the composition of Example 3, row A14.


EXAMPLE 15
Fabrication of Microneedle Arrays Using Super Wetting Agent

In order to test the value of a “super wetting agent,” Dow Corning Q2-5211, with Sylgard 184 molds, the following tests were carried out. A mixture of 10 g Sylgard base, 1 g Sylgard catalyst, and 0.55 g Q2-5211 was prepared, the base and catalyst being mixed first and the Q2-5211 being added subsequently. This mix was then spread over a master microneedle array in order to prepare a mold. The mix on the master was placed under vacuum for 20 minutes and then cured for several hours at 155° F. Red food coloring was mixed with a BSA (bovine serum albumin) casting solution used in Example 3. Ten μL of this solution was pipetted onto the mold array. A half-inch-wide 30 mil thick piece of high impact polystyrene (HIPS) was used as a squeegee and the formulation was spread across the array several times.


The sample was placed on a small piece of Lexan® and vortexed for 5 seconds to homogenize the liquid layer and move entrapped air. The sample was placed in a pressure vessel and pressurized at 15 psi for 10 minutes. The sample was then removed and placed in a drying chamber for one hour. The sample was then removed and 75 μL of a second layer not containing BSA was spread over the back of the array using the squeegee. The sample was placed in the pressure vessel and pressurized at 15 psi for 2 minutes. The sample was removed and again placed in a drying chamber for one hour.


The array was removed from the mold by using a 17 mm button of 30 mil HIPS with double sided-adhesive on both sides of the button. One side of the button was adhered to a 17 mm diameter magnetic rod. The button was lowered on the array, gently compressed, then slowly removed while holding the silicone mold down. The button was then removed from the magnetic bar using a knife blade and the sample was adhered to a glass slide for better handling.


Microscopic examination of the array showed that the colored portion of the array was predominantly confined to the tips of the microprojections. This is attributed to superior wetting of the cast solutions on the mold on account of the inclusion of super wetting agent in the mold.


EXAMPLE 16
Solvent Casting of Polysulfone Microneedles

Microneedle arrays were made from polysulfone dissolved in dimethylformamide (DMF). Volumes of 150 and 200 μL were spread over a silicone mold to which a rim of PET was attached with PVP-PEG adhesive. The % solids in the casting solutions was 15 or 20%. The mold with casting solution was pressurized at 1 bar for 5 minutes. The whole was then placed in a 60° C. oven for periods ranging from 1 hour to overnight. The polysulfone was then demolded and the needles microscopically inspected. Air bubbles were seen in some cases, but other than the air bubbles, the microneedles appeared good.


EXAMPLE 17
Solvent Casting of Polystyrene Microneedles

Microneedle arrays were made from polystyrene dissolved in toluene. Volumes of 75 to 125 μL were spread over a silicone mold to which a rim of PET was attached with PVP-PEG adhesive. The % solids in the casting solutions was 15%. The mold with casting solution was pressurized at 1 bar for 5 minutes. The whole was then placed in a 60° C. oven for periods ranging from 2 to 3 h. The polystyrene was then demolded and the needles microscopically inspected. A small air bubble was seen in one case, but other than the air bubble, the microneedles appeared good.


EXAMPLE 18
hPTH (1-34) Stability in Dry Films Made with Microneedle Casting Formulations

Dry films of microneedle casting formulations were made using process conditions similar to those for casting microneedle arrays in order to evaluate the stability of hPTH (1-34 fragment) in the dried form. About 20 μL of liquid formulation is placed in an Eppendorf tube. The formulation is spread into a thin film in the inside wall of the tube, then dried at 32° C. for 30 min, and then further dried under vacuum at room temperature overnight. The dry films inside the Eppendorf tube were packaged in a polyfoil bag and stored at different temperatures for different durations. The purity of the hPTH(1-34) was analyzed by both reverse phase HPLC (rp-HPLC) and size exclusion HPLC (sec-HPLC). The details of the formulations are indicated in the table below.


The following table gives the details of formulations used to form dry films with hPTH as the drug.
























Solids in














hPTH
casting


Ex.
Polymer
Sugar
(1-34)
solution













#
Type
Wt %
Type
Wt %
Wt %
Wt %





F1
PVA
52.6
Sucrose
26.3
21.1
22.8


F2
Dextran 70
64.9
Sorbitol
19.5
15.6
30.8


F3
Tetrastarch
64.9
Sorbitol
19.5
15.6
30.8


F4*
Dextran 70
64.1
Sorbitol
19.4
15.4
31.2





*ca. 0.4 wt % of methionine is added to the formulation as an antioxidant agent.






Table A below illustrates the chemical purity as determined by rp-HPLC of the hPTH(1-34) in different formulations as a function of storage time at three different temperatures. Table B below illustrates the monomer content as determined by sec-HPLC of the hPTH(1-34) in different formulations as a function of storage time at three different temperatures. It appears that hPTH(1-34) is stable during storage for up to one month at even elevated temperature in all the formulations given in this example. (Formulation F3 was not sampled at the 1 week time point at room temperature or 40° C.)














TABLE A







F1
F2
F3
F4
















 4° C.













t = 0
100.00
100.00
100.00
100.00



t = 1 wk
99.77
99.87
99.78
100.00



t = 2 wk
99.76
99.71
99.65
99.74



t = 1 mo
99.78
99.69
99.66
99.73







Room Temp.













t = 0
100.00
100.00
100.00
100.00



t = 1 wk
99.75
100.00

100.00



t = 2 wk
99.72
99.63
99.49
99.70



t = 1 mo
99.72
99.59
99.52
99.67







40° C.













t = 0
100.00
100.00
100.00
100.00



t = 1 wk
99.72
99.79

99.88



t = 1 mo
99.56
99.14
98.64
99.39






















TABLE B







F1
F2
F3
F4
















 4° C.













t = 0
100.00
100.00
100.00
100.00



t = 1 wk
99.77
99.87
99.78
100.00



t = 2 wk
99.76
99.71
99.65
99.74



t = 1 mo
99.78
99.69
99.66
99.73







Room Temp.













t = 0
100.00
100.00
100.00
100.00



t = 1 wk
99.75
100.00

100.00



t = 2 wk
99.72
99.63
99.49
99.70



t = 1 mo
99.72
99.59
99.52
99.67







40° C.













t = 0
100.00
100.00
100.00
100.00



t = 1 wk
99.72
99.79

99.88



t = 1 mo
99.56
99.14
98.64
99.39









Claims
  • 1. A microprotrusion array, comprising: an approximately planar base and a plurality of microprotrusions, wherein the microprotrusions comprise at least a first and a second layer arranged roughly parallel to the plane of the planar base, the first and second layers formed of different polymers, the first layer is contained in a distal end of the microprotrusions and comprised of (i) a biodegradable polymer, (ii) one or more components to facilitate biodegradation selected from sugars, sugar alcohols, cyclodextrins and water-swellable polymers, and (iii) an active ingredient, wherein a ratio of weight percent of the biodegradable polymer to weight percent of the one or more components to facilitate biodegradation is in the range of about 6.25:1 to about 1:3.75.
  • 2. The array of claim 1, wherein the second layer is comprised of a polymer that is biodegradable.
  • 3. The array of claim 1, wherein at least the first layer comprises at least one of polyvinyl alcohol, dextran, and hydroxyethyl starch.
  • 4. The array of claim 1, wherein the sugar is selected from dextrose, fructose, galactose, maltose, maltylose, iso-maltulose, mannose, lactose, lactulose, sucrose and trehalose.
  • 5. The array of claim 1, wherein the sugar alcohol is selected from sorbitol, lactitol, malitol or mannitol.
  • 6. The array of claim 1, wherein at least the first layer comprises at least one antioxidant.
  • 7. The array of claim 6, wherein the antioxidant is selected from methionine, cysteine, D-alpha tocopherol acetate, DL-alpha tocopherol, ascorbyl palmitate, ascorbic acid, butylated hydroxyanisole, butylated hydroxyquinone, hydroxycomarin, butylated hydroxytoluene, cephalin, ethyl gallate, propyl gallate, octyl gallate, lauryl gallate, propylhydroxybenzoate, trihydroxybutyrophenone, dimethylphenol, ditertbutylphenol, vitamin E, lecithin or ethanolamine.
  • 8. The array of claim 1, wherein at least one of the first and second layers comprises an antimicrobial.
  • 9. The array of claim 8, wherein the antimicrobial is chosen from the group consisting of benzalkonium chloride, benzyl alcohol, chlorbutanol, meta cresol, esters of hydroxyl benzoic acid, phenol, and thimerosal.
  • 10. The array of claim 1, wherein a layer of the first and second layers comprises cellulose acetate butyrate, cellulose acetate, cellulose acetate propionate, ethyl cellulose, nitrocellulose, hydroxypropyl methyl cellulose phthalate, a polyacrylate, a polymethacrylate, a poly(hydroxyl alkanoate), poly(lactic acid), poly(glycolic acid), poly(lactic acid-co-glycolic acid), a polycaprolactone, or copolymers thereof.
  • 11. The array of claim 1, wherein the active ingredient comprises a polypeptide, a protein, or a nucleic acid.
  • 12. The array of claim 11, wherein the active ingredient is selected from a vaccine, a therapeutic antibody or parathyroid hormone.
  • 13. The array of claim 1, wherein the array achieves a skin penetration efficiency of at least about 80%.
  • 14. The array of claim 1, wherein at least one microprotrusion has a cross sectional diameter in a plane parallel to that of the base which decreases as a function of the distance of the plane parallel from the base in such a way that the cross sectional diameter decreases more rapidly near the base than further away from it.
  • 15. The array of claim 1, wherein at least some of the microprotrusions detach from the base following insertion into skin.
  • 16. The array of claim 1, wherein the rate at which portions of the microprotrusions degrade is dependent on the pH of the environment in which the portions of the microprotrusions find themselves following insertion.
  • 17. The array of claim 1, wherein the first layer comprises a composition which degrades at different rates at different temperatures in the range of about 25° C. to about 40° C.
  • 18. The array of claim 1, wherein the biodegradable polymer in the first layer is dextran, the component to facilitate biodegradation is sorbitol, and the active ingredient is parathyroid hormone.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/148,180, filed Apr. 16, 2008, now U.S. Pat. No. 9,114,238, which claims priority to U.S. Provisional Application No. 60/925,262, filed Apr. 18, 2007, and U.S. Provisional Application No. 60/923,861, filed Apr. 16, 2007, each of which is incorporated by reference herein in its entirety.

US Referenced Citations (420)
Number Name Date Kind
1554510 Kirby Sep 1925 A
1770632 Smith Jul 1930 A
2046240 Bayley Jun 1936 A
2434407 George Jan 1948 A
3675766 Rosenthal Jul 1972 A
3704194 Harrier et al. Nov 1972 A
3814097 Ganderton et al. Jun 1974 A
3873255 Kalwaites Mar 1975 A
3918449 Pistor Nov 1975 A
3964482 Gerstel et al. Jun 1976 A
4055029 Kalbow Oct 1977 A
4117841 Perrotta et al. Oct 1978 A
4151240 Lucas et al. Apr 1979 A
4180232 Hardigg Dec 1979 A
4342314 Radel et al. Aug 1982 A
4381963 Goldstein et al. May 1983 A
4395215 Bishop Jul 1983 A
4402696 Gulko Sep 1983 A
4460368 Allison et al. Jul 1984 A
4460370 Allison et al. Jul 1984 A
4463045 Ahr et al. Jul 1984 A
4509908 Mullane, Jr. Apr 1985 A
4515168 Chester et al. May 1985 A
4556441 Faasse, Jr. Dec 1985 A
4585991 Reid et al. Apr 1986 A
4597961 Etscorn Jul 1986 A
4609518 Curro et al. Sep 1986 A
4630603 Greenway Dec 1986 A
4660721 Mykleby Apr 1987 A
4695422 Curro et al. Sep 1987 A
4743234 Leopoldi et al. May 1988 A
4743249 Loveland May 1988 A
4784737 Ray et al. Nov 1988 A
4812305 Vocal Mar 1989 A
4837049 Byers et al. Jun 1989 A
4846821 Lyons et al. Jul 1989 A
4904475 Gale et al. Feb 1990 A
4996159 Glaser Feb 1991 A
5051259 Olsen et al. Sep 1991 A
5061258 Martz Oct 1991 A
5134079 Cusak et al. Jul 1992 A
5139029 Fishman et al. Aug 1992 A
5156591 Gross et al. Oct 1992 A
5158073 Bukowski Oct 1992 A
5160315 Heinecke et al. Nov 1992 A
5162043 Lew et al. Nov 1992 A
5163918 Righi et al. Nov 1992 A
5190558 Matsushita et al. Mar 1993 A
5198192 Saito et al. Mar 1993 A
5215088 Normann et al. Jun 1993 A
5244677 Kreckel et al. Sep 1993 A
5244711 Drelich et al. Sep 1993 A
5250023 Lee et al. Oct 1993 A
5250067 Gelfer et al. Oct 1993 A
5252279 Gore et al. Oct 1993 A
5256360 Li Oct 1993 A
5279544 Gross et al. Jan 1994 A
5308625 Wong et al. May 1994 A
5318557 Gross Jun 1994 A
5320600 Lambert Jun 1994 A
5330452 Zook Jul 1994 A
5362307 Guy et al. Nov 1994 A
5383512 Jarvis Jan 1995 A
5457041 Ginaven et al. Oct 1995 A
5462743 Turner et al. Oct 1995 A
5476443 Cartmell et al. Dec 1995 A
5487726 Rabineau et al. Jan 1996 A
5496304 Chasan Mar 1996 A
5498235 Flower Mar 1996 A
5503843 Santus et al. Apr 1996 A
5512219 Rowland et al. Apr 1996 A
5520629 Heinecke et al. May 1996 A
5527287 Miskinyar Jun 1996 A
5527288 Gross et al. Jun 1996 A
5531675 Yoo Jul 1996 A
5531855 Heinecke et al. Jul 1996 A
5536263 Rolf et al. Jul 1996 A
5551953 Lattin et al. Sep 1996 A
5567376 Turi et al. Oct 1996 A
5569469 Lovrechich Oct 1996 A
5591123 Sibalis et al. Jan 1997 A
5591139 Lin et al. Jan 1997 A
5611806 Jang Mar 1997 A
5645977 Wu et al. Jul 1997 A
5658515 Lee et al. Aug 1997 A
5662127 De Vaughn Sep 1997 A
5676850 Reed et al. Oct 1997 A
5681580 Jang et al. Oct 1997 A
5697901 Ericksson Dec 1997 A
5704520 Gross Jan 1998 A
5711761 Untereker et al. Jan 1998 A
5728089 Lal et al. Mar 1998 A
5730714 Guy et al. Mar 1998 A
5730721 Hyatt et al. Mar 1998 A
5735273 Kurnik et al. Apr 1998 A
5738642 Heinecke et al. Apr 1998 A
5756117 D'Angelo et al. May 1998 A
5771890 Tamada Jun 1998 A
5788983 Chien et al. Aug 1998 A
5800420 Gross et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5814020 Gross Sep 1998 A
5820622 Gross et al. Oct 1998 A
5827183 Kurnik et al. Oct 1998 A
5843114 Jang Dec 1998 A
5848985 Muroki Dec 1998 A
5848990 Cirelli et al. Dec 1998 A
5848991 Gross et al. Dec 1998 A
5851549 Svec Dec 1998 A
5855801 Lin et al. Jan 1999 A
5868244 Ivanov et al. Feb 1999 A
5873849 Bernard Feb 1999 A
5879326 Godshall et al. Mar 1999 A
5900252 Calanchi et al. May 1999 A
5932240 D'Angelo et al. Aug 1999 A
5938684 Lynch et al. Aug 1999 A
5948488 Marecki et al. Sep 1999 A
5962011 Devillez et al. Oct 1999 A
5964729 Choi et al. Oct 1999 A
5983136 Kamen Nov 1999 A
5987989 Yamamoto et al. Nov 1999 A
5997549 Sauceda et al. Dec 1999 A
5997986 Turi et al. Dec 1999 A
6014584 Hofmann et al. Jan 2000 A
6023629 Tamada Feb 2000 A
6024553 Shimalla Feb 2000 A
6036659 Ray et al. Mar 2000 A
6038465 Melton, Jr. Mar 2000 A
6038485 Axelgaard Mar 2000 A
6047208 Flower Apr 2000 A
6050988 Zuck Apr 2000 A
6055453 Hofmann et al. Apr 2000 A
6080172 Fujiwara et al. Jun 2000 A
6083196 Trautman et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6106751 Talbot et al. Aug 2000 A
6120792 Juni Sep 2000 A
6129696 Sibalis Oct 2000 A
6132449 Lum et al. Oct 2000 A
6132755 Eicher et al. Oct 2000 A
6135990 Heller et al. Oct 2000 A
6136008 Becker et al. Oct 2000 A
6156336 Bracht Dec 2000 A
6169224 Heinecke et al. Jan 2001 B1
6181964 Hofmann et al. Jan 2001 B1
6183434 Eppstein Feb 2001 B1
6183770 Muchin et al. Feb 2001 B1
6187210 Lebouitz et al. Feb 2001 B1
6216034 Hofmann et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6230051 Cormier et al. May 2001 B1
6241701 Hofmann Jun 2001 B1
6248120 Wyszogrodzki Jun 2001 B1
6256533 Yuzhakov et al. Jul 2001 B1
6293925 Safabash et al. Sep 2001 B1
6312612 Sherman et al. Nov 2001 B1
6322808 Trautman et al. Nov 2001 B1
6334856 Allen et al. Jan 2002 B1
6355054 Neuberger Mar 2002 B1
6375627 Mauze et al. Apr 2002 B1
6375870 Visovsky et al. Apr 2002 B1
6375978 Kliener et al. Apr 2002 B1
6379324 Garstein et al. Apr 2002 B1
6440096 Lastovich et al. Aug 2002 B1
6451240 Sherman et al. Sep 2002 B1
6471903 Sherman et al. Oct 2002 B2
6476288 Van Rijswijck et al. Nov 2002 B1
6485470 Hostettler et al. Nov 2002 B2
6494830 Wessel Dec 2002 B1
6503231 Prausnitz et al. Jan 2003 B1
6508947 Gulvin et al. Jan 2003 B2
6511463 Wood et al. Jan 2003 B1
6512626 Schmidt Jan 2003 B1
6516223 Hofmann Feb 2003 B2
6532386 Sun et al. Mar 2003 B2
6533884 Mallik Mar 2003 B1
6537242 Palmer Mar 2003 B1
6537264 Cormier et al. Mar 2003 B1
6558361 Yeshurun May 2003 B1
6562014 Lin et al. May 2003 B2
6565532 Yuzhakov et al. May 2003 B1
6585742 Stough Jul 2003 B2
6589202 Powell Jul 2003 B1
6591124 Sherman et al. Jul 2003 B2
6591133 Joshi Jul 2003 B1
6603987 Whiston Aug 2003 B2
6610463 Ohkura et al. Aug 2003 B1
6611706 Avrahami et al. Aug 2003 B2
6611707 Prausnitz et al. Aug 2003 B1
6623457 Rosenberg Sep 2003 B1
6629949 Douglas Oct 2003 B1
6652478 Gartstein et al. Nov 2003 B1
6656147 Gertsek et al. Dec 2003 B1
6663820 Arias et al. Dec 2003 B2
6685682 Heinecke et al. Feb 2004 B1
6689103 Palasis Feb 2004 B1
6691752 DiSabatino Feb 2004 B2
6743211 Prausnitz et al. Jun 2004 B1
6767341 Cho Jul 2004 B2
6770480 Canham Aug 2004 B1
6778853 Heller et al. Aug 2004 B1
6780171 Gabel et al. Aug 2004 B2
6808506 Lastovich et al. Oct 2004 B2
6821281 Sherman et al. Nov 2004 B2
6835184 Sage et al. Dec 2004 B1
6855131 Trautman et al. Feb 2005 B2
6881203 Delmore et al. Apr 2005 B2
6931277 Yuzhakov et al. Aug 2005 B1
6945952 Kwon Sep 2005 B2
6960193 Rosenberg Nov 2005 B2
6980855 Cho et al. Dec 2005 B2
6991809 Anderson Jan 2006 B2
7011844 Gale et al. Mar 2006 B2
7048723 Frazier et al. May 2006 B1
7062317 Avrahami et al. Jun 2006 B2
7087035 Trautman et al. Aug 2006 B2
7097631 Trautman et al. Aug 2006 B2
7108681 Gartstein et al. Sep 2006 B2
7115108 Wilkinson et al. Oct 2006 B2
7128730 Marano-Ford et al. Oct 2006 B2
7131960 Trautman et al. Nov 2006 B2
7131987 Sherman et al. Nov 2006 B2
7166086 Haider et al. Jan 2007 B2
7184826 Cormier et al. Feb 2007 B2
7186235 Martin et al. Mar 2007 B2
7226439 Prausnitz et al. Jun 2007 B2
7332339 Canham Feb 2008 B2
7412284 Hofmann Aug 2008 B2
7416541 Yuzhakov et al. Aug 2008 B2
7419481 Trautman et al. Sep 2008 B2
7572405 Sherman et al. Aug 2009 B2
7578954 Gartstein et al. Aug 2009 B2
7578985 Aderhold et al. Aug 2009 B2
7611481 Cleary et al. Nov 2009 B2
7658728 Yuzhakov Feb 2010 B2
7678777 Yasuda et al. Mar 2010 B2
7763203 Arias et al. Jul 2010 B2
7785301 Yuzhakov Aug 2010 B2
7789733 Sugimura Sep 2010 B2
7798987 Trautman et al. Sep 2010 B2
7828827 Gartstein et al. Nov 2010 B2
7846488 Johnson Dec 2010 B2
7914480 Cleary et al. Mar 2011 B2
8057842 Choi et al. Nov 2011 B2
8062573 Kwon Nov 2011 B2
8216190 Gartstein et al. Jul 2012 B2
8267889 Cantor et al. Sep 2012 B2
8366677 Kaspar et al. Feb 2013 B2
8696638 Terahara et al. Apr 2014 B2
8702726 Gartstein et al. Apr 2014 B2
8734697 Chen et al. May 2014 B2
8747362 Terahara Jun 2014 B2
8771781 Tokumoto et al. Jul 2014 B2
8821446 Trautman et al. Sep 2014 B2
8834423 Falo, Jr. et al. Sep 2014 B2
8900180 Wolter et al. Dec 2014 B2
8911749 Gharty-Tagoe et al. Dec 2014 B2
9114238 Singh et al. Aug 2015 B2
9220678 Kendall et al. Dec 2015 B2
9452280 Singh et al. Sep 2016 B2
9498524 Ghartey-Tagoe et al. Nov 2016 B2
9549746 Woolfsen et al. Jan 2017 B2
9687640 Trautman et al. Jun 2017 B2
9687641 Singh et al. Jun 2017 B2
20010023324 Pronovost et al. Sep 2001 A1
20010023351 Eilers et al. Sep 2001 A1
20020006355 Whitson Jan 2002 A1
20020016562 Cormier et al. Feb 2002 A1
20020020688 Sherman et al. Feb 2002 A1
20020032415 Trautman et al. Mar 2002 A1
20020042589 Marsoner Apr 2002 A1
20020045859 Gartstein et al. Apr 2002 A1
20020045907 Sherman et al. Apr 2002 A1
20020082543 Park et al. Jun 2002 A1
20020087182 Trautman et al. Jul 2002 A1
20020091357 Trautman et al. Jul 2002 A1
20020096488 Gulvin et al. Jul 2002 A1
20020123675 Trautman et al. Sep 2002 A1
20020128599 Cormier et al. Sep 2002 A1
20020133129 Arias et al. Sep 2002 A1
20020133137 Hofmann Sep 2002 A1
20020138049 Allen et al. Sep 2002 A1
20020169411 Sherman et al. Nov 2002 A1
20020177839 Cormier et al. Nov 2002 A1
20020177858 Sherman et al. Nov 2002 A1
20020188245 Martin et al. Dec 2002 A1
20020188310 Seward et al. Dec 2002 A1
20020193729 Cormier et al. Dec 2002 A1
20020193819 Porter et al. Dec 2002 A1
20030083645 Angel et al. May 2003 A1
20030093028 Spiegel May 2003 A1
20030093089 Greenberg May 2003 A1
20030135167 Gonnelli Jul 2003 A1
20030166624 Gale et al. Sep 2003 A1
20030187394 Wilkinson et al. Oct 2003 A1
20030195474 Down et al. Oct 2003 A1
20030199810 Trautman et al. Oct 2003 A1
20030199812 Rosenberg Oct 2003 A1
20030208138 Olson Nov 2003 A1
20030208167 Prausnitz et al. Nov 2003 A1
20030212397 Avrahami et al. Nov 2003 A1
20030220610 Lastovich et al. Nov 2003 A1
20030220656 Gartstein et al. Nov 2003 A1
20040049150 Dalton et al. Mar 2004 A1
20040053894 Mazess et al. Mar 2004 A1
20040062813 Cormier et al. Apr 2004 A1
20040087893 Kwon May 2004 A1
20040087992 Gartstein et al. May 2004 A1
20040096455 Maa et al. May 2004 A1
20040106904 Gonnelli et al. Jun 2004 A1
20040143211 Haider et al. Jul 2004 A1
20040146611 Arias et al. Jul 2004 A1
20040164454 Gartstein et al. Aug 2004 A1
20040181203 Cormier et al. Sep 2004 A1
20040186419 Cho Sep 2004 A1
20040204669 Hofmann Oct 2004 A1
20040220535 Canham Nov 2004 A1
20040236271 Theeuwes et al. Nov 2004 A1
20040265365 Daddona et al. Dec 2004 A1
20050049549 Wong et al. Mar 2005 A1
20050065463 Tobinaga et al. Mar 2005 A1
20050089554 Cormier et al. Apr 2005 A1
20050090803 Sherman et al. Apr 2005 A1
20050096586 Trautman et al. May 2005 A1
20050163827 Zech et al. Jul 2005 A1
20050178760 Chang et al. Aug 2005 A1
20050197308 Dalton Sep 2005 A1
20050209565 Yuzhakov et al. Sep 2005 A1
20050228340 Cleary et al. Oct 2005 A1
20050256045 Ameri et al. Nov 2005 A1
20050261631 Clarke et al. Nov 2005 A1
20050271684 Trautman et al. Dec 2005 A1
20060024358 Santini et al. Feb 2006 A1
20060067943 Maa et al. Mar 2006 A1
20060076718 Sherman et al. Apr 2006 A1
20060095061 Trautman et al. May 2006 A1
20060108914 Young May 2006 A1
20060129174 Gartstein et al. Jun 2006 A1
20060134188 Podhaisky et al. Jun 2006 A1
20060149297 Sherman et al. Jul 2006 A1
20060253079 McDonough et al. Nov 2006 A1
20070027427 Trautman et al. Feb 2007 A1
20070191761 Boone et al. Aug 2007 A1
20070255251 Panchula et al. Nov 2007 A1
20080009811 Cantor Jan 2008 A1
20080009825 Ringsred et al. Jan 2008 A1
20080039805 Frederickson et al. Feb 2008 A1
20080114298 Cantor et al. May 2008 A1
20080125743 Yuzhakov May 2008 A1
20080183144 Trautman et al. Jul 2008 A1
20080188771 Boecker et al. Aug 2008 A1
20080195035 Fredrickson et al. Aug 2008 A1
20080208134 Tomono Aug 2008 A1
20080208146 Brandwein et al. Aug 2008 A1
20080214987 Xu Sep 2008 A1
20080221532 Ogawa Sep 2008 A1
20080269685 Singh et al. Oct 2008 A1
20090017210 Andrianov et al. Jan 2009 A1
20090035446 Kwon Feb 2009 A1
20090041810 Andrianov et al. Feb 2009 A1
20090043279 Kaspar et al. Feb 2009 A1
20090155330 Ghartey-Tagoe et al. Jun 2009 A1
20090182306 Lee et al. Jul 2009 A1
20090216215 Thalmann et al. Aug 2009 A1
20100028390 Cleary et al. Feb 2010 A1
20100200494 Storer Aug 2010 A1
20100228203 Quan et al. Sep 2010 A1
20100247698 Zhang et al. Sep 2010 A1
20110006458 Sagi et al. Jan 2011 A1
20110028905 Takada Feb 2011 A1
20110046638 Gartstein et al. Feb 2011 A1
20110059150 Kendall et al. Mar 2011 A1
20110098651 Falo et al. Apr 2011 A1
20110121486 Oh et al. May 2011 A1
20110160069 Corrie et al. Jun 2011 A1
20110165236 Chow et al. Jul 2011 A1
20110177139 Hyungil et al. Jul 2011 A1
20110276027 Trautman et al. Nov 2011 A1
20110276028 Singh et al. Nov 2011 A1
20110280800 Wu et al. Nov 2011 A1
20110288484 Kendall et al. Nov 2011 A1
20110288485 Tokumoto et al. Nov 2011 A1
20110295205 Kaufmann et al. Dec 2011 A1
20110306853 Black et al. Dec 2011 A1
20120052120 Castor Mar 2012 A1
20120123297 Brancazio May 2012 A1
20120123387 Gonzalez et al. May 2012 A1
20120126297 Brancazio May 2012 A1
20120130306 Terahara et al. May 2012 A1
20120150023 Kaspar et al. Jun 2012 A1
20120184906 McAllister Jul 2012 A1
20120330250 Kuwahara et al. Dec 2012 A1
20130131598 Trautman et al. May 2013 A1
20130150822 Ross Jun 2013 A1
20130287832 O'Hagan et al. Oct 2013 A1
20130292868 Singh et al. Nov 2013 A1
20130292886 Sagi et al. Nov 2013 A1
20130303502 Cavanagh et al. Nov 2013 A1
20140148846 Pereira et al. May 2014 A1
20140180201 Ding et al. Jun 2014 A1
20140248312 Rappuoli et al. Sep 2014 A1
20140257188 Kendall et al. Sep 2014 A1
20140272101 Chen et al. Sep 2014 A1
20140276366 Bourne et al. Sep 2014 A1
20140276378 Chen et al. Sep 2014 A1
20140276474 Ding et al. Sep 2014 A1
20140276580 Le et al. Sep 2014 A1
20140276589 Bayramov et al. Sep 2014 A1
20140330198 Zhang et al. Nov 2014 A1
20150079133 Ghartey-Tagoe et al. Mar 2015 A1
20150238413 Mochizuki et al. Aug 2015 A1
20150297878 Singh et al. Oct 2015 A1
20160058992 Chen et al. Mar 2016 A1
20160067176 Ding et al. Mar 2016 A1
20160135895 Faasse et al. May 2016 A1
20160175572 Crowley et al. Jun 2016 A1
20160374939 Shastry et al. Dec 2016 A1
20170050010 Mcallister et al. Feb 2017 A1
20170281535 Singh et al. Oct 2017 A1
20170361079 Trautman et al. Dec 2017 A1
Foreign Referenced Citations (198)
Number Date Country
2205444 Jun 1996 CA
2376285 Dec 2000 CA
2316534 Mar 2001 CA
2422907 Apr 2002 CA
2889500 May 2014 CA
102000020 Jun 2011 CN
102580232 Jul 2012 CN
02319591 Nov 1974 DE
19518974 Nov 1995 DE
19624578 Jan 1998 DE
0156471 Oct 1985 EP
0240593 Oct 1987 EP
0301599 Feb 1989 EP
0305123 Mar 1989 EP
0312662 Apr 1989 EP
0400249 Dec 1990 EP
0407063 Jan 1991 EP
0796128 Sep 1997 EP
1086718 Mar 2001 EP
1086719 Mar 2001 EP
1174078 Jan 2002 EP
2283809 Feb 2011 EP
2399624 Dec 2011 EP
2535602 May 1984 FR
0783479 Sep 1957 GB
2221394 Feb 1990 GB
2277202 Oct 1994 GB
46-037758 Dec 1971 JP
60-242042 Dec 1985 JP
62-213763 Sep 1987 JP
01-264839 Oct 1989 JP
02-009755 Mar 1990 JP
03-151951 Jun 1991 JP
05-123326 May 1993 JP
05-162076 Jun 1993 JP
06-238644 Aug 1994 JP
07-132119 May 1995 JP
08-502215 Mar 1996 JP
09-051878 Feb 1997 JP
54-028369 Mar 1997 JP
09-140687 Jun 1997 JP
09-211022 Aug 1997 JP
10-328168 Dec 1998 JP
11-230707 Aug 1999 JP
11-509123 Aug 1999 JP
2000-146777 May 2000 JP
2000-147229 May 2000 JP
2000-164890 Jun 2000 JP
2000-194142 Jul 2000 JP
2000-232095 Aug 2000 JP
2000-232971 Aug 2000 JP
2000-322780 Nov 2000 JP
2000-323461 Nov 2000 JP
2001-004442 Jan 2001 JP
2001-138300 May 2001 JP
2001-149485 Jun 2001 JP
2001-157715 Jun 2001 JP
2001-341314 Dec 2001 JP
2002-000728 Jan 2002 JP
2002-079499 Mar 2002 JP
2002-151395 May 2002 JP
2002-239014 Aug 2002 JP
2002-301698 Oct 2002 JP
2003-039399 Feb 2003 JP
2003-048160 Feb 2003 JP
2003-534881 Nov 2003 JP
2004-065775 Mar 2004 JP
2006-271781 Oct 2006 JP
2006-341089 Dec 2006 JP
2007-130030 May 2007 JP
2007-190112 Aug 2007 JP
2007-536988 Dec 2007 JP
2008-006178 Jan 2008 JP
2008-074763 Apr 2008 JP
2008-194288 Aug 2008 JP
2009-082206 Apr 2009 JP
2009-082207 Apr 2009 JP
2009-201956 Sep 2009 JP
2010-233673 Oct 2010 JP
2010-233674 Oct 2010 JP
20100064669 Jun 2010 KR
2414255 Mar 2011 RU
1641346 Apr 1991 SU
1667864 Aug 1991 SU
WO 1993015701 Aug 1993 WO
WO 1993017754 Sep 1993 WO
WO 1994023777 Oct 1994 WO
WO 1995022612 Aug 1995 WO
WO 1995033612 Dec 1995 WO
WO 1996000109 Jan 1996 WO
WO 1996017648 Jun 1996 WO
WO 1996037155 Nov 1996 WO
WO 1996037256 Nov 1996 WO
WO 1997003629 Feb 1997 WO
WO 1997003718 Feb 1997 WO
WO 1997013544 Apr 1997 WO
WO 1997048440 Dec 1997 WO
WO 1997048441 Dec 1997 WO
WO 1997048442 Dec 1997 WO
WO 1998000193 Jan 1998 WO
WO 1998028307 Jul 1998 WO
WO 1999000155 Jan 1999 WO
WO 1999029298 Jun 1999 WO
WO 1999029364 Jun 1999 WO
WO 1999029365 Jun 1999 WO
WO 1999049874 Oct 1999 WO
WO 1999061888 Dec 1999 WO
WO 1999064580 Dec 1999 WO
WO 2000005166 Feb 2000 WO
WO 2003026733 Apr 2000 WO
WO 2000035530 Jun 2000 WO
WO 2000070406 Nov 2000 WO
WO 2000074763 Dec 2000 WO
WO 2000074764 Dec 2000 WO
WO 2000074765 Dec 2000 WO
WO 2000074766 Dec 2000 WO
WO 2000077571 Dec 2000 WO
WO 2001008242 Feb 2001 WO
WO 2001036037 May 2001 WO
WO 2001036321 May 2001 WO
WO 2001049362 Jul 2001 WO
WO 2002002180 Jan 2002 WO
WO 2002007543 Jan 2002 WO
WO 2002007813 Jan 2002 WO
WO 2002017985 Mar 2002 WO
WO 2002030301 Apr 2002 WO
WO 2002032331 Apr 2002 WO
WO 2002032480 Apr 2002 WO
WO 2002062202 Aug 2002 WO
WO 2002064193 Aug 2002 WO
WO 2002072189 Sep 2002 WO
WO 2002085446 Oct 2002 WO
WO 2002091922 Nov 2002 WO
WO 2002100474 Dec 2002 WO
WO 2003024290 Mar 2003 WO
WO 2003024518 Mar 2003 WO
WO 2004000389 Dec 2003 WO
WO 2004009172 Jan 2004 WO
WO 2004024224 Mar 2004 WO
WO 2004030649 Apr 2004 WO
WO 2004076339 Sep 2004 WO
WO 2004105729 Dec 2004 WO
WO 2004110717 Dec 2004 WO
WO 2005002453 Jan 2005 WO
WO 2005046769 May 2005 WO
WO 2005065765 Jul 2005 WO
WO 2005082596 Sep 2005 WO
WO 2005089857 Sep 2005 WO
WO 2005094526 Oct 2005 WO
WO 2005099751 Oct 2005 WO
WO 2005112984 Dec 2005 WO
WO 2006020842 Feb 2006 WO
WO 2006055795 May 2006 WO
WO 2006062848 Jun 2006 WO
WO 2006086742 Aug 2006 WO
WO 2006101459 Sep 2006 WO
WO 2007002521 Jan 2007 WO
WO 2007002522 Jan 2007 WO
WO 2007002523 Jan 2007 WO
WO 2007012114 Feb 2007 WO
WO 2007030477 Mar 2007 WO
WO 2007061964 May 2007 WO
WO 2007061972 May 2007 WO
WO 2007075806 Jul 2007 WO
WO 2007081430 Jul 2007 WO
WO 2007124411 Nov 2007 WO
WO 2008011625 Jan 2008 WO
WO 2008015236 Feb 2008 WO
WO 2008024141 Feb 2008 WO
WO 2008091602 Jul 2008 WO
WO 2008130587 Oct 2008 WO
WO 2008139648 Nov 2008 WO
WO 2009039013 Mar 2009 WO
WO 2009048607 Apr 2009 WO
WO 2009054988 Apr 2009 WO
WO 2009142741 Nov 2009 WO
WO 2010040271 Apr 2010 WO
WO 2010124255 Oct 2010 WO
WO 2011121023 Oct 2011 WO
WO 2011140240 Oct 2011 WO
WO 2011140274 Oct 2011 WO
WO 2012054582 Apr 2012 WO
WO 2012122163 Sep 2012 WO
WO 2012127249 Sep 2012 WO
WO 2012153266 Nov 2012 WO
WO 2013172999 Nov 2013 WO
WO 2014004301 Jan 2014 WO
WO 2014077244 May 2014 WO
WO 2014100750 Jun 2014 WO
WO 2014144973 Sep 2014 WO
WO 2014150069 Sep 2014 WO
WO 2014150285 Sep 2014 WO
WO 2014151654 Sep 2014 WO
WO 2014164314 Oct 2014 WO
WO 2016033540 Mar 2016 WO
WO 2016036866 Mar 2016 WO
WO 2016073908 May 2016 WO
WO 2017004067 Jan 2017 WO
Non-Patent Literature Citations (69)
Entry
“Eudragit EPO Readymix—Taste masking and moisture protection have never been easier” Evonik Industries, Evonik Industries AG, Pharma Polymers & Services, Nov. 2014.
Chun, et al., “An array of hollow microcapillaries for the controlled injection of genetic materials into animal/plant cells,” IEEE Workshop on Micro Electro Mechanical Systems, pp. 406-411, (1999).
“Extend”, Merriam-Webster Online Dictionary, 6 pages, Downloaded on Sep. 7, 2010 from <http://www.merriam-webster.com/dictionary/extend>.
“Extend”, Macmillan Online Dictionary, 5 pages, Downloaded on Sep. 7, 2010 from <http://www.macmillandictionary.com/dictionary/american/extend>.
Henry, et al., “Micromachined microneedles for transdermal delivery of drugs”, IEEE Workshop on Micro Electro Mechanical Systems, New York, NY, pp. 494-498, (1998).
Henry, et al., “Microfabricated microneedles: A novel approach to transdermal drug delivery”, J. Pharmaceutical Science, vol. 87, No. 8, pp. 922-925, (1998).
“Heparin Pregnancy and Breast Feeding Warnings”, Drugs.com, Accessed Oct. 8, 2009, <http://www.drugs.com/pregnancy/heparin.html>.
International Search Report from International Patent Application No. PCT/US2000/015612 dated Sep. 7, 2000.
International Search Report from International Patent Application No. PCT/US2000/015613 dated Sep. 6, 2000.
International Search Report from International Patent Application No. PCT/US2000/015614 dated Sep. 6, 2000.
International Search Report from International Patent Application No. PCT/US2001/031977 dated Apr. 29, 2002.
International Search Report from International Patent Application No. PCT/US2001/031978 dated Apr. 29, 2002.
International Search Report from International Patent Application No. PCT/US2002/014624 dated Sep. 3, 2002.
International Search Report from International Patent Application No. PCT/US2002/029228 dated Apr. 23, 2003.
International Search Report from International Patent Application No. PCT/US2002/029245 dated Dec. 27, 2002.
International Search Report from International Patent Application No. PCT/US2004/005382 dated Nov. 25, 2004.
International Search Report from International Patent Application No. PCT/US2004/017255 dated May 24, 2005.
International Search Report from International Patent Application No. PCT/US2005/009854 dated Jul. 3, 2008.
International Search Report from International Patent Application No. PCT/US2008/000824 dated Jul. 18, 2008.
International Search Report from International Patent Application No. PCT/US2008/004943 dated Jun. 9, 2009, application now published as International Publication No. WO2008/130587 Oct. 30, 2008.
International Search Report from International Patent Application No. PCT/US2008/011635 dated Dec. 19, 2008, application now published as International Publication No. WO2009/048607 on Apr. 16, 2009.
International Search Report from International Patent Application No. PCT/US2010/032299 dated Dec. 10, 2010, application now published as International Publication No. WO2010/124255 on Oct. 28, 2010.
International Search Report from International Patent Application No. PCT/US2013/077281 dated Mar. 4, 2013.
International Search Report from International Patent Application No. PCT/US2014/021841 dated Aug. 11, 2014.
International Search Report from International Patent Application No. PCT/US2014/022087 dated May 23, 2014.
International Search Report from International Patent Application No. PCT/US2014/022836 dated May 9, 2015.
International Search Report from International Patent Application No. PCT/US2014/022859 dated May 26, 2014.
International Search Report from International Patent Application No. PCT/US2014/026179 dated Jul. 18, 2014.
International Search Report from International Patent Application No. PCT/US2014/029601 dated Jul. 1, 2014.
Matriano, et al., “Macroflux(R) microprojection array patch technology: A new and efficient approach for intracutaneous immunization”, Pharm. Res., vol. 19, No. 1, pp. 63-70, (2002).
McAllister, et al., “Micromachined microneedles for transdermal drug delivery”, Am. Inst. Chem. Eng., 1998 Annual Meeting, Miami Beach, FL, Nov. 15-20, Drug Delivery II, pp. 1-4.
Mikszta, et al., “Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery”, Nat. Med., vol. 8, No. 4, pp. 415-419, (2002).
Mikszta, et al., “Protective immunization against inhalation anthrax: A comparison of minimally invasive delivery platforms”, J. Inf. Dis., vol. 191, No. 2, pp. 278-288, (2005).
Papautsky, et al., “Micromachined Pipette Arrays,” MPA, Proceedings—19th international Conference—IEEE/EMBS, Chicago IL, USA, pp. 2281-2284 (1997).
Park et al., “Biodegradable polymer microneedles: Fabrication, mechanics, and transdermal drug delivery”, J. Contr. Rel., vol. 104, pp. 51-66 (2005).
Park, et al. “Polymer Microneedles for Controlled-Release Drug Delivery,” Pharmaceutical Research, Kluwer Academic Publishers-Plenum Publishers, NE, vol. 23, No. 5, pp. 1008-1019 (2006).
Prausnitz, et al., “Transdermal transport efficiency during skin electroporation and iontophoresis”, J. Contr. Release, vol. 38, pp. 205-217, (1996).
Prausnitz, “Transdermal delivery of macromolecules: Recent advances by modification of skin's barrier properties”, ACS Symposium Series No. 675, Therapeutic Protein and Peptide Formulation and Delivery, American Chemical Society, Washington DC, Chapter 8, pp. 124-153, (1997).
Rydberg, et al., “Low-molecular-weight heparin preventing and treating DVT”, Am. Fam. Physician, vol. 59, No. 6, pp. 1607-1612, (1999).
Sivamani, et al., “Microneedles and transdermal applications”, Exp. Opin. Drug Del., vol. 4, No. 1, pp. 19-25, (2007).
Wouters, et al., “Microelectrochemical systems for drug delivery”, Electrochimica Acta., vol. 42, pp. 3385-3390, (1997).
Xia, et al., “Soft Lithography”, Angew. Chem. Int. Ed., vol. 37, pp. 551-575, (1998).
Xia, et al., “Soft Lithography”, Annu. Rev. Mater. Sci., vol. 28, pp. 153-184 (1998).
International Search Report from International Patent Application No. PCT/US2011/035221 dated Jan. 10, 2012, application now published as International Publication No. WO2011/140240 on Nov. 10, 2011.
International Search Report from International Patent Application No. PCT/US2015/059559 dated Jan. 21, 2016.
International Search Report from International Patent Application No. PCT/US2016/039864 dated Sep. 23, 2016.
Keitel et al., “A randomized clinical trail of acellular pertussis vaccines in healthy adults: Dose-response comparisons of 5 vaccines and implications for booster immunization”, J. Infect. Dis., vol. 180, pp. 397-403 (1999).
Lutrol F 68 NF, BASF Pharma Ingredients, accessed from the internet on Sep. 5, 2016 from http://www2.basf.us/Pharma/pdf/Lutrol_F_68.pdf.
Makaida et al., “Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier”, Polymers (Basel), vol. 3, No. 3, pp. 1377-1397 (2011).
Vitiello et al., “Development of a lipopeptide-based therapeutic vaccine to treat chronic HBV infection”, J. Clin. Invest., vol. 95, pp. 341-349 (1995).
Avcin et al., “Subcutaneous nodule after vaccination with an aluminum-containing vaccina”, Acta Dermatoven, APA, vol. 17, No. 4, pp. 182-184 (2008).
Corbett et al., “Skin vaccination against cervical cancer associated human papillomavirus with a novel micro-projection array in a mouse model”, PLOS one,vol. 5, No. 10, pp. 1-9 (2010).
Database WPI / Thomson, Accession No. 2014-V8921.8, Gao et al., “Soluble microneedle patch useful for transdermal administration of vaccine, comprises water-soluble polymer material as matrix material and soluble microneedle main portion”. Application No. CN104027324A, Tech Inst Phys. & Chem. Chinese Acad., 3 pages (2014).
Ghosh et al., “Influence of critical parameters of nanosuspension formulation on permeability of a poorly soluble drug through the skin—A case study”, vol. 14, No. 3, pp. 1108-1117 (2013).
Guo et al., “Enhanced transcutaneous immunization via dissolving microneedle array loaded with liposome encapsulated antigen and adjuvant”, Int. J. Pharm., vol. 447, No. 1-2, pp. 22-30 (2013).
Gupta, “Aluminum compounds as vaccine adjuvants”, Adv. Drug Deliv. Rev., vol. 32, No. 3, pp. 155-172 (1998) Abstract Only.
Gupta and Rost, “Aluminum compounds as vaccine adjuvants”, Vaccine adjuvants: Preparation Methods and Research Protocols, O'Hagan, ed., Humana Press, Inc., Totowa, New Jersey, Meth. Mol. Med., vol. 42, No. 4, No. 4, pp. 65-89 (2000).
International Search Report from International Patent Application No. PCT/US2015/047563 dated Nov. 20, 2015.
International Search Report from International Patent Application No. PCT/US2015/048161 dated Nov. 26, 2015.
Kuroda et al., “Particulate adjuvant and innate immunity: past achievements, present findings, and future prospects”, Int. Rev. Immunol., vol. 32, No. 2, pp. 209-220 (2013).
Munks et al., “Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo”, Blood, vol. 116, No. 24, pp. 5191-5199 (2010).
Petrovsky and Aguilar, “Vaccine adjuvants: current state and future trends”, Immunol. Cell Biol., vol. 82, No. 5, pp. 488-496 (2004).
Pittman, “Aluminum-containing vaccine associated adverse events: role of route of administration and gender”, Vaccine, vol. 20, pp. s48-s50 (2002).
Prausnitz, “Microneedle-based vaccines”, Curr. Top. Microbiol. Immunol., vol. 333, pp. 369-393 (2009).
Sayers et al., “Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development”, J. Biomed. Biotechnol., vol. 2012, Article ID: 831486, 13 pages, doi:10.1155/2012/831486 (2011).
White et al., “Studies on antibody production. III. The alum granuloma:”, J. Exp. Med., vol. 102, No, 1, pp. 73-82 (1955).
Julinova et al., “Initiating biodegradation of polyvinylpyrrolidone in aqueous aerobic environment”, Proceedings of ECOpole, vol. 6, No. 1, pp. 121-127 (2012).
Kunduru et al., “Biodegradable polymers: Medical Applications”, Encyclopedia of Polymer Science and Technology, pp. 1-22 (2016) DOI: 10.1002/0471440264.pst027.pub2.
Polysorbate 80, Material Safety Data Sheet, CAS#: 9005-65-6, Science Lab.com, Inc., 14025 Smith Rd., Houston, Texas 77396, 5 pages, Last updated May 21, 2013.
Related Publications (1)
Number Date Country
20150297878 A1 Oct 2015 US
Provisional Applications (2)
Number Date Country
60925262 Apr 2007 US
60923861 Apr 2007 US
Continuations (1)
Number Date Country
Parent 12148180 Apr 2008 US
Child 14789919 US