Solving linear matrices in an integrated circuit device

Information

  • Patent Grant
  • 8539014
  • Patent Number
    8,539,014
  • Date Filed
    Thursday, March 25, 2010
    14 years ago
  • Date Issued
    Tuesday, September 17, 2013
    11 years ago
Abstract
Circuitry for solving linear matrix equations involving a resultant matrix, an unknown matrix and a product matrix that is a product of the resultant matrix and the unknown matrix includes matrix decomposition circuitry for triangulating an input matrix to create a resultant matrix having a plurality of resultant matrix elements on a diagonal, and having a further plurality of resultant matrix elements arranged in columns below the resultant matrix elements on the diagonal. The matrix decomposition circuitry includes an inverse square root multiplication path that computes diagonal elements of the resultant matrix having an inverse square root module, and the said inverse square root module computes inverses of the diagonal elements to be used in multiplication in place of division by a diagonal element. Latency is hidden by operating on each nth row of a plurality of matrices prior to any (n+1)th row.
Description
BACKGROUND OF THE INVENTION

This invention relates to solving linear matrices in integrated circuit devices, and particularly in programmable integrated circuit devices such as programmable logic devices (PLDs).


Certain linear matrix equations may take the form RW=Z, where each of R, W and Z is a matrix and W contains the unknowns. This problem decomposes into a group of linear equations involving multiplication of elements of W by elements of R. To solve for the elements of W thus requires division by the elements of R. However, for some matrices, such as a 4×4 matrix typically found in an LTE application, implementing a divide operation in circuitry may consume as much resources as the remainder of the datapath combined. Moreover, latency through the divider can be greater than the latency through the remainder of the datapath.


SUMMARY OF THE INVENTION

The present invention relates to simplified circuitry for solving certain linear matrix problems by turning the aforementioned division into a multiplication. This eliminates the need for resource-consuming, latency increasing division circuitry. Latency may be further reduced by solving a plurality of matrices at once. The circuitry can be provided in a fixed logic device, or can be configured into a programmable integrated circuit device such as a programmable logic device (PLD).


As explained in copending, commonly-assigned U.S. patent application Ser. No. 12/072,144, filed Feb. 25, 2008, which is hereby incorporated by reference herein in its entirety, certain linear matrix equations may be solved using Cholesky decomposition to factor a matrix, followed by a forward or back substitution. The result of the Cholesky decomposition may be a “triangulated” matrix—i.e., a matrix with no values above the diagonal.


As just one example, The following sequence of equations show an example of forward substitution with a lower triangular matrix R.






RW
=

Z








R
=

[



5


0


0




3


2


0




6


4


1



]







W
=

[




w
1






w
2






w
3




]








Z


=

[



10




8




20



]








5


w
1


=


10


w
1


=
2









2


w
2


+

3


w
1



=


8



2


w
2


+
3.2


=


8


w
2


=
1










w
3

+

4


w
2


+

6


w
1



=


20



w
3

+
4.1
+
6.2


=


20


w
3


=
4







Because R is a lower triangular matrix, the first row results in one equation in one unknown, which is on the diagonal. Solving each row reduces the subsequent row to one equation in one unknown, each unknown being on the diagonal. Therefore, each solution requires division by a term on the diagonal.


In Cholesky decomposition, to factor a matrix a, the first element ljj, at the top of each column in the resultant triangulated matrix l, may be calculated as:

ljj=√{square root over (ajjcustom characterLj,Ljcustom character)}

where ajj is the jjth element of the original matrix a, and Lj is vector representing the jth row of matrix l up to the (j−1)th column. The subsequent elements in the jth column may be calculated as:







l
ij

=



a
ij

-




L
i

,

L
j






l
jj







where aij is the ijth element of the original matrix a, and Li is vector representing the portion of the ith row of matrix 1 up to the (j−1)th column.


As disclosed in copending, commonly-assigned U.S. patent application Ser. No. 12/557,846, filed Sep. 11, 2009 and hereby incorporated by reference herein in its entirety, if the first of the two equations above is substituted into the second equation, the result is the following:







l
ij

=



a
ij

-




L
i

,

L
j








a
jj

-




L
j

,

L
j












When any lij term is calculated this way, the latency in calculating the ljj term in the denominator has little or no effect on the lij term calculation, if the quantity that whose square root is being taken for the ljj term is identical in structure to the numerator (although having different values). The denominator term (before the square root is taken) and all of the following numerator terms can be burst into the same datapath, while the denominator term is latched and used as the input to a second datapath. The second datapath multiplies the datapath output by the inverse square root of the latched value. And if the calculations are properly pipelined, once the pipeline is filled, a new term can be output on each clock cycle.


The diagonal of the resulting lower triangular matrix has all real terms ljj, even if the remaining terms are complex. Therefore, there is unused memory allocated to each term of the diagonal, intended to store a nonexistent imaginary part. This unused memory can be used to store the inverse of each term of the diagonal, turning the required division described above for solution of each unknown into a multiplication, which is consumes fewer resources than a division. Moreover, each term of the diagonal is in the form ljj=x/(x0.5) which is equal to x0.5, meaning that 1/ljj is equal to x−0.5, which is already computed in the calculation of ljj. Therefore, no additional resources are used in either the calculation or storage of the 1/ljj terms.


Therefore, in accordance with the present invention, there is provided circuitry for solving linear matrix equations involving a resultant matrix, an unknown matrix and a product matrix that is a product of said resultant matrix and said unknown matrix. The circuitry includes matrix decomposition circuitry for triangulating an input matrix to create a resultant matrix having a plurality of resultant matrix elements on a diagonal, and having a further plurality of resultant matrix elements arranged in columns below the resultant matrix elements on the diagonal. The matrix decomposition circuitry includes an inverse square root multiplication path that computes diagonal elements of the resultant matrix. The circuitry for solving linear matrix equations further includes first, second and third matrix memories for respectively storing the resultant matrix, the unknown matrix and the product matrix. The inverse square root multiplication path includes an inverse square root module, and the said inverse square root module computes inverses of the diagonal elements. When solution of a linear matrix equation involves division by a diagonal element, multiplication by the inverse of that diagonal element may be used instead.


A method of configuring a programmable integrated circuit device as such circuitry, and a programmable integrated circuit device so programmed, are also provided. In addition, a machine-readable data storage medium encoded with machine-executable instructions for so configuring a programmable integrated circuit device is provided.


Finally, a method of operating the circuitry to hide latency is provided, in which a respective plurality of at least one of the resultant matrix and the product matrix is stored in a respective one of the first and third matrix memories. Each row of each matrix in the first and third matrix memories has a row index, with row indices repeating from one matrix in each respective plurality of matrices to another matrix in that respective plurality of matrices. For each row index, all rows in each matrix in at least one of the respective plurality of matrices having that row index are processed prior to processing any rows of any matrix in that at least one of the respective plurality of matrices having any other row index.





BRIEF DESCRIPTION OF THE DRAWINGS

Further features of the invention, its nature and various advantages will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:



FIG. 1 shows one embodiment of a datapath arrangement for Cholesky decomposition;



FIG. 2 shows one embodiment, according to the invention, of a circuit arrangement used in the performance of Cholesky decomposition;



FIG. 3 shows one embodiment, according to the invention, of a datapath arrangement, which may be implemented in circuitry, for solving matrices using back/forward substitution;



FIG. 4 is a cross-sectional view of a magnetic data storage medium encoded with a set of machine-executable instructions for performing the method according to the present invention;



FIG. 5 is a cross-sectional view of an optically readable data storage medium encoded with a set of machine executable instructions for performing the method according to the present invention; and



FIG. 6 is a simplified block diagram of an illustrative system employing a programmable logic device incorporating the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Taking an example of lower triangular matrix l of dimensions 6×6, the elements on the diagonal are l11, . . . , l66. In each jth column, the elements under ljj are lij, i=j+1, . . . , imax (in this case, imax=6). The matrix may be considered to be empty above the diagonal, or the elements above the diagonal may be considered to be zeroes.


Each element lij can be calculated using two datapaths. The first datapath calculates the following result:

lx=axcustom characterLx,Lxcustom character

where for l and a, x=ij; for the L vectors, x=i or j, respectively; and custom characterLx,Lxcustom character denotes the inner product of the L vectors.


The first output (x=jj) of the first datapath is latched at the input of a second datapath, which calculates the actual lij. The first element of the column (ljj) is calculated as the inverse square root of the input (ajjcustom characterLj,Ljcustom character), multiplied by the input, generating the square root of the input. The inverse square root is used instead of a direct square root calculation, because it can be reused for the following elements in the column using multiplication, which is easier to implement than division.


To calculate all of the subsequent values in the column, the latched first datapath output is used for the inverse square root input which is a first multiplier input, and the other multiplier input is, for each subsequent term, the corresponding output of the first datapath. The entire column can therefore be calculated without waiting for any individual element to be finished.



FIG. 1 shows how the matrix values can be stored for fast access. Each aij value is a single number that can be addressed in a single clock cycle, but each Li or Lj row vector is j−1 numbers which would require j−1 clock cycles to address if all values were stored in a single memory. However, in accordance with an embodiment of the present invention, matrix a may be stored in a single memory 201, while each column of matrix l may be stored in one of a plurality of imax separate memories 202. The ith element of each of the separate column memories can be addressed simultaneously, allowing the entire row vector to be read out within a single clock cycle. This may be referred to as a “column-wise” memory architecture.


For example, programmable logic devices available from Altera Corporation, of San Jose, Calif., may have a smaller number of larger memory blocks (e.g., 144 kb memory blocks), one of which could be used as memory 201 to store matrix a, and a larger number of smaller memory blocks (e.g., 9 kb memory blocks), imax of which could be used as memories 202 to separately store the columns of matrix l. Of course, it is not necessary to use different sizes of memories for memories 201, 202; if a sufficient number of larger memories is available, any one or more of the memories used as column memories 202 to separately store the columns of matrix l may be the same size as (or even larger than) the memory used as memory 201 to store matrix a.


Thus, in a single clock cycle, address input 211 may be applied to memory 201 to read out matrix element aij at 221 for input to calculation datapath 300, while address input 212 may be applied to the appropriate j−1 memories 202 on path 203 to read out vector Li, and address input 222 may be applied to the appropriate j−1 memories 202 on path 213 to read out vector Lj. The outputs 221, 203, 213 maybe input to calculation datapath 300, described in more detail in connection with FIG. 2, which outputs the individual lij values at 204, and also feeds each back at 205 into the respective jth column memory 202.


Datapath 300, which may be implemented in fixed or programmable logic, includes inner product datapath 301 and inverse square root datapath 302.


Inner product datapath 301 includes inner product generator 311 and subtractor 321 to subtract the inner product from aij. Inner product generator 311 may include a sufficient plurality of multipliers and adders to simultaneously multiply imax pairs of values, and then add those products together.


For complex vectors, inner product generator 311 may include sufficient multipliers and adders to simultaneously multiply 2(imax) pairs of values, and also may include the necessary components to compute the complex conjugate values for Lj in the case where the values are complex. The Lj term is latched in register 331 at the beginning of a column process and is not changed until the next column is started.


Starting with the second column, the first output of inner product datapath 301 for each column—i.e., each ljj—is latched into register 312 as the input to inverse square root datapath 302 for the duration of calculation of that column. Inverse square root datapath 302 includes inverse square root module 322 for calculating the inverse square root of ljj, and multiplier 332 for multiplying the inverse square root by the current lij. The latching of ljj into register 312 delays its input to multiplier 332 by one clock cycle. Therefore, the input of lij to multiplier 332 also is delayed, by register 342, so that latency is the same for both inputs.


For the first column, terms are generated using simple division. The top term, l11 is a11—0.5 and all the subsequent inputs for the first column are also divided by a11—i.e., li1=ai1/a11−0.5. This is accomplished using multiplexer 350 to allow the aij inputs 351 to bypass inner product datapath 301.


In addition to increasing the number of multipliers and adders in inner product generator 311, as discussed above, some other relatively minor additions (not shown) would be made to datapath 300 where the inputs are complex. In such a case, the Li, Lj vector values will be complex. This will require generating the complex conjugate of the vector value latched in register 331. That can be done by providing logic to invert the sign bit of the imaginary portion of each value. The changes required in inverse square root datapath 302 are simplified by the nature of matrix l.


As discussed above, the diagonal value—i.e., the first value at the top of each column in the Cholesky decomposition—is always real, meaning that inverse square root calculation 322 will always be real. Therefore, while the other multiplicand at multiplier 332 is complex, the multiplication will be one of a complex value by a real scalar value, so only two multipliers—i.e., one additional multiplier—are required. Moreover, a memory location for the imaginary part of each diagonal value ljj will be unused, and available for storing 1/ljj. That value can be extracted from inverse square root calculation 322 at 323 whenever i=j, and can be multiplexed together at 333 with the output of multiplier 332 for storage in place of the imaginary part of ljj.


As discussed above, for any given row of the RW=Z matrix calculation example given above, the w element calculation can be described as:







w


(
k
)


=



z


(
k
)


-


r


(

k
,

1
:

k
-
1



)




w


(

1
:

k
-
1


)





r


(

k
,
k

)








This can be rewritten as follows:







w


(
k
)


=


(


z


(
k
)


-


r


(

k
,

1
:

k
-
1



)




w


(

1
:

k
-
1


)




)

*

1

r


(

k
,
k

)









turning the division into a multiplication.



FIG. 3 shows the architecture of an embodiment 400 of substitution datapath/circuitry in accordance with the invention. The R matrix may stored in columns, with one memory 401 provided per column, and each row containing one entry per column memory. Multiple matrixes may be stored, and preferably are processed together. The W memory 402 does not have to be initialized. The Z memory 403 may be loaded with one Z vector per R matrix in memories 401. Alternatively, one Z vector can be used for multiple R matrices, or vice-versa.


A row of the R matrix may be loaded by loading similarly indexed elements from each of the R column memories 401, along with the entire W vector from memory 402, and a single element with the same row index from the Z memory 403. The number of elements from both the R row and the W matrix that are read into the vector core 404 is row_index−1 (the remaining elements may be zeroed).


Multipliers 414, summer 424 and subtractor 434 of core 404 compute the equation set forth above for each element of W, as multiplexer 405 selects the appropriate inverted diagonal value from the row_indexedth element of the Rth row.


AND gates 444 can be used to zero columns that are not used in the current row. For example if there are four rows in each triangulated matrix, the first row will have one element, the second row will have two elements, and so on. If for Row 1, one zeroes out columns 2,3,4, for Row 2 one zeroes out columns 3,4 and so on, then it is not necessary to initialize the upper half of R memory 401 with zeroes, but only the lower half with the values of the triangulated matrix R.


Preferably, the first row index for each of the R matrices in R memory is processed first, then the second row index, then the third, and so on. If the number of R matrices processed at any given time is greater than the datapath and memory latency, which may be about typically about 14 clock cycles for a multiplier-based calculation shown in FIG. 3 using the multipliers and adders of digital signal processing blocks of FPGAs in the STRATIX® family of FPGAs from Altera Corporation, of San Jose, Calif., then processing all nth rows together will hide the datapath latency. By comparison, if a divider were used, datapath latency would be about 30 clock cycles, requiring a larger matrix memory, and resulting in a longer processing delay because of the large number of matrices needed to hide datapath latency.


The W vectors can be unloaded from W memory. Alternatively, the W values can be written to a W output memory (not shown), which can be loaded sequentially from output 406, which would save the requirement for a multiplexer on the output of the W memories when unloading.


The various operators used for the calculations described above can be configured in a programmable device using, e.g., the techniques described in copending, commonly-assigned U.S. patent application Ser. No. 11/625,655, filed Jan. 22, 2007, which is hereby incorporated by reference herein in its entirety.


One potential use for the present invention may be in programmable integrated circuit devices such as programmable logic devices, where programming software can be provided to allow users to configure a programmable device to perform matrix operations. The result would be that fewer logic resources of the programmable device would be consumed. And where the programmable device is provided with a certain number of dedicated blocks for arithmetic functions (to spare the user from having to configure arithmetic functions from general-purpose logic), the number of dedicated blocks needed to be provided (which may be provided at the expense of additional general-purpose logic) can be reduced (or sufficient dedicated blocks for more operations, without further reducing the amount of general-purpose logic, can be provided).


Instructions for carrying out a method according to this invention for programming a programmable device to perform matrix decomposition may be encoded on a machine-readable medium, to be executed by a suitable computer or similar device to implement the method of the invention for programming or configuring PLDs or other programmable devices to perform addition and subtraction operations as described above. For example, a personal computer may be equipped with an interface to which a PLD can be connected, and the personal computer can be used by a user to program the PLD using a suitable software tool, such as the QUARTUS® II software available from Altera Corporation, of San Jose, Calif.



FIG. 4 presents a cross section of a magnetic data storage medium 800 which can be encoded with a machine executable program that can be carried out by systems such as the aforementioned personal computer, or other computer or similar device. Medium 800 can be a floppy diskette or hard disk, or magnetic tape, having a suitable substrate 801, which may be conventional, and a suitable coating 802, which may be conventional, on one or both sides, containing magnetic domains (not visible) whose polarity or orientation can be altered magnetically. Except in the case where it is magnetic tape, medium 800 may also have an opening (not shown) for receiving the spindle of a disk drive or other data storage device.


The magnetic domains of coating 802 of medium 800 are polarized or oriented so as to encode, in manner which may be conventional, a machine-executable program, for execution by a programming system such as a personal computer or other computer or similar system, having a socket or peripheral attachment into which the PLD to be programmed may be inserted, to configure appropriate portions of the PLD, including its specialized processing blocks, if any, in accordance with the invention.



FIG. 5 shows a cross section of an optically-readable data storage medium 810 which also can be encoded with such a machine-executable program, which can be carried out by systems such as the aforementioned personal computer, or other computer or similar device. Medium 810 can be a conventional compact disk read-only memory (CD-ROM) or digital video disk read-only memory (DVD-ROM) or a rewriteable medium such as a CD-R, CD-RW, DVD-R, DVD-RW, DVD+R, DVD+RW, or DVD-RAM or a magneto-optical disk which is optically readable and magneto-optically rewriteable. Medium 810 preferably has a suitable substrate 811, which may be conventional, and a suitable coating 812, which may be conventional, usually on one or both sides of substrate 811.


In the case of a CD-based or DVD-based medium, as is well known, coating 812 is reflective and is impressed with a plurality of pits 813, arranged on one or more layers, to encode the machine-executable program. The arrangement of pits is read by reflecting laser light off the surface of coating 812. A protective coating 814, which preferably is substantially transparent, is provided on top of coating 812.


In the case of magneto-optical disk, as is well known, coating 812 has no pits 813, but has a plurality of magnetic domains whose polarity or orientation can be changed magnetically when heated above a certain temperature, as by a laser (not shown). The orientation of the domains can be read by measuring the polarization of laser light reflected from coating 812. The arrangement of the domains encodes the program as described above.


A PLD 90 programmed according to the present invention may be used in many kinds of electronic devices. One possible use is in a data processing system 900 shown in FIG. 6. Data processing system 900 may include one or more of the following components: a processor 901; memory 902; I/O circuitry 903; and peripheral devices 904. These components are coupled together by a system bus 905 and are populated on a circuit board 906 which is contained in an end-user system 907.


System 900 can be used in a wide variety of applications, such as computer networking, data networking, instrumentation, video processing, digital signal processing, or any other application where the advantage of using programmable or reprogrammable logic is desirable. PLD 90 can be used to perform a variety of different logic functions. For example, PLD 90 can be configured as a processor or controller that works in cooperation with processor 901. PLD 90 may also be used as an arbiter for arbitrating access to a shared resources in system 900. In yet another example, PLD 90 can be configured as an interface between processor 901 and one of the other components in system 900. It should be noted that system 900 is only exemplary, and that the true scope and spirit of the invention should be indicated by the following claims.


Various technologies can be used to implement PLDs 90 as described above and incorporating this invention.


It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. For example, the various elements of this invention can be provided on a PLD in any desired number and/or arrangement. One skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration and not of limitation, and the present invention is limited only by the claims that follow.

Claims
  • 1. Circuitry for solving linear matrix equations involving a resultant matrix, an unknown matrix and a product matrix that is a product of said resultant matrix and said unknown matrix, said circuitry comprising: matrix decomposition circuitry for triangulating an input matrix to create a resultant matrix having a plurality of resultant matrix elements on a diagonal, and having a further plurality of resultant matrix elements arranged in columns below said resultant matrix elements on said diagonal, said matrix decomposition circuitry comprising an inverse square root multiplication path that computes diagonal elements of said resultant matrix; andfirst, second and third matrix memories for respectively storing said resultant matrix, said unknown matrix and said product matrix; wherein:said inverse square root multiplication path includes an inverse square root module, andsaid inverse square root module computes inverses of said diagonal elements.
  • 2. The circuitry of claim 1 wherein: said first matrix memory stores each element of said resultant matrix as a real and imaginary part;each said diagonal element has only a real part; andrespective ones of said inverses of said diagonal elements are stored in place of nonexistent imaginary parts of respective ones of said diagonal elements.
  • 3. The circuitry of claim 1 further comprising: multipliers and a summing circuit for forming an inner product of corresponding rows of said resultant matrix and said unknown matrix;a subtractor for respectively subtracting said inner product from respective elements of said product matrix to yield respective differences; anda further multiplier for multiplying each respective difference by a respective one of said inverses of said diagonal elements to determine respective elements of said unknown matrix.
  • 4. A method of operating circuitry for solving linear matrix equations involving a resultant matrix, an unknown matrix and a product matrix that is a product of said resultant matrix and said unknown matrix, said circuitry comprising matrix decomposition circuitry for triangulating an input matrix to create a resultant matrix having a plurality of resultant matrix elements on a diagonal, and having a further plurality of resultant matrix elements arranged in columns below said resultant matrix elements on said diagonal, said matrix decomposition circuitry comprising an inverse square root multiplication path that computes diagonal elements of said resultant matrix, said circuitry further comprising first, second and third matrix memories for respectively storing said resultant matrix, said unknown matrix and said product matrix; wherein said inverse square root multiplication path includes an inverse square root module, and said inverse square root module computes inverses of said diagonal elements wherein said inverse square root multiplication path includes an inverse square root module, and said inverse square root module computes inverses of said diagonal elements; said method comprising: storing a respective plurality of at least one of said resultant matrix and said product matrix in a respective one of said first and third matrix memories, each row of each matrix in said first and third matrix memories having a row index, wherein row indices repeat from one matrix in each respective plurality of matrices to another matrix in said respective plurality of matrices; andfor each row index, processing all rows in each matrix in at least one of said respective plurality of matrices having said row index prior to processing any rows of any matrix in said at least one of said respective plurality of matrices having any other row index.
  • 5. A method of configuring a programmable integrated circuit device as circuitry for solving linear matrix equations involving a resultant matrix, an unknown matrix and a product matrix that is a product of said resultant matrix and said unknown matrix, said method comprising: configuring logic of said programmable integrated circuit device as matrix decomposition circuitry for triangulating an input matrix to create a resultant matrix having a plurality of resultant matrix elements on a diagonal, and having a further plurality of resultant matrix elements arranged in columns below said resultant matrix elements on said diagonal, comprising configuring logic of said programmable integrated circuit device as an inverse square root multiplication path that computes diagonal elements of said resultant matrix; andconfiguring memory of said programmable integrated circuit device as first, second and third matrix memories for respectively storing said resultant matrix, said unknown matrix and said product matrix; wherein:said inverse square root multiplication path includes an inverse square root module, andsaid inverse square root module computes inverses of said diagonal elements.
  • 6. The method of claim 5 wherein: each said diagonal element has only a real part;said method further comprises configuring said first matrix memory to store each element of said resultant matrix as a real and imaginary part; andrespective ones of said inverses of said diagonal elements are stored in place of nonexistent imaginary parts of respective ones of said diagonal elements.
  • 7. The method of claim 5 further comprising: configuring logic of said programmable integrated circuit device as multipliers and a summing circuit for forming an inner product of corresponding rows of said resultant matrix and said unknown matrix;configuring logic of said programmable integrated circuit device as a subtractor for respectively subtracting said inner product from respective elements of said product matrix to yield respective differences; andconfiguring logic of said programmable integrated circuit device as a further multiplier for multiplying each respective difference by a respective one of said inverses of said diagonal elements to determine respective elements of said unknown matrix.
  • 8. A programmable integrated circuit device configured as circuitry for solving linear matrix equations involving a resultant matrix, an unknown matrix and a product matrix that is a product of said resultant matrix and said unknown matrix, said programmable integrated circuit device comprising: logic configured as matrix decomposition circuitry for triangulating an input matrix to create a resultant matrix having a plurality of resultant matrix elements on a diagonal, and having a further plurality of resultant matrix elements arranged in columns below said resultant matrix elements on said diagonal, comprising logic configured as an inverse square root multiplication path that computes diagonal elements of said resultant matrix; andlogic configured as first, second and third matrix memories for respectively storing said resultant matrix, said unknown matrix and said product matrix; wherein:said inverse square root multiplication path includes an inverse square root module, andsaid inverse square root module computes inverses of said diagonal elements.
  • 9. The configured programmable integrated circuit device of claim 8 wherein: each said diagonal element has only a real part;said first matrix memory is configured to store each element of said resultant matrix as a real and imaginary part; andrespective ones of said inverses of said diagonal elements are stored in place of nonexistent imaginary parts of respective ones of said diagonal elements.
  • 10. The configured programmable integrated circuit device of claim 8 further comprising: logic configured as multipliers and a summing circuit for forming an inner product of corresponding rows of said resultant matrix and said unknown matrix;logic configured as a subtractor for respectively subtracting said inner product from respective elements of said product matrix to yield respective differences; andlogic configured as a further multiplier for multiplying each respective difference by a respective one of said inverses of said diagonal elements to determine respective elements of said unknown matrix.
  • 11. A machine-readable data storage medium encoded with machine-executable instructions for configuring a programmable integrated circuit device as circuitry for solving linear matrix equations involving a resultant matrix, an unknown matrix and a product matrix that is a product of said resultant matrix and said unknown matrix, said instructions comprising: instructions to configure logic of said programmable integrated circuit device as matrix decomposition circuitry for triangulating an input matrix to create a resultant matrix having a plurality of resultant matrix elements on a diagonal, and having a further plurality of resultant matrix elements arranged in columns below said resultant matrix elements on said diagonal, comprising instructions to configure logic of said programmable integrated circuit device as an inverse square root multiplication path that computes diagonal elements of said resultant matrix; andinstructions to configure memory of said programmable integrated circuit device as first, second and third matrix memories for respectively storing said resultant matrix, said unknown matrix and said product matrix; wherein:said inverse square root multiplication path includes an inverse square root module, andsaid inverse square root module computes inverses of said diagonal elements.
  • 12. The machine-readable data storage medium of claim 11 wherein: each said diagonal element has only a real part;said instructions to configure said first matrix memory comprise instructions to configure said first matrix memory to store each element of said resultant matrix as a real and imaginary part; andrespective ones of said inverses of said diagonal elements are stored in place of nonexistent imaginary parts of respective ones of said diagonal elements.
  • 13. The machine-readable data storage medium of claim 11 wherein said instructions further comprise: instructions to configure logic of said programmable integrated circuit device as multipliers and a summing circuit for forming an inner product of corresponding rows of said resultant matrix and said unknown matrix;instructions to configure logic of said programmable integrated circuit device as a subtractor for respectively subtracting said inner product from respective elements of said product matrix to yield respective differences; andinstructions to configure logic of said programmable integrated circuit device as a further multiplier for multiplying each respective difference by a respective one of said inverses of said diagonal elements to determine respective elements of said unknown matrix.
US Referenced Citations (336)
Number Name Date Kind
3473160 Wahlstrom Oct 1969 A
4156927 McElroy et al. May 1979 A
4179746 Tubbs Dec 1979 A
4212076 Conners Jul 1980 A
4215406 Gomola et al. Jul 1980 A
4215407 Gomola et al. Jul 1980 A
4422155 Amir et al. Dec 1983 A
4484259 Palmer et al. Nov 1984 A
4521907 Amir et al. Jun 1985 A
4575812 Kloker et al. Mar 1986 A
4597053 Chamberlin Jun 1986 A
4616330 Betz Oct 1986 A
4623961 Mackiewicz Nov 1986 A
4682302 Williams Jul 1987 A
4718057 Venkitakrishnan et al. Jan 1988 A
4727508 Williams Feb 1988 A
4736335 Barkan Apr 1988 A
4777614 Ward Oct 1988 A
4791590 Ku et al. Dec 1988 A
4799004 Mori Jan 1989 A
4823295 Mader Apr 1989 A
4839847 Laprade Jun 1989 A
4871930 Wong et al. Oct 1989 A
4912345 Steele et al. Mar 1990 A
4918637 Morton Apr 1990 A
4967160 Quievy et al. Oct 1990 A
4982354 Takeuchi et al. Jan 1991 A
4991010 Hailey et al. Feb 1991 A
4994997 Martin et al. Feb 1991 A
5073863 Zhang Dec 1991 A
5081604 Tanaka Jan 1992 A
5122685 Chan et al. Jun 1992 A
5128559 Steele Jul 1992 A
5175702 Beraud et al. Dec 1992 A
5208491 Ebeling et al. May 1993 A
RE34363 Freeman Aug 1993 E
5267187 Hsieh et al. Nov 1993 A
5296759 Sutherland et al. Mar 1994 A
5338983 Agarwala Aug 1994 A
5339263 White Aug 1994 A
5349250 New Sep 1994 A
5357152 Jennings, III et al. Oct 1994 A
5371422 Patel et al. Dec 1994 A
5375079 Uramoto et al. Dec 1994 A
5381357 Wedgwood et al. Jan 1995 A
5404324 Colon-Benet Apr 1995 A
5424589 Dobbelaere et al. Jun 1995 A
5446651 Moyse et al. Aug 1995 A
5451948 Jekel Sep 1995 A
5452231 Butts et al. Sep 1995 A
5452375 Rousseau et al. Sep 1995 A
5457644 McCollum Oct 1995 A
5465226 Goto Nov 1995 A
5465375 Thepaut et al. Nov 1995 A
5483178 Costello et al. Jan 1996 A
5497498 Taylor Mar 1996 A
5500812 Saishi et al. Mar 1996 A
5500828 Doddington et al. Mar 1996 A
5523963 Hsieh et al. Jun 1996 A
5528550 Pawate et al. Jun 1996 A
5537601 Kimura et al. Jul 1996 A
5541864 Van Bavel et al. Jul 1996 A
5546018 New et al. Aug 1996 A
5550993 Ehlig et al. Aug 1996 A
5559450 Ngai et al. Sep 1996 A
5563526 Hastings et al. Oct 1996 A
5563819 Nelson Oct 1996 A
5570039 Oswald et al. Oct 1996 A
5570040 Lytle et al. Oct 1996 A
5572148 Lytle et al. Nov 1996 A
5581501 Sansbury et al. Dec 1996 A
5590350 Guttag et al. Dec 1996 A
5594366 Khong et al. Jan 1997 A
5594912 Brueckmann et al. Jan 1997 A
5596763 Guttag et al. Jan 1997 A
5606266 Pedersen Feb 1997 A
5617058 Adrian et al. Apr 1997 A
5631848 Laczko et al. May 1997 A
5633601 Nagaraj May 1997 A
5636150 Okamoto Jun 1997 A
5636368 Harrison et al. Jun 1997 A
5640578 Balmer et al. Jun 1997 A
5644519 Yatim Jul 1997 A
5644522 Moyse et al. Jul 1997 A
5646545 Trimberger et al. Jul 1997 A
5646875 Taborn et al. Jul 1997 A
5648732 Duncan Jul 1997 A
5652903 Weng et al. Jul 1997 A
5655069 Ogawara et al. Aug 1997 A
5664192 Lloyd et al. Sep 1997 A
5689195 Cliff et al. Nov 1997 A
5696708 Leung Dec 1997 A
5729495 Madurawe Mar 1998 A
5740404 Baji Apr 1998 A
5744980 McGowan et al. Apr 1998 A
5744991 Jefferson et al. Apr 1998 A
5754459 Telikepalli May 1998 A
5761483 Trimberger Jun 1998 A
5764555 McPherson et al. Jun 1998 A
5768613 Asghar Jun 1998 A
5771186 Kodali et al. Jun 1998 A
5777912 Leung et al. Jul 1998 A
5784636 Rupp Jul 1998 A
5790446 Yu et al. Aug 1998 A
5794067 Kadowaki Aug 1998 A
5801546 Pierce et al. Sep 1998 A
5805477 Perner Sep 1998 A
5805913 Guttag et al. Sep 1998 A
5808926 Gorshtein et al. Sep 1998 A
5812479 Cliff et al. Sep 1998 A
5812562 Baeg Sep 1998 A
5815422 Dockser Sep 1998 A
5821776 McGowan Oct 1998 A
5825202 Tavana et al. Oct 1998 A
5838165 Chatter Nov 1998 A
5841684 Dockser Nov 1998 A
5847579 Trimberger Dec 1998 A
5847978 Ogura et al. Dec 1998 A
5847981 Kelley et al. Dec 1998 A
5859878 Phillips et al. Jan 1999 A
5869979 Bocchino Feb 1999 A
5872380 Rostoker et al. Feb 1999 A
5874834 New Feb 1999 A
5878250 LeBlanc Mar 1999 A
5880981 Kojima et al. Mar 1999 A
5892962 Cloutier Apr 1999 A
5894228 Reddy et al. Apr 1999 A
5898602 Rothman et al. Apr 1999 A
5931898 Khoury Aug 1999 A
5942914 Reddy et al. Aug 1999 A
5944774 Dent Aug 1999 A
5949710 Pass et al. Sep 1999 A
5951673 Miyata Sep 1999 A
5956265 Lewis Sep 1999 A
5959871 Pierzchala et al. Sep 1999 A
5960193 Guttag et al. Sep 1999 A
5961635 Guttag et al. Oct 1999 A
5963048 Harrison et al. Oct 1999 A
5963050 Young et al. Oct 1999 A
5968196 Ramamurthy et al. Oct 1999 A
5970254 Cooke et al. Oct 1999 A
5978260 Trimberger et al. Nov 1999 A
5982195 Cliff et al. Nov 1999 A
5986465 Mendel Nov 1999 A
5991788 Mintzer Nov 1999 A
5991898 Rajski et al. Nov 1999 A
5995748 Guttag et al. Nov 1999 A
5999015 Cliff et al. Dec 1999 A
5999990 Sharrit et al. Dec 1999 A
6005806 Madurawe et al. Dec 1999 A
6006321 Abbott Dec 1999 A
6009451 Burns Dec 1999 A
6018755 Gonikberg et al. Jan 2000 A
6020759 Heile Feb 2000 A
6021423 Nag et al. Feb 2000 A
6029187 Verbauwhede Feb 2000 A
6031763 Sansbury Feb 2000 A
6041339 Yu et al. Mar 2000 A
6041340 Mintzer Mar 2000 A
6052327 Reddy et al. Apr 2000 A
6052755 Terrill et al. Apr 2000 A
6055555 Boswell et al. Apr 2000 A
6064614 Khoury May 2000 A
6065131 Andrews et al. May 2000 A
6066960 Pedersen May 2000 A
6069487 Lane et al. May 2000 A
6072994 Phillips et al. Jun 2000 A
6073154 Dick Jun 2000 A
6075381 LaBerge Jun 2000 A
6084429 Trimberger Jul 2000 A
6085317 Smith Jul 2000 A
6091261 DeLange Jul 2000 A
6091765 Pietzold, III et al. Jul 2000 A
6094726 Gonion et al. Jul 2000 A
6097988 Tobias Aug 2000 A
6098163 Guttag et al. Aug 2000 A
6107820 Jefferson et al. Aug 2000 A
6107821 Kelem et al. Aug 2000 A
6107824 Reddy et al. Aug 2000 A
6130554 Kolze et al. Oct 2000 A
6140839 Kaviani et al. Oct 2000 A
6144980 Oberman Nov 2000 A
6154049 New Nov 2000 A
6157210 Zaveri et al. Dec 2000 A
6163788 Chen et al. Dec 2000 A
6167415 Fischer et al. Dec 2000 A
6175849 Smith Jan 2001 B1
6215326 Jefferson et al. Apr 2001 B1
6226735 Mirsky May 2001 B1
6242947 Trimberger Jun 2001 B1
6243729 Staszewski Jun 2001 B1
6246258 Lesea Jun 2001 B1
6260053 Maulik et al. Jul 2001 B1
6279021 Takano et al. Aug 2001 B1
6286024 Yano et al. Sep 2001 B1
6314442 Suzuki Nov 2001 B1
6314551 Borland Nov 2001 B1
6321246 Page et al. Nov 2001 B1
6323680 Pedersen et al. Nov 2001 B1
6327605 Arakawa et al. Dec 2001 B2
6351142 Abbott Feb 2002 B1
6353843 Chehrazi et al. Mar 2002 B1
6359468 Park et al. Mar 2002 B1
6360240 Takano et al. Mar 2002 B1
6362650 New et al. Mar 2002 B1
6366944 Hossain et al. Apr 2002 B1
6367003 Davis Apr 2002 B1
6369610 Cheung et al. Apr 2002 B1
6377970 Abdallah et al. Apr 2002 B1
6407576 Ngai et al. Jun 2002 B1
6407694 Cox et al. Jun 2002 B1
6427157 Webb Jul 2002 B1
6434587 Liao et al. Aug 2002 B1
6438569 Abbott Aug 2002 B1
6438570 Miller Aug 2002 B1
6446107 Knowles Sep 2002 B1
6453382 Heile Sep 2002 B1
6467017 Ngai et al. Oct 2002 B1
6480980 Koe Nov 2002 B2
6483343 Faith et al. Nov 2002 B1
6487575 Oberman Nov 2002 B1
6523055 Yu et al. Feb 2003 B1
6523057 Savo et al. Feb 2003 B1
6531888 Abbott Mar 2003 B2
6538470 Langhammer et al. Mar 2003 B1
6542000 Black et al. Apr 2003 B1
6556044 Langhammer et al. Apr 2003 B2
6557092 Callen Apr 2003 B1
6571268 Giacalone et al. May 2003 B1
6573749 New et al. Jun 2003 B2
6574762 Karimi et al. Jun 2003 B1
6591283 Conway et al. Jul 2003 B1
6591357 Mirsky Jul 2003 B2
6600495 Boland et al. Jul 2003 B1
6600788 Dick et al. Jul 2003 B1
6628140 Langhammer et al. Sep 2003 B2
6687722 Larsson et al. Feb 2004 B1
6692534 Wang et al. Feb 2004 B1
6700581 Baldwin et al. Mar 2004 B2
6725441 Keller et al. Apr 2004 B1
6728901 Rajski et al. Apr 2004 B1
6731133 Feng et al. May 2004 B1
6732134 Rosenberg et al. May 2004 B1
6744278 Liu et al. Jun 2004 B1
6745254 Boggs et al. Jun 2004 B2
6763367 Kwon et al. Jul 2004 B2
6771094 Langhammer et al. Aug 2004 B1
6774669 Liu et al. Aug 2004 B1
6781408 Langhammer Aug 2004 B1
6781410 Pani et al. Aug 2004 B2
6788104 Singh et al. Sep 2004 B2
6801924 Green et al. Oct 2004 B1
6801925 Green et al. Oct 2004 B2
6836839 Master et al. Dec 2004 B2
6874079 Hogenauer Mar 2005 B2
6889238 Johnson May 2005 B2
6904471 Boggs et al. Jun 2005 B2
6924663 Masui et al. Aug 2005 B2
6963890 Dutta et al. Nov 2005 B2
6971083 Farrugia et al. Nov 2005 B1
6978287 Langhammer Dec 2005 B1
6983300 Ferroussat Jan 2006 B2
7020673 Ozawa Mar 2006 B2
7047272 Giacalone et al. May 2006 B2
7062526 Hoyle Jun 2006 B1
7093204 Oktem et al. Aug 2006 B2
7107305 Deng et al. Sep 2006 B2
7113969 Green et al. Sep 2006 B1
7181484 Stribaek et al. Feb 2007 B2
7200631 Mailaender et al. Apr 2007 B2
7313585 Winterrowd Dec 2007 B2
7395298 Debes et al. Jul 2008 B2
7401109 Koc et al. Jul 2008 B2
7409417 Lou Aug 2008 B2
7415542 Hennedy et al. Aug 2008 B2
7421465 Rarick et al. Sep 2008 B1
7428565 Fujimori Sep 2008 B2
7428566 Siu et al. Sep 2008 B2
7430578 Debes et al. Sep 2008 B2
7430656 Sperber et al. Sep 2008 B2
7447310 Koc et al. Nov 2008 B2
7472155 Simkins et al. Dec 2008 B2
7508936 Eberle et al. Mar 2009 B2
7536430 Guevokian et al. May 2009 B2
7567997 Simkins et al. Jul 2009 B2
7590676 Langhammer Sep 2009 B1
7646430 Brown Elliott et al. Jan 2010 B2
7668896 Lutz et al. Feb 2010 B2
7719446 Rosenthal et al. May 2010 B2
7769797 Cho et al. Aug 2010 B2
7930335 Gura Apr 2011 B2
7930336 Langhammer Apr 2011 B2
7974997 Arviv et al. Jul 2011 B2
20010023425 Oberman et al. Sep 2001 A1
20010029515 Mirsky Oct 2001 A1
20010037352 Hong Nov 2001 A1
20020002573 Landers et al. Jan 2002 A1
20020038324 Page et al. Mar 2002 A1
20020049798 Wang et al. Apr 2002 A1
20020078114 Wang et al. Jun 2002 A1
20020089348 Langhammer Jul 2002 A1
20020116434 Nancekievill Aug 2002 A1
20030088757 Lindner et al. May 2003 A1
20040064770 Xin Apr 2004 A1
20040083412 Corbin et al. Apr 2004 A1
20040103133 Gurney May 2004 A1
20040122882 Zakharov et al. Jun 2004 A1
20040148321 Guevorkian et al. Jul 2004 A1
20040172439 Lin Sep 2004 A1
20040178818 Crotty et al. Sep 2004 A1
20040193981 Clark et al. Sep 2004 A1
20040267857 Abel et al. Dec 2004 A1
20040267863 Bhushan et al. Dec 2004 A1
20050038842 Stoye Feb 2005 A1
20050144212 Simkins et al. Jun 2005 A1
20050144215 Simkins et al. Jun 2005 A1
20050144216 Simkins et al. Jun 2005 A1
20050166038 Wang et al. Jul 2005 A1
20050187997 Zheng et al. Aug 2005 A1
20050187999 Zheng et al. Aug 2005 A1
20050262175 Iino et al. Nov 2005 A1
20060020655 Lin Jan 2006 A1
20070083585 St. Denis et al. Apr 2007 A1
20070185951 Lee et al. Aug 2007 A1
20070185952 Langhammer et al. Aug 2007 A1
20070226287 Lin et al. Sep 2007 A1
20070241773 Hutchings et al. Oct 2007 A1
20080133627 Langhammer et al. Jun 2008 A1
20080183783 Tubbs Jul 2008 A1
20090028455 Nakamura et al. Jan 2009 A1
20090172052 DeLaquil et al. Jul 2009 A1
20090187615 Abe et al. Jul 2009 A1
20090300088 Michaels et al. Dec 2009 A1
20100098189 Oketani Apr 2010 A1
20120113133 Shpigelblat May 2012 A1
20120191967 Lin et al. Jul 2012 A1
Foreign Referenced Citations (45)
Number Date Country
0 158 430 Oct 1985 EP
0 380 456 Aug 1990 EP
0 411 491 Feb 1991 EP
0 461 798 Dec 1991 EP
0 498 066 Aug 1992 EP
0 555 092 Aug 1993 EP
0 606 653 Jul 1994 EP
0 657 803 Jun 1995 EP
0 660 227 Jun 1995 EP
0 668 659 Aug 1995 EP
0 721 159 Jul 1996 EP
0 905 906 Mar 1999 EP
0 909 028 Apr 1999 EP
0 927 393 Jul 1999 EP
0 992 885 Apr 2000 EP
1 031 934 Aug 2000 EP
1 058 185 Dec 2000 EP
1 220 108 Jul 2002 EP
2 283 602 May 1995 GB
2 286 737 Aug 1995 GB
2 318 198 Apr 1998 GB
61-237133 Oct 1986 JP
63-216131 Aug 1988 JP
4-332036 Nov 1992 JP
5-134851 Jun 1993 JP
06-187129 Jul 1994 JP
7-135447 May 1995 JP
11-296345 Oct 1999 JP
2000-259394 Sep 2000 JP
2002-108606 Apr 2002 JP
2002-251281 Sep 2002 JP
WO95-27243 Oct 1995 WO
WO96-28774 Sep 1996 WO
WO97-08606 Mar 1997 WO
WO98-12629 Mar 1998 WO
WO98-32071 Jul 1998 WO
WO98-38741 Sep 1998 WO
WO99-22292 May 1999 WO
WO99-31574 Jun 1999 WO
WO99-56394 Nov 1999 WO
WO00-51239 Aug 2000 WO
WO00-52824 Sep 2000 WO
WO01-13562 Feb 2001 WO
WO 2005066832 Jul 2005 WO
WO2005-101190 Oct 2005 WO
Non-Patent Literature Citations (75)
Entry
Altera Corporation, “Stratix II Device Handbook, Chapter 6—DSP Blocks in Stratix II Devices,” v1.1, Jul. 2004.
Xilinx Inc., “Complex Multiplier v2.0”, DS291 Product Specification/Datasheet, Nov. 2004.
Haynes, S.D., et al., “Configurable multiplier blocks for embedding in FPGAs,” Electronics Letters, vol. 34, No. 7, pp. 638-639 (Apr. 2, 1998).
Altera Corporation, “FIR Compiler: MegaCore® Function User Guide,” version 3.3.0, rev. 1, pp. 3 11 through 3 15 (Oct. 2005).
Govindu, G. et al., “A Library of Parameterizable Floating-Point Cores for FPGAs and Their Application to Scientific Computing,” Proc Int'l Conf. Eng. Reconfigurable Systems and Algorithms (ERSA'05), Jun. 2005.
Govindu, G. et al., “Analysis of High-performance Floating-point Arithmetic on FPGAs,” Proceedings of the 18th International Parallel and Distributed Processing Symposium (PDPS'04), pp. 149-156, Apr. 2004.
Nakasato, N., et al., “Acceleration of Hydrosynamical Simulations using a FPGA board”, The Institute of Electronics Information and Communication Technical Report CPSY2005-47, vol. 105, No. 515, Jan. 17, 2006.
Osana, Y., et al., “Hardware-resource Utilization Analysis on an FPGA-Based Biochemical Simulator ReCSiP”, The Institute of Electronics Information and Communication Technical Report CPSY2005-63, vol. 105, No. 516, Jan. 18, 2006.
Vladimirova, T. et al., “Floating-Point Mathematical Co-Processor for a Single-Chip On-Board Computer,” MAPLD'03 Conference, D5, Sep. 2003.
Altera Corporation, “Digital Signal Processing (DSP),” Stratix Device Handbook, vol. 2, Chapter 6 and Chapter 7, v1.1 (Sep. 2004).
Altera Corporation, “DSP Blocks in Stratix II and Stratix II GX Devices,” Stratix II Device Handbook, vol. 2, Chapter 6, v4.0 (Oct. 2005).
Amos, D., “PLD architectures match DSP algorithms,” Electronic Product Design, vol. 17, No. 7, Jul. 1996, pp. 30, 32.
Analog Devices, Inc., The Applications Engineering Staff of Analog Devices, DSP Division, Digital Signal Processing Applications Using the ADSP-2100 Family (edited by Amy Mar), 1990, pp. 141-192).
Andrejas, J., et al., “Reusable DSP functions in FPGAs,” Field-Programmable Logic and Applications. Roadmap to Reconfiourable Computing. 10th International Conference, FPL 2000. Proceedings (Lecture Notes in Computer Science vol. 1896), Aug. 27-30, 2000, pp. 456-461.
Aoki, T., “Signed-weight arithmetic and its application to a field-programmable digital filter architecture,” IEICE Transactions on Electronics , 1999 , vol. E82C, No. 9, Sep. 1999, pp. 1687-1698.
Ashour, M.A., et al., “An FPGA implementation guide for some different types of serial-parallel multiplier-structures,” Microelectronics Journal , vol. 31, No. 3, 2000, pp. 161-168.
Berg, B.L., et al.“Designing Power and Area Efficient Multistage FIR Decimators with Economical Low Order Filters,” ChipCenter Technical Note, Dec. 2001.
Bursky, D., “Programmable Logic Challenges Traditional ASIC SoC Designs”, Electronic Design, Apr. 15, 2002.
Chhabra, A. et al., Texas Instruments Inc., “A Block Floating Point Implementation on the TMS320C54x DSP”, Application Report SPRA610, Dec. 1999, pp. 1-10.
Colet, p., “When DSPs and FPGAs meet: Optimizing image processing architectures,” Advanced Imaging, vol. 12, No. 9, Sep. 1997, pp. 14, 16, 18.
Crookes, D., et al., “Design and implementation of a high level programming environment for FPGA-based image processing,” IEE Proceedings—Vision, Image and Signal Processing, vol. 147, No. 4, Aug. 2000, pp. 377-384.
Debowski, L., et al., “A new flexible architecture of digital control systems based on DSP and complex CPLD technology for power conversion applications,” PCIM 2000: Europe Official Proceedings of the Thirty-Seventh International Intelligent Motion Conference, Jun. 6-8, 2000, pp. 281-286.
Dick, C., et al., “Configurable logic for digital communications: some signal processing perspectives,” IEEE Communications Magazine, vol. 37, No. 8, Aug. 1999, pp. 107-111.
Do, T.-T., et al., “A flexible implementation of high-performance FIR filters on Xilinx FPGAs,” Field-Programmable Logic and Applications: From FPGAs to Computing Paradigm. 8th International Workshop, FPL'98. Proceedings, Hartenstein, R.W., et al., eds., Aug. 31-Sep. 3, 1998, pp. 441-445.
Gaffer, A.A., et al., “Floating-Point Bitwidth Analysis via Automatic Differentiation,” IEEE Conference on Field Programmable Technology, Hong Kong, Dec. 2002.
Guccione, S.A.,“Run-time Reconfiguration at Xilinx,” Parallel and distributed processing: 15 IPDPS 2000 workshops, Rolim, J., ed., May 1-5, 2000, p. 873.
Hauck, S., “The Future of Reconfigurable Systems,” Keynote Address, 5th Canadian Conference on Field Programmable Devices, Jun. 1998, http:--www.ee.washington.edu-people-faculty-hauck-publications-ReconfigFuture.PDF.
Heysters, P.M., et al., “Mapping of DSP algorithms on field programmable function arrays,” Field-Programmable Logic and Applications. Roadmap to Reconfigurable Computing. 10th International Conference, FPL 2000. Proceedings (Lecture Notes in Computer Science vol. 1896), Aug. 27-30, 2000, pp. 400-411.
Huang, J., et al., “Simulated Performance of 1000BASE-T Receiver with Different Analog Front End Designs,” Proceedings of the 35th Asilomar Conference on Signals, Systems, and Computers, Nov. 4-7, 2001.
Lattice Semiconductor Corp, ORCA® FPGA Express™ Interface Manual: ispLEVER® Version 3.0, 2002.
Lucent Technologies, Microelectronics Group,“Implementing and Optimizing Multipliers in ORCA™ FPGAs,”, Application Note.AP97-008FGPA, Feb. 1997.
“Implementing Multipliers in FLEX 10K EABs”, Altera, Mar. 1996.
“Implementing Logic with the Embedded Array in FLEX 10K Devices”, Altera, May 2001, ver. 2.1.
Jinghua Li, “Design a pocket multi-bit multiplier in FPGA,” 1996 2nd International Conference on ASIC Proceedings (IEEE Cat. No. 96TH8140), Oct. 21-24, 1996, pp. 275-279.
Jones, G., “Field-programmable digital signal conditioning,” Electronic Product Design, vol. 21, No. 6, Jun. 2000, pp. C36-C38.
Kiefer, R., et al., “Performance comparison of software-FPGA hardware partitions for a DSP application,” 14th Australian Microelectronics Conference. Microelectronics: Technology Today for the Future. MICRO '97 Proceedings, Sep. 28-Oct. 1, 1997, pp. 88-93.
Kramberger, I., “DSP acceleration using a reconfigurable FPGA,” ISIE '99. Proceedings of the IEEE International Symposium on Industrial Electronics (Cat. No. 99TH8465), vol. 3 , Jul. 12-16, 1999, pp. 1522-1525.
Langhammer, M., “How to implement DSP in programmable logic,” Elettronica Oggi, No. 266 , Dec. 1998, pp. 113-115.
Langhammer, M., “Implementing a DSP in Programmable Logic,” Online EE Times, May 1998, http:--www.eetimes.com-editorial-1998-coverstory9805.html.
Lazaravich, B.V., “Function block oriented field programmable logic arrays,” Motorola, Inc. Technical Developments, vol. 18, Mar. 1993, pp. 10-11.
Lund, D., et al., “A new development system for reconfigurable digital signal processing,” First International Conference on 3G Mobile Communication Technologies (Conf. Publ. No. 471), Mar. 27-29, 2000, pp. 306-310.
Miller, N.L., et al., “Reconfigurable integrated circuit for high performance computer arithmetic,” Proceedings of the 1998 IEE Colloquium on Evolvable Hardware Systems (Digest), No. 233, 1998, pp. 2-1-2-4.
Mintzer, L., “Xilinx FPGA as an FFT processor,” Electronic Engineering, vol. 69, No. 845, May 1997, pp. 81, 82, 84.
Faura et al., “A Novel Mixed Signal Programmable Device With On-Chip Microprocessor,” Custom Integrated Circuits Conference, 1997. Proceedings of the IEEE 1997 Santa Clara, CA, USA, May 5, 1997, pp. 103-106.
Nozal, L., et al., “A new vision system: programmable logic devices and digital signal processor architecture (PLD+DSP),” Proceedings IECON '91. 1991 International Conference on Industrial Electronics, Control and Instrumentation (Cat. No. 91CH2976-9), vol. 3, Oct. 28-Nov. 1, 1991, pp. 2014-2018.
Papenfuss, J.R, et al., “Implementation of a real-time, frequency selective, RF channel simulator using a hybrid DSP-FPGA architecture,” RAWCON 2000: 2000 IEEE Radio and Wireless Conference (Cat. No. 00EX404), Sep. 10-13, 2000, pp. 135-138.
Parhami, B., “Configurable arithmetic arrays with data-driven control,” 34th Asilomar Conference on Signals, Systems and Computers, vol. 1, 2000, pp. 89-93.
“The QuickDSP Design Guide”, Quicklogic, Aug. 2001, revision B.
“QuickDSP™ Family Data Sheet”, Quicklogic, Aug. 7, 2001, revision B.
Rangasayee, K., “Complex PLDs let you produce efficient arithmetic designs,” EDN (European Edition), vol. 41, No. 13, Jun. 20, 1996, pp. 109, 110, 112, 114, 116.
Rosado, A., et al., “A high-speed multiplier coprocessor unit based on FPGA,” Journal of Electrical Engineering, vol. 48, No. 11-12, 1997, pp. 298-302.
Santillan-Q., G.F., et al., “Real-time integer convolution implemented using systolic arrays and a digit-serial architecture in complex programmable logic devices,” Proceedings of the Third International Workshop on Design of Mixed-Mode Integrated Circuits and Applications (Cat. No. 99EX303), Jul. 26-28, 1999, pp. 147-150.
Texas Instruments Inc., “TMS320C54x DSP Reference Set, vol. 1: CPU and Peripherals”, Literature No. SPRU131F, Apr. 1999, pp. 2-1 through 2-16 and 4-1 through 4-29.
Tisserand, A., et al., “An on-line arithmetic based FPGA for low power custom computing,” Field Programmable Logic and Applications, 9th International Workshop, FPL'99, Proceedings (Lecture Notes in Computer Science vol. 1673), Lysaght, P., et al., eds., Aug. 30-Sep. 1, 1999, pp. 264-273.
Tralka, C., “Symbiosis of DSP and PLD,” Elektronik, vol. 49, No. 14 , Jul. 11, 2000, pp. 84-96.
Underwood, K. “FPGAs vs. CPUs: Trends in Peak Floating-Point Performance,” Proceedings of the 2004 ACM-SIGDA 12th International Symposium on Field Programmable Gate Arrays, pp. 171-180, Feb. 22-24, 2004.
Valls, J., et al., “A Study About FPGA-Based Digital Filters,” Signal Processing Systems, 1998, SIPS 98, 1998 IEEE Workshop, Oct. 10, 1998, pp. 192-201.
“Virtex-II 1.5V Field-Programmable Gate Arrays”, Xilinx, Jan. 25, 2001, module 2 of 4.
“Virtex-II 1.5V Field-Programmable Gate Arrays”, Xilinx, Apr. 2, 2001, module 1 of 4.
“Virtex-II 1.5V Field-Programmable Gate Arrays”, Xilinx, Apr. 2, 2001, module 2 of 4.
Walters, A.L., “A Scaleable FIR Filter Implementation Using 32-bit Floating-Point Complex Arithmetic on ,a FPGA Based Custom Computing Platform,” Allison L. Walters, Thesis Submitted to the Faculty of Virginia Polytechnic Institute and State University, Jan. 30, 1998.
Weisstein, E.W., “Karatsuba Multiplication,” MathWorld—A Wolfram Web Resource (Dec. 9, 2007), accessed Dec. 11, 2007 at http:--mathworld.wolfram.com-KaratsubaMultiplication.html.
Wenzel, L., “Field programmable gate arrays (FPGAs) to replace digital signal processor integrated circuits,” Elektronik , vol. 49, No. 5, Mar. 7, 2000, pp. 78-86.
“Xilinx Unveils New FPGA Architecture to Enable High-Performance, 10 Million System Gate Designs”, Xilinx, Jun. 22, 2000.
“Xilinx Announces DSP Algorithms, Tools and Features for Virtex-II Architecture”, Xilinx, Nov. 21, 2000.
Xilinx Inc., “Virtex-II 1.5V Field-Programmable Gate Arrays”, Advance Product Specification, DS031-2 (v1.9), Nov. 29, 2001, Module 2 of 4, pp. 1-39.
Xilinx Inc., “Using Embedded Multipliers”, Virtex-II Platform FPGA Handbook, UG002 (v1.3), Dec. 3, 2001, pp. 251-257.
Xilinx, Inc., “A 1D Systolic FIR,” copyright 1994-2002, downloaded from http:--www.iro.umontreal.ca-˜aboulham-F6221-Xilinx%20A%201D%20systolic%20FIR.htm.
Xilinx, Inc., “The Future of FPGA's,” White Paper, available Nov. 14, 2005 for download from http:--www.xilinx.com-prs—rls,5yrwhite.htm.
Xilinx Inc., “XtremeDSP Design Considerations User Guide,” v 1.2, Feb. 4, 2005.
Kim, Y., et al., “Fast GPU Implementation for the Solution of Tridiagonal Matrix Systems,” Journal of Korean Institute of Information Scientists and Engineers, vol. 32, No. 12, pp. 692-704, Dec. 2005.
Altera Corporation, “Advanced Synthesis Cookbook: A Design Guide for Stratix II, Stratix III and Stratix IV Devices,” Document Version 3.0, 112 pgs., May 2008.
deDinechin, F. et al., “Large multipliers with less DSP blocks,” retrieved from http://hal-ens-lyon.archives-ouvertes.fr/ensl-00356421/en/, 9 pgs., available online Jan. 2009.
Wajih, E.-H.Y. et al., “Efficient Hardware Architecture of Recursive Karatsuba-Ofman Multiplier,” 3rd International Conference on Design and Technology of Integrated Systems in Nanoscale Era, 6 pgs, Mar. 2008.
Zhou, G. et al., “Efficient and High-Throughput Implementations of AES-GCM on FPGAs,” International Conference on Field-Programmable Technology, 8 pgs., Dec. 2007.
Related Publications (1)
Number Date Country
20110238720 A1 Sep 2011 US