The present invention generally relates to a sootblower device for cleaning internal surfaces of large-scale combustion devices such as utility or industrial boilers. More particularly, the present invention is directed to a short travel, retracting rotary type sootblower, which provides indexing between the position of its discharge nozzle between the start of cleaning cycles to reduce thermal stresses placed on internal components of the combustion device.
To optimize the thermal efficiency of large scale fossil fuel burning heat exchangers or boilers, it is necessary to periodically remove deposits such as soot, slag and fly ash from their interior heat exchanging surfaces. Typically, a number and types of cleaning devices known as sootblowers are mounted to the exterior of the boiler. Periodically they are inserted into the boiler through cleaning ports located in the boiler wall. Positioned on the forward end of the screw tubes or screw tubes assemblies are one or more cleaning nozzles. The nozzles discharge a pressurized fluid cleaning medium, such as air, water, or steam. The high pressure cleaning medium causes deposits of soot, slag, and fly ash to be dislodged from the internal structures of the boiler.
One type of sootblower is known as a short travel retracting rotary type. This type has a screw tube assembly which is inserted into the boiler, and once it reaches its fully extended position, cleaning medium is discharged from the nozzle as it is rotated through a partial arc, full rotation, or multiple full rotations as desired for wall cleaning. The sootblower medium discharged from the nozzle provides the cleaning effect mentioned previously. One very widely utilized design of the above-mentioned sootblower type is manufactured by the assignee of the present invention and is known as a Diamond Power “IR-3Z”™ sootblower device. These devices have operated in a highly reliable and effective manner around the world for many years.
One disadvantage of many sootblower designs is the erosion and thermal stresses caused to internal components of the boiler when their cleaning cycle operates in the same repeated manner during each operation. For the sootblower of the type mentioned previously, once the screw tube assembly is advanced and reaches its fully extended position, the nozzle begins to discharge cleaning medium and rotates through a specified arc or number of revolutions. At the conclusion of the cleaning cycle, the nozzle reaches its set rotational indexed position, at which point the screw tube assembly is retracted. The next operating cycle retraces the path of the prior cycles. When steam is used as a sootblowing medium, steam in the supply circuit piping may condense into liquid water between operating cycles. When the steam valve is opened to cause the steam sootblowing medium to flow through the sootblower at the beginning of a cleaning cycle, an initial pulse of condensate is ejected from the sootblower nozzle. Thereafter, high pressure steam flows through the nozzle until the cleaning medium valve is again shut-off. The initial ejection of the condensate has an undesirable consequence of placing erosion and thermal stresses on the internal components which impacts it. The heat transfer surfaces can tolerate condensate, but when numerous cycles occur in which the same surfaces are repeatedly impacted by condensate, failures of the internal heat transfer components can occur. Accordingly, in many applications it is desirable to index the position at which the sootblower nozzle begins its cleaning cycle so that the same internal surfaces are not struck by condensate at the start of each operating cycle.
Numerous approaches toward providing sootblower nozzle indexing are known. For example, in long retracting sootblowers which discharge cleaning medium as a lance tube is extended and retracted, the cleaning medium path can be displaced between operating cycles. An approach implemented by the assignee of this invention for indexing long retracting sootblowers uses a drive rack for a gear driven type long retracting sootblower which features a mechanism for indexing the phasing of gear drive between operating cycles. This approach is described in the assignee's U.S. Pat. No. 4,803,959. Other types of indexing mechanisms are known, for example, some use gear drives having ratcheting indexing components.
While many approaches toward providing indexing of sootblower operating cycles are known, these strategies are not adaptable for modification to existing short travel retracting rotary sootblowers.
In accordance with the present invention, these inventors have found that modifications of the existing IR-3Z™ sootblower components coupled with modifications of the control schedule of the device provide the desirable indexing feature. By preferably providing at least four different rotated start positions for the sootblowing start cycle, the erosion effects of condensate ejection can be distributed over multiple internal surfaces, reducing the likelihood of boiler component damage. The principles of this invention may be implemented as a modification to existing sootblowers or in newly constructed sootblower assemblies.
Additional benefits and advantages of the present invention will become apparent to those skilled in the art to which the present invention relates from the subsequent description of the preferred embodiment and the appended claims, taken in conjunction with the accompanying drawings.
a is an enlargement of a portion of the short retracting rotary sootblower as shown in
a and 5b illustrate cam plates for sootblowers in accordance with the prior art of the type shown in
a and 6b illustrate a cam plate for a sootblower in accordance with the present invention; and
a and 7b illustrate the cam plate in accordance with this invention as it interacts with other elements of a short travel rotary sootblower assembly.
Sootblower 10 is mounted to the boiler wall 15 (shown in
Drive motor 26 powers sootblower 10 through a gear reducer 28. Rotation of drive motor 26 is converted to rotation of gear shaft 30 which in turn rotates drive pinion gear 32. Drive pinion gear 32 meshes with hub gear 34 mounted to hub 38. Screw tube 42 passes through hub gear 34 and hub 38. Pins 36 extend inwardly from hub 38 and engage with the helical grooves 40 formed on the outside surface of screw tube 42. Screw tube 42 is attached to nozzle extension 20.
Cam plate 44 shown by
The extension and retraction movement of screw tube assembly 18 is started by a control command through electric control assembly 53 which activates drive motor 26. Rotation of motor 26 rotates drive pinion gear 32 and hub gear 34. This rotation causes pins 36, which engage with helical grooves 40, to cause screw tube 42 to move from the retracted position shown in
When screw tube assembly 18 reaches its fully extended position and nozzle 24 is rotated through the desired partial rotation arc or number of rotations, drive motor 26 is stopped based on a control input from a timer circuit in electric control assembly 53 and then commanded through the electric control assembly to reverse its rotation. Such reversal allows front pawl 54 to engage with cam plate notch 46 and position it properly to cause it to reengage with guide bar end 52 in the retraction movement. Continued reverse rotation of the motor 26 causes screw tube assembly 18 to return to its fully retracted, parked position, shown in
The flow of blowing medium is controlled by mechanically operated valve 19 shown as a poppet type valve. A supply of steam or air or other blowing fluid medium is connected with poppet valve 19 at flange 56 and it is opened to an “on” position and closed to an “off” position by motion of valve trigger 60. Valve trigger 60 is in the shape of a caliper arm and includes an inwardly directed tooth 62. When poppet valve 19 is opened, steam flows through gooseneck assembly 13, into feed tube 14, through nozzle extension 20, and out of nozzle 24.
Cam plate 44 of convention design is best shown with reference to
It is noted that cam plates 44 and 44a may be formed as one-piece articles, or in arc segments as they are illustrated. Multipiece construction provide ease of assembly since a one-piece ring shaped cam plate would need to be inserted over nozzle extension 20, whereas the separate segments can be bolted to hub 35 with the screw tube assembly 18 in its retracted position.
Since the cam plate notch 46 needs to engage and reengage with guide bar 48 at the beginning and end of each operating cycle, the start and stop position of the lance tube nozzle 24 and the position at which cleaning medium discharge occurs, is fixed between operating cycles in the illustrated prior art sootblower 10 described previously.
The above description describes sootblower 10 in accordance with prior art known features. Sootblower 10 modified in accordance with the present invention utilizes cam plate 74 illustrated in
In operation, cam plate 74 is positioned in its beginning park position with one of notches 78a, 78b, 78c, and 78d engaged with guide bar 48. Drive motor 26 is actuated to cause cam plate 74 to advance along guide bar 48 as screw tube assembly 18 is being extended into the boiler. When cam plate 74 escapes from engagement with guide bar 48 near its fully extended position, cam plate 74, and consequently screw tube assembly 18, are caused to rotate. Valve trigger 60 engages with recesses 82a-d as the cam plate is rotated. Drive motor 26 is actuated over a time period established by a timer unit within electric controller assembly 53. When the rotation of nozzle extension 20 occurs through a desired arc (or full rotations), drive motor 26 is caused to be deenergized to stop the rotation when cam plate 74 is at some angular position displaced from that of the first notch 78a (or another notch engaged in the preceding cycle). Since the forward/reverse motion is based on a timer control, the timer is set to cause cam plate 74 to overshoot the desired parked position slightly. The motor 76 is reversed to position the cam plate 74 (as explained in more detail below) and is stopped in its rotation so that another one of notches 78b, 78c, or 78d is positioned to engage with guide bar 48. Once the desired position is achieved, the drive motor 26 causes the cam plate 74, at one of notches 78a through 78d to reengage with the guide bar 48. In successive operating cycles, drive motor 26 is energized through a predetermined time period which causes rotation again to a position just past that corresponding with the notch 78a through 78d displaced from the immediately preceding cycle. At full retraction, drive motor 26 is deenergized by activation of limit switch 55.
It is necessary for the flow of steam through sootblower 10 to be stopped when cam plate 74 is at a “start” position at which one of notches 78a, 78b, 78c, or 78d is positioned to engage with guide bar end 52. Accordingly, cam tubular sections 72a-d have recesses 82a-d equal in number to those of notches 78a-d.
a and 7b illustrate the interaction between valve trigger 60 and tubular sections 72a-d. As shown in
Cam plate 74 is illustrated in
As is the prior art cam plate 44, cam plate 74 may be made in a one piece or multipiece construction as illustrated by the figures.
While the above description constitutes the preferred embodiment of the present invention, it will be appreciated that the invention is susceptible to modification, variation and change without departing from the proper scope and fair meaning of the accompanying claims.
Number | Name | Date | Kind |
---|---|---|---|
2442045 | Howse | May 1948 | A |
4177539 | Elting | Dec 1979 | A |
4209028 | Shenker | Jun 1980 | A |
4218016 | Freund | Aug 1980 | A |
4229854 | Johnston et al. | Oct 1980 | A |
4248180 | Sullivan et al. | Feb 1981 | A |
4351082 | Ackerman et al. | Sep 1982 | A |
4359800 | Ziels | Nov 1982 | A |
4360945 | Ackerman et al. | Nov 1982 | A |
4375710 | Hammond | Mar 1983 | A |
4422882 | Nelson et al. | Dec 1983 | A |
4492187 | Hammond | Jan 1985 | A |
4503811 | Hammond | Mar 1985 | A |
4565324 | Rebula et al. | Jan 1986 | A |
4567622 | Ziels | Feb 1986 | A |
RE32517 | Nelson | Oct 1987 | E |
4803959 | Sherrick et al. | Feb 1989 | A |
5048636 | Roehrs | Sep 1991 | A |
5065472 | Carpenter et al. | Nov 1991 | A |
5090087 | Hipple et al. | Feb 1992 | A |
5135198 | Freund et al. | Aug 1992 | A |
5167307 | Purcell et al. | Dec 1992 | A |
5320073 | Silcott et al. | Jun 1994 | A |
5337438 | Brown et al. | Aug 1994 | A |
5416946 | Brown et al. | May 1995 | A |
5437295 | Brown et al. | Aug 1995 | A |
5509607 | Booher et al. | Apr 1996 | A |
5619771 | Minic | Apr 1997 | A |
5675863 | Holden et al. | Oct 1997 | A |
6575122 | Hipple | Jun 2003 | B2 |