The subject matter of the present disclosure relates generally to a water heater that uses a thermally activated sorption heat pump to provide heat to the water.
Water heaters can provide for the heating and storage of water to be used in e.g., a residential or commercial structure. A typical construction includes a water tank that is surrounded by a jacket and is insulated. A heat source is provided for increasing the temperature of water in the tank. The heat energy is commonly supplied e.g., by gas burners or electrically-resistant coils.
In such constructions, heat created from combustion or the resistance to a current flow is provided directly to the water tank. With gas burners, for example, the burner is located just below the bottom wall of the water tank. Combustion of a liquid or gaseous fuel provides heat that is conducted through the wall of the water tank. In the case of electrically-resistant coils, one or more such coils are typically inserted through a wall of the tank and into the water. Heat generated by the resistance to current flow is transferred to the water. While substantial improvements have been achieved, there is still a need for improvement in water heater efficiency.
The present invention provides a water heater that can be operated with improved efficiency. The water heater uses a thermally activated sorption heat pump to heat water stored in a tank. A sorbate is endothermically desorbed from a refrigerant, which in turn is released as a gas or vapor. The latent heat of condensing this refrigerant vapor to a liquid is transferred directly to the water in the tank. Ambient air is then used to vaporize the refrigerant liquid. The vapor refrigerant is then exothermically absorbed by the sorbate. The heat released by this absorption is transferred to the water in the tank using a heat transfer fluid. The cycle can then be repeated by desorbing the sorbate again to release the refrigerant as vapor. A heat source is used to provide heat energy to endothermically desorb the sorbate. Features can be provided to further improve efficiency by capturing additional heat from the heat source. Additional aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In one exemplary embodiment, a water heater is provided that includes a tank for holding water and a sorption heat pump. The sorption heat pump includes a condensate collection chamber, a regenerator in fluid communication with the condensate collection chamber, a sorbate located in the regenerator, a condenser positioned in the tank that is in fluid communication with the condensate collection chamber and is also configured for exchanging heat with water in the tank, and an evaporator in fluid communication with the condensate collection chamber. A heat source is positioned proximate to the regenerator and is configured for selectively applying heat to the regenerator. A heat transfer loop is provided that includes a first heat exchanger positioned in the tank and configured for delivering heat energy to water in the tank. The loop also includes a second heat exchanger positioned proximate to the regenerator and the heat source and is configured for receiving heat energy from the regenerator, the heat source, or both. The loop also includes a pump for circulating a heat transfer fluid between the first and second heat exchangers.
In another aspect, the present invention provides a method of operating a water heater, the water heater having a tank for holding water, a regenerator for a sorbate, and an evaporator. The method includes the steps of applying heat to the regenerator so as to heat a solution containing the sorbate and provide a refrigerant vapor; exchanging heat between the refrigerant vapor and water in the tank so as to increase the temperature of water in the tank; condensing the refrigerant vapor into a refrigerant liquid; draining the refrigerant liquid under force of gravity to the evaporator; vaporizing the refrigerant liquid in the evaporator to provide a refrigerant vapor by exchanging heat energy between the refrigerant liquid and ambient air; combining the refrigerant vapor from the step of vaporizing with the sorbate so as to regenerate the sorbate solution by an exothermic reaction; circulating a heat transfer fluid during between the regenerator and the water tank after the step of applying and during the step of combining; and terminating the step of circulating when the difference in temperature between the heat transfer fluid and the water in the tank is less than a predetermined temperature difference.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, each of which are schematic representations in which:
The use of the same reference numerals throughout the figures indicates the same features.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
An exemplary embodiment of a water heater 200 of the present invention is shown schematically in
Referring now to
Water heater 200 includes a sorption heat pump 204.
During operation of water heater 200, a heat source is used to apply heat energy to regenerator 208. For the exemplary embodiment of
Gaseous fuel burner 216 can be selectively operated by e.g., a controller connected to an ignition mechanism and a valve (not shown) that controls the flow of gas to burner 216. As used herein, the controller may include a memory and one or more microprocessors, CPUs or the like, such as general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with operation of water heater 200. The memory may represent random access memory such as DRAM, or read only memory such as ROM or FLASH. In one embodiment, the processor executes programming instructions stored in memory. The memory may be a separate component from the processor or may be included onboard within the processor. The controller may be positioned in a variety of locations throughout water heater 200. Accordingly, the controller can be used to activate burner 216 when water heater 200 is in charging mode so as to provide heat for the endothermic reaction needed to drive refrigerant vapor from the sorbate in regenerator 208.
Sorption heat pump 204 also includes a condensate collection chamber 206 that is in fluid communication with regenerator 208 by vapor channel 230. Heat pump 204 also includes a condenser 210 and an evaporator 214, both of which are also in fluid communication with condensate collection chamber 206. As shown by arrows V, during charging mode, refrigerant vapor desorbed from the sorbate travels to condensate collection chamber 206. A first valve 224 is in the closed position during the charging mode so as to prevent refrigerant vapor from travelling into evaporator 214. Instead, the refrigerant vapor travels into condenser 210 through a second valve 226 that is in an open position.
For this exemplary embodiment, condenser 210 is shown as a helical coil elevated along vertical direction V relative to the condensate collection chamber 206. A terminus 212 seals one end of condenser 210. Gaseous refrigerant can travel upwardly within condenser 210 and transfer heat into water in tank 202 and thereby increase the temperature of the water. As the refrigerant vapor condenses and transfers latent heat to water in tank 202, the vapor changes phase to a refrigerant liquid that travels under the force of gravity back to condensate collection chamber 206 as indicated by arrow C. The resulting refrigerant liquid or condensate is pooled in condensate collection chamber 206.
Referring now to the discharge mode shown in
Accordingly, referring to
In addition, during discharge mode, heat is provided by the exothermic reaction between returned vapor and the sorbate in regenerator 208. Heat transfer loop 220 is also used to capture this heat from regenerator 208 using second heat exchanger 244 and transfer the same to water in tank 202 using the first heat exchanger 242 and circulated heat transfer fluid 236 as previously described. Thus, heat transfer loop 220 can be used to capture and deliver residual heat remaining after burner 216 has been deactivated as well as heat from the exothermic reaction that occurs in regenerator 208 during discharge mode.
Turning now to
For example, by comparing the temperature measurements of water tank 202 from third temperature sensor 246 with measurements from fourth temperature sensor 248, the controller can determine whether to continue operating pump 238. If, for example, temperature of the heat transfer fluid 236 is cooler than the water in tank 202 by at least about 2° C., then pump 238 can be deactivated or remain in an off mode. Conversely, if the heat transfer fluid 236 is warmer than the water in tank 202 by about 2° C., then the controller can activate or continue operating pump 238 to heat water in tank 202. A difference of 2° C. is provided by way of example only—other values or ranges may be used as well. Additionally, by comparing the temperature readings between fourth temperature sensor 248 and fifth temperature sensor 250, the controller can determine whether the heat transfer fluid 236 is capturing heat energy from regenerator 208.
Water heater 200 is also provided with a vent gas heat exchange system 252 as shown in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/064026 | 10/9/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/053762 | 4/16/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4293323 | Cohen | Oct 1981 | A |
4363221 | Singh | Dec 1982 | A |
4364239 | Chapelle et al. | Dec 1982 | A |
4596122 | Kantner | Jun 1986 | A |
4910969 | Dalin | Mar 1990 | A |
5272891 | Erickson | Dec 1993 | A |
20020194990 | Wegeng | Dec 2002 | A1 |
20060101847 | Henning | May 2006 | A1 |
20100281899 | Garrabrant | Nov 2010 | A1 |
20120000221 | Abdelaziz et al. | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
2130713 | Jun 1984 | GB |
Entry |
---|
PCT International Search Report for PCT/US13/64026; Mailed May 1, 2014. |
Number | Date | Country | |
---|---|---|---|
20160231021 A1 | Aug 2016 | US |