This application claims foreign priority to FR 2005817, filed Jun. 3, 2020, the contents of which are incorporated by reference herein in its entirety.
The present disclosure relates to the field of alarm systems.
It is known practice to provide an alarm system, for example installed in the premises of a building, and typically comprising:
This event can be a starting of a fire, or even smoke, or, alternatively, even an open window or door, or even an intrusion, or the like.
The alarm signal emitters can for example be loudspeakers emitting a sound signal such as an alarm siren. Alternatively (or in addition), the alarm signal emitters can comprise lamps for emitting light flashes, or the like.
The detectors and the emitters are linked to one another, for example by wired links, often to a central supervisory unit.
Upon an intervention from fire fighters, in the presence of smoke during a fire in particular, the blind guiding of the fire fighters is a brake to the speed and the effectiveness of the intervention, all the more so as the fire fighters do not necessarily know the premises.
Furthermore, the evacuation of the occupants, aggravated by the simultaneous howling of the sirens in all directions, is disturbed by the lack of markers, with the risk of approaching the fire instead of moving away from it.
Moreover, during exercises, for example biannual, in fire evacuations, the people responsible for organizing the evacuees remain longer than the others in proximity to the sirens whose sound level is close to the pain threshold, possibly resulting in auditory damage and tinnitus.
In a conventional alarm system, of the abovementioned type, the detectors and the emitters are connected to a central supervisory system and have no direct interaction with one another.
The detection function is distinct from the generation of the alarm signals (sirens for sound signals). The management of the sirens is entrusted to the central supervisory system. The sirens in the same overall zone howl at the same time and at the same maximum sound level.
While the central supervisory system indicates which detector has triggered the alarm, the location thereof is not necessarily specific for the responders who have to precisely locate the alarm initiation in the zone on a plan. In the presence of smoke, the visual location on a plan, already the source of delay in normal times, becomes inoperative.
The present disclosure enhances the situation.
A method for managing an alarm system is proposed, the alarm system comprising:
In particular, each of the emitters is configured to emit a plurality of distinct alarm signals, and the method can comprise at least the steps of:
Thus, the successive modifications of identifiers spread out step-by-step to the emitters of the system to activate these emitters with distinct respective alarm signals, which makes it possible to guide responders to the emitter which is emitting the first alarm signal specific to the starting of the fire, for example in the case where the event to be detected is a fire. In this case, the first emitter is preferentially located in the environment of the first detector.
Moreover, in practice, both (emitter and detector) can be produced in the same housing, for example. More generally, each detector of the system can be installed in the same housing with an emitter of the system and linked to this emitter, for example by a wired link.
In one possible embodiment, the steps b) and c) can be reversed as presented later in an embodiment.
The abovementioned modification of the identifier can be, for example, an incrementation of an index representing this identifier, such as an incrementation of a token, for example in a peer-to-peer telecommunication data transmission. As a variant, it can be a modification of an alphanumeric character string (for example AA is modified to AB then to AC, etc.), or the like.
Thus, in one embodiment, it is possible to:
It will thus be understood that it is possible to provide up to N distinct alarm signals (SA1, SA2, SA3, etc.) which are functions of the respective identifiers (I1, I2, I3, etc.) assigned to the emitters, as illustrated in
In one embodiment, these alarm signals can be distinguished by respective modulations chosen to confer on each alarm signal a decreasing energy as a function of a number of successive modifications applied to the first identifier (or a decreasing power, if the abovementioned energy is reduced to a time unit).
An alarm signal can for example consist of a succession of pulses (for example sound beeps), the number of which per unit of time decreases as a function of the successive modifications of the abovementioned first identifier. Thus, in this case where each alarm signal comprises a succession of pulses with a chosen number of pulses per unit of time, the number of pulses per unit of time in an alarm signal decreases as a function of the number of successive modifications applied to the first identifier. In addition or as a variant, it is possible to simply provide a decreasing sound intensity, or a decreasing sound frequency, with the successive modifications of the first identifier.
Thus, each of the emitters is configured to emit a plurality of distinct alarm signals (SA1, SA2, SA3, etc.) and stores these signals in memory matched with respective identifiers (I1, I2, I3, etc.) which can be assigned to it.
In an embodiment in which the alarm system is installed in a building and comprises at least one secondary emitter at the periphery of the building, this secondary emitter can, on the other hand, be activated at least in the step c), to emit an alarm signal of maximum energy out of the alarm signals. Indeed, it is advisable in any case to alert the responders to the place of the building where the event has occurred.
In a first embodiment, the emitters can communicate with one another via a short-range radio frequency link and the step c) precedes the step b). Thus, in the step c), the first emitter emits the first identifier with an alarm generation instruction to one or more emitters within its range, and at least the second emitter, within the radio frequency range of the first emitter, on reception of the alarm generation instruction with the first identifier, modifies the first identifier to produce the second identifier according to the step b). The method can then continue with an emission, by the second emitter, of an alarm generation instruction with the second identifier, to one or more emitters within the range of the second emitter, and so on.
“Short range” is understood here to mean a radio frequency link of Bluetooth, or even Wifi, type, or other such links (Wireless M-Bus, 6LowPAN, ZigBee, etc.), in contrast to radio frequency links of greater range such as LLORA® in particular (or even WiMax, etc.).
This first embodiment allows a variant in as much as one emitter uses an identifier Ij to emit the corresponding alarm signal SAj but then performs the modification of the identifier Ij−>Ij+1 before sending the new identifier Ij+1 to the emitter within its radio frequency range.
Thus, in such a variant, the emitters can communicate with one another via a short-range radio frequency link and the step c) follows the step b), so that, in the step b), the first emitter modifies the first identifier to produce the second identifier, and, in the step c), the first emitter emits the second identifier with an alarm generation instruction to one or more emitters within its range. Next, at least the second emitter, within the radio frequency range of the first emitter, on reception of the alarm generation instruction with the second identifier, emits the second alarm signal which is a function of the second identifier and modifies the second identifier to produce a third identifier. The method can then continue with an emission, by the second emitter, of an alarm generation instruction with the third identifier, to one or more emitters within the range of the second emitter, and so on.
In a second embodiment, the detectors and the emitters are linked to one another via a central unit, storing location data of the detectors and of the emitters in memory, and the central unit:
The present disclosure also targets an alarm system comprising:
The detectors and the emitters are linked to one another.
Each of the emitters is configured to emit a plurality of distinct alarm signals, and:
The present disclosure also targets an emitter of such an alarm system, configured to emit a plurality of distinct alarm signals, this emitter storing data of the alarm signals in memory matched with respective identifiers, to emit a specific alarm signal as a function of a given identifier.
In the abovementioned first embodiment, such an emitter can be able to communicate with the emitters of the system via a short-range radio frequency link, and can be configured to:
The present disclosure also targets a central unit of an alarm system according to the abovementioned second embodiment, wherein the central unit is configured to be linked to the detectors and to the emitters of the system and to store location data of the detectors and of the emitters in memory. The central unit is further configured to:
According to another aspect, a computer program is proposed that comprises instructions for the implementation of the above method, when these instructions are executed by a processor or a processing circuit.
These instructions can be distributed to the emitters in particular and/or to the abovementioned central unit.
According to another aspect, a non-transient storage medium is proposed that can be read by a computer and on which such a program is stored.
Other features, details and advantages will emerge on reading the following detailed description, and on analyzing the attached drawings, in which:
Reference is now made to
In this example, the link between the detector and the emitter can be wired.
Alternatively, the detector DET and the emitter Em can be physically separate. It is however preferable to provide an emitter Em in the detection environment of a detector DET. Thus, when a detector DET detects an event (arrow F) in its environment, an emitter Em, linked (by a wired or radio frequency link) to this detector DET, can emit an alarm signal (arrow SA1 at the output of the housing B1 in the example of
Thus, for example, in
To this end, in a first embodiment, the emitters Em of the housings can be linked by a short-range radio frequency link (for example connected by Bluetooth) and each housing B2, B3 is placed within the radio frequency range of at least one other housing B1, B2. Thus, in this first embodiment, the emitter of the housing B2 receives the identifier I1 of the emitter of the housing B1 by the abovementioned Bluetooth connection.
As a variant, in a second embodiment, all the detectors and emitters are connected (by radio frequency or wired link) to a central supervisory unit UCS which stores the locations of each detector DET and of each emitter Em of the alarm system in memory. Thus, in case of the detection of an event F by a detector DET (of the housing B1 in the example of
In the first embodiment as in the second embodiment, the first identifier I1 is assigned to the emitter Em of the housing B1 comprising the first detector DET which detects the event F. The emitter Em of this housing B1 emits the alarm signal SA1 which can for example take the form of a succession of pulses (
In the first embodiment, the emitter Em of the first housing B1 sends this first identifier I1 to the emitter Em of the housing B2 closest to the housing B1, and this latter emitter Em-B2:
Next, the emitter Em of the housing B2 sends its second identifier I2 to the emitter Em of a third housing B3 closest to the housing B2 (within its Bluetooth range), which emitter Em-B3, in turn:
Thus, it will be understood that the first identifier I1 is dynamic (i.e. it is not assigned definitively to one emitter of one given housing). The identifier I1 is assigned to the emitter associated with the first detector which has detected the event (a starting of a fire for example). A first alarm signal SA1 is then generated. Next, this identifier I1 is modified step-by-step to successively generate alarm signals SA2, SA3, etc. which comprise increasingly fewer pulses per unit of time than the first alarm signal SA1, as illustrated in
There is thus a correlation, as illustrated in
In this exemplary embodiment, each emitter is programmed to receive an identifier Ij−1, modify this received identifier Ij−1 to produce a modified identifier Ij and be assigned this modified identifier Ij to emit a corresponding alarm signal SAj, then to transmit this modified identifier Ij to its nearby emitters. In a variant embodiment, each emitter can be programmed to receive an identifier Ij, produce a corresponding alarm signal SAj and then modify this received identifier Ij to produce a modified identifier Ij+1 to be transmitted to its nearby emitters. Thus, in this variant, each emitter handles the modification of the identifier for a neighboring emitter.
In one or other of these embodiments according to the abovementioned first embodiment, the identifiers are transmitted and modified by the emitters, step-by-step, without a central supervisory unit UCS needing to intervene. It will thus be understood that, in this first embodiment, the optional UCS unit is represented in
In the second embodiment involving a central supervisory unit UCS, the latter assigns the respective identifiers I1, I2, I3 to the emitters of the successive housings B1, B2, B3 as a function of their respective locations, relative first of all to the detector of the housing B1, the first to detect the event F (the associated emitter receiving the identifier I1), then relative to the closest neighbor of the emitter of this housing B1 (the associated emitter Em-B2 receiving the identifier I2), then relative to the closest neighbor of the emitter of the housing B2 (the associated emitter Em-B3 receiving the identifier I3), and so on. Each emitter, receiving its identifier Ij from the UCS unit, is programmed to consult the mapping table that it stores (
A network of housings comprising respective fire detectors are interconnected by short-range radio frequency link and signal proximity to the focus of the fire by modulation of the sirens. Each housing is equipped, for example in addition to its link to a central supervisory unit (optional), with a short-range radio frequency link (for example Bluetooth). The detector of the housing situated in a zone Z0 and close to the flames emits a short-range radio signal corresponding to an identifier bearing a number (for example 0). Here, for example, the abovementioned first identifier I1 is such that I1=0. The nearby housings situated in respective zones Z1, Z2, etc., relay the signal by incrementing the abovementioned number (I2=1, I3=2, etc.). A housing receiving a signal whose number is greater than that which it has itself emitted does not relay the signal to avoid a risk of a feedback loop. In fact, the signal number increases with the distance from the focus of the fire.
With reference to
The howling of the sirens is thus modulated as a function of the number transmitted to the housing closest to the siren. The further the housing is away from the focus of the fire, the more the signal is modulated (insertion of silences, power reduction, or the like).
Each emitter of a housing is equipped with a siren whose signal can be modulated. In fact, only the sirens outside a building, for example, can howl at full power. The sirens inside the building are, on the other hand, modulated as a function of the location of the housing with respect to the start of the fire. Such an embodiment then improves the locating of the focus and reduces the sound nuisances to the occupants of the building without being detrimental to safety. The location remains accurate even in the case of reconfiguration of the premises.
In the second embodiment in which a central supervisory unit is used, the housings do not have a short-range radio link but the central supervisory unit stores the physical position of each housing and modulates the power of the sirens that the emitters of the closest housings emit as a function of their distance from the detector closest to the focus of the fire.
The memory of the UCS unit storing the location of the housings is updated on each reconfiguration of the premises.
Thus, in the first as in the second embodiment above, if the modulation introduced is an extension of the duration of silence between two tones, the fire fighters can register the sound in the smoke to go to the point where the sound is the closest possible to a continuous sound. Even in the absence of smoke, the intuitive location by noise allows for a reduction of the response times compared to familiarization with the premises on a plan. Likewise, the evacuated people can go to the emergency exit that is the least noisy out of those which are the closest, reducing the risks of asphyxia of people who chose the wrong direction (that which leads to the focus of the fire), in the presence of poisonous smoke.
It will be noted that the modulation can be represented by a number of successive sound beeps per unit of time, as illustrated in
With reference now to
With reference now to
With reference to
Multiple starts of fires are possible, so it thus appears that several emitters Em can have the identifier I1 corresponding to the alarm signal SA1. In fact, these emitters can receive, directly from their detector DET, an event detection signal and then be assigned the first identifier I1.
In this case, the emitters Em situated between these two starts of fires can have an identifier Ij with j>1, but the proximity of a new start of a fire will lead to a reduction of the neighboring identifiers. Thus, an emitter Em receiving an identifier Ij−1 checks whether this identifier is lower than a current identifier ic specific to this emitter Em (more specifically, this current identifier ic minus 1), in the step S78 of
With reference now to
Furthermore, the UCS unit consults its memory CMEM to identify, in the step S85, the second emitter Em2 located as being the closest to the first emitter Em1. The UCS unit can assign and transmit the identifier I2 to this second emitter Em2 to activate it with the alarm signal SA2, according to the same principle of the preceding steps S83 and S84. These steps S85, S83, S84 are repeated with the N emitters that the alarm system comprises (apart from one or more emitters at the periphery of the building) to activate, step-by-step, these emitters with successive alarm signals SAj, as long as the maximum number N of emitters has not been reached (KO arrow at the output of the test S86).
In the first embodiment as in the second embodiment, the emitters emit alarm signals comprising fewer pulses per unit of time as they become more distant from the detector that detected the event. Such an embodiment makes it possible to effectively guide the responders to the place of the event.
Number | Date | Country | Kind |
---|---|---|---|
2005817 | Jun 2020 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
7629894 | Plocher | Dec 2009 | B2 |
7880604 | McKenna | Feb 2011 | B2 |
7889066 | McKenna | Feb 2011 | B2 |
8432277 | Egawa | Apr 2013 | B2 |
9171450 | Cho | Oct 2015 | B2 |
20070279242 | Plocher | Dec 2007 | A1 |
20080309486 | McKenna | Dec 2008 | A1 |
20090201143 | McKenna | Aug 2009 | A1 |
20100026490 | Butler | Feb 2010 | A1 |
20100295677 | Egawa | Nov 2010 | A1 |
20140253326 | Cho | Sep 2014 | A1 |
20150130641 | Rahman | May 2015 | A1 |
20210383677 | Duro | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
2 225 661 | Jun 1990 | GB |
102 101 815 | Apr 2020 | KR |
Entry |
---|
French Search Report with Written Opinion for French Application No. 2005817, dated Jan. 29, 2021. |
Number | Date | Country | |
---|---|---|---|
20210383677 A1 | Dec 2021 | US |