The present invention relates to sound-attenuating mufflers for internal combustion engines and, more particularly, to sound-attenuating mufflers generating reduced back pressure.
Numerous muffler constructions have been proposed for the attenuation of the sound component of an exhaust gas stream from an internal combustion engine. The present invention is an improvement to the low back-pressure sound-attenuating mufflers of U.S. Pat. Nos. 6,286,623 and 6,776,257 to the present inventor and incorporated herein by reference.
The low back-pressure sound-attenuating mufflers of U.S. Pat. Nos. 6,286,623 and 6,776,257 are well suited for sports cars.
There is therefore a need for a low back-pressure sound-attenuating muffler having a lower decibel output than the previous mufflers so as to be usable on regular passenger vehicles.
The present invention is a low back-pressure sound-attenuating muffler having a lower decibel output than the previous mufflers so as to be usable on regular passenger vehicles.
According to the teachings of the present invention there is provided, a muffler for an internal combustion engine comprising: (a) a housing having an inlet end with an inlet opening formed for a flow of exhaust gases into the housing and an outlet end with an outlet opening formed for a discharge of exhaust gases from the housing; (b) a first chamber and a second chamber sequentially arranged within the housing; (c) a perforated pipe passing longitudinally through a central region of both the first and the second chambers such that the perforated pipe extends partially into the first chamber, extends a full length of the second chamber; wherein the perforations allow the exhaust gases to enter the perforated pipe so as to be directed through an interior of the perforated pipe and into the third chamber and a partition separating the first and the second chambers includes a hole that enables some of the exhaust gases to pass from the first chamber into the second chamber without passing through the central perforated pipe.
According to a further teaching of the present invention, the perforated pipe has a diameter that is 105%-110% of the diameter of the inlet opening.
According to a further teaching of the present invention, an upstream end of the perforated pipe is partially sealed.
According to a further teaching of the present invention, an upstream end of the perforated pipe is 60%-80% open.
According to a further teaching of the present invention, perforations in the perforated pipe extending partially into the first chamber cover 25%-35% of the surface of the perforated pipe and, perforations in the perforated pipe extending the full length of the second chamber cover 60%-75% of the surface of the perforated pipe.
According to a further teaching of the present invention, there is also provided: (d) a third chamber containing a deflection element, the perforated t0 pipe extending so as to open at its downstream end into a third chamber, thereby directing the exhaust gases toward the deflection element; and (e) a fourth chamber configured to channel the flow of gas to the outlet opening.
According to a further teaching of the present invention, the deflection element is a hollow pyramid having interior surfaces and exterior surfaces joining at a first end to form a pyramidal apex, the pyramidal apex pointing toward the inlet end of the muffler and extending at a second end to form an open base interconnected to a partition separating the third and the fourth cambers.
According to a further teaching of the present invention, the deflection element is a dome-shaped partition having an exterior surface, a first end of the exterior surface pointing toward the inlet end of the muffler, and widening out at a second end to form a base interconnected to a partition separating the third and the fourth cambers.
The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:
The present invention is a low back-pressure sound-attenuating muffler having a lower decibel output than the previous mufflers so as to be usable on regular passenger vehicles.
The principles and operation of low back-pressure sound-attenuating muffler according to the present invention may be better understood with reference to the drawings and the accompanying description.
By way of introduction reference is made to the prior art low back-pressure sound-attenuating mufflers of U.S. Pat. Nos. 6,286,623 and 6,776,257 to the present inventor
The exhaust gases from the internal combustion engine are introduced into the muffler 200 through the inlet 206. The exhaust gases enter the housing 202 and flow longitudinally through the length of muffler 200 passing first through chamber 212. The exhaust gases exit chamber 212 through an opening in partition 240. Partition 240 is shaped like a funnel (or truncated pyramid), disposed such that the opening in the partition 240 centers the flow of exhaust gases within housing 202. The flow exhaust gases then enters the second chamber 214 and encounters the apex 230 of pyramidal partition 250, causing the flow to be deflected along the exterior faces of pyramidal partition 250 and towards the interior surface of the outer wall of housing 202.
The exhaust gases flow through the four spaces 252 formed by the rugose base of the pyramidal partition 250. A substantial first portion of the exhaust gases continue to flow in the direction of the outlet pipe 208, thereby creating a low pressure region inside the pyramidal partition 250. Consequently, a second portion of the exhaust gases changes direction and enters (is drawn into) the inside region of pyramidal partition 250 before continuing toward the outlet pipe 208. The exhaust gases flow through converging partition 260, which is substantially identical in shape and in disposition to converging partition 240. Thus, the flow of exhaust gases enters the third chamber 216 and is again centered within the housing 202 by the partition outlet 224 before being discharged through outlet pipe 208.
The exhaust gases from the internal combustion engine are introduced through the inlet 306. The exhaust gases enter housing 302 and flow longitudinally through the length of muffler 300 passing first through chamber 312. The exhaust gases exit chamber 312 through an opening in partition 340. Partition 340 is preferably shaped like a funnel (or truncated pyramid), and most importantly, is disposed such that the exhaust gas flow is centered within the housing 302 as the exhaust gases enter the second chamber 314 and the flow of exhaust gases encounters the top of domed partition 350, causing the flow to be deflected along the exterior face of domed partition 350.
The exhaust gases flow through openings 352 in the sides of domed partition 350 Openings 352 are preferably disposed on opposite sides of domed partition 350.
Subsequently, the exhaust gases continue to flow in the direction of S outlet pipe 308, thereby creating a low pressure region inside domed partition 350. Consequently, a portion of the exhaust gases change direction and enter (are drawn into) the inside of domed partition 350 before continuing in the direction of outlet pipe 308. The exhaust gases flow through converging partition 360, which is advantageously similar in shape and in disposition to converging partition 340, and enter the third chamber 316 before being discharged through outlet pipe 308.
Generally speaking, the embodiments of U.S. Pat. Nos. 6,286,623 and 6,776,257 as briefly described above include an inlet chamber, a deflection chamber in which a deflection element is deployed and an outlet chamber.
The present invention relates to an improvement that may be used to benefit both of the previous muffler embodiments described above. Specifically, the present invention includes an improved inlet configuration having first and second sequential chambers with a perforated central pipe passing longitudinally through a central region of both chambers for directing the exhaust gases into the third chamber in which the deflection element is deployed. Additionally, the partition separating the first and second chamber has a hole that enables some of the gas to pass from the first chamber into the second chamber not through the central pipe.
Described below are two exemplary embodiments of the present inventor The embodiment of
Referring now to the drawings,
The partition 30 separating the first and second chambers includes a preferably round hole 32 that enables some of the gas to pass from the first chamber 10 into the second chamber 12 without passing through the central perforated pipe 20. Exhaust gases that enter the second chamber 12 then pass through the perforations 26 in the section of perforated pipe 20 deployed in second chamber 12. It will be appreciated that hole 32 may be of substantially any suitable size and shape.
With this basic understanding of the general structure of the first two chambers of the muffler, it will be appreciated that inlet 6 is configured for attachment to the exhaust pipe of the vehicle on which the muffler is deployed and therefore may vary in diameter depending on the specifications of the of the vehicle manufacturer. It will be appreciated that inlet 6 may be configured as more that one inlet pipe. It will be readily understood that in such an embodiment, the percentages listed herebelow are applied to the combined size of all inlet pipes. Similarly, the outlet pipe 8 may be configured as more that one outlet pipe and the percentages listed herebelow are applied to the combined size of all outlet pipes.
In order for the muffler of the present invention to perform at an optimum level, perforated pipe 20 has a diameter that is 100%-130% of the diameter of inlet pipe 6. It will be appreciated that perforated pipe 20 may be implemented as more than one perforated pipe as long as the ratio of 100%-130% of the diameter of inlet pipe 6 is maintained. The upstream end 22 of the perforated pipe 20 is partially sealed so as to be 60%-80% open. The perforation holes in the perforated pipe 20 may range from 15 mm-55 mm in diameter. Perforations 26a cover between 20%-40% of the surface of perforated pipe 20, while perforations 26b cover 50%-90% of the surface of perforated pipe 20. Hole 32 configured in partition 30 has a diameter that is 60%-80% of the diameter of perforated pipe 20. It will be appreciated that hole 32 may be implemented as a plurality of holes configured in partition 30, however, the combined size of the opening still falls within the range of 60%-80% of the diameter of perforated pipe 20. Further, embodiments in which the second chamber 12 is subdivided into a number of chambers through which perforated pipe 20 passes are within the scope of the present invention. It should be noted that these specifications apply to the embodiment of the present invention described bellow with regard to
Similar to the muffler of
The exhaust gases flow then through the four spaces 52 formed by the rugose base of the pyramidal partition 50. A substantial first portion of the exhaust gases continue to flow in the direction of the outlet pipe 120, thereby creating a low pressure region inside the pyramidal partition 150. Consequently, a second portion of the exhaust gases changes direction and enters (is drawn into) the inside region of pyramidal partition 50 before continuing toward the outlet pipe 8. The exhaust gases flow through partition 60 and is again centered within the housing 100 as the exhaust gases enter the fourth chamber 16 before being discharged through outlet pipe 8, formed in the outlet end of the muffler.
The arrows in
An inlet 6 is provided in the inlet end of the muffler for introducing exhaust gases into the first chamber 10. The improved inlet configuration of this embodiment also has the first chamber 10 and a second chamber 12 sequentially arranged within muffler 102. A perforated pipe 20, with its upstream end 22 sealed, passing longitudinally through a central region of both the first 10 and the second 12 chambers such that perforated pipe 20 extends partially into the first chamber 10 and extends the full length of the second chamber 12. Perforated pipe 20 extends at its downstream end 24 through partition 40 and opens into the third chamber 14. The perforations 26 allow the exhaust gases to enter the perforated pipe 20 so as to be directed through the interior of perforated pipe 20 and into the third chamber 14.
The partition 30 separating the first and second chambers includes a preferably round hole 32 that enables some of the gas to pass from the first chamber 10 into the second chamber 12 without passing through the central perforated pipe 20. Exhaust gases that enter the second chamber 12 then pass through the perforations 26 in the section of perforated pipe 20 deployed in second chamber 12. It will be appreciated that in this embodiment as well, hole 32 may be of substantially any suitable size and shape.
Similar to the muffler of
The exhaust gases flow through openings 152 in the sides of domed partition 150. Openings 152 are preferably disposed on opposite sides of domed partition 150.
Subsequently, the exhaust gases continue to flow in the direction of outlet pipe 8 formed in the outlet end of the muffler, thereby creating a low pressure region inside domed partition 150. Consequently, a portion of the exhaust gases change direction and enter (are drawn into) the inside of domed partition 150 before continuing in the direction of outlet pipe 8. The exhaust gases flow through an opening (not shown) partition 160, and enter the fourth chamber 16 before being discharged through outlet pipe 8.
The arrows in
It will be appreciated that the above descriptions are intended only to serve as examples and that many other embodiments are possible within the spirit and the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
2035923 | Scarritt | Mar 1936 | A |
2150768 | Holbrook | Mar 1939 | A |
2205899 | Chipley | Jun 1940 | A |
2213614 | Scarritt | Sep 1940 | A |
2239549 | Chipley | Sep 1941 | A |
2520756 | Bryant | Aug 1950 | A |
2828830 | Clark | Apr 1958 | A |
3168162 | Clary et al. | Feb 1965 | A |
3989121 | Bergson et al. | Nov 1976 | A |
4108276 | Hall et al. | Aug 1978 | A |
4147230 | Ormond et al. | Apr 1979 | A |
4341284 | Moore et al. | Jul 1982 | A |
4574914 | Flugger | Mar 1986 | A |
4580657 | Schmeichel et al. | Apr 1986 | A |
4809812 | Flugger | Mar 1989 | A |
4909347 | Wang | Mar 1990 | A |
5123502 | Flugger | Jun 1992 | A |
5321215 | Kicinski | Jun 1994 | A |
5444197 | Flugger | Aug 1995 | A |
6116376 | Chu | Sep 2000 | A |
6116377 | Dugan | Sep 2000 | A |
6241044 | Nishiyama et al. | Jun 2001 | B1 |
6286623 | Shaya | Sep 2001 | B1 |
6776257 | Shaya | Aug 2004 | B1 |
7219764 | Forbes | May 2007 | B1 |
20060054384 | Chen | Mar 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20100006370 A1 | Jan 2010 | US |