This is a national phase application in the United States of International Patent Application No. PCT/JP2016/050044 with an international filing date of Jan. 4, 2016, which claims priority of Japanese Patent Application No. 2015-020473 filed on Feb. 4, 2015 the contents of which are incorporated herein by reference.
The present invention relates to a sound deadening device.
Generation of large sound waves in an outlet space of a compressor is known. From various reasons, it is useful to enable damping of these sound waves.
A sound deadening device having such a sound wave damping function is disclosed in, for example, JP 02-124214 U.
The sound deadening device of JP 02-124214 U includes an introducing pipe, a discharge pipe, and an expansion chamber that is communicated with the introducing pipe and the discharge pipe. In this sound deadening device, rapid change in impedance is generated by cross-section change of the introducing pipe, the expansion chamber, and the discharge pipe, and a sound wave is reflected on the boundaries, so that a sound deadening effect is exerted.
However, in the sound deadening device of JP 02-124214 U, resonance is generated on a facing surface in the direction in which fluid is discharged from the expansion chamber. Accordingly, sound pressure near an outlet becomes high, and the sound deadening effect is lowered.
An object of the present invention is to suppress resonance of a sound wave and improve a sound deadening effect in a sound deadening device.
The present invention provides a sound deadening device that includes an introducing and damping section including: an introduction section that introduces fluid; an expansion chamber that is communicated with the introduction section, has a flow passage cross-section larger than a flow passage cross-section of the introduction section, and has a non-flat section on a surface along a travelling direction of a sound wave, resonance of the sound wave being to be suppressed, the introducing and damping section; and a lead-out section that is communicated with the expansion chamber, has a flow passage cross-section smaller than the flow passage cross-section of the expansion chamber, and leads out the fluid in a direction different from an introduction direction of the fluid.
According to this configuration, the non-flat section is provided on an inner wall surface of the sound deadening device, so that it is possible to weaken the resonance of the sound wave, suppress rise of inner sound pressure of the sound deadening device, and prevent reduction in a sound deadening effect. In the sound deadening device, rapid change in impedance is generated by change of the cross-sections of the introduction section, the expansion chamber, and the lead-out section, so that a sound deadening effect resulting from reflection of the sound wave on the boundaries is exerted. However, a sound wave having a predetermined frequency causes resonance with the predetermined frequency inside the expansion chamber. The non-flat section interferes with the sound wave having the frequency at which this resonance is caused, so that it is possible to suppress the resonance. Accordingly, it is possible to suppress rise in the inner sound pressure, and lower the sound deadening effect.
The non-flat section preferably includes a protrusion.
A height of the protrusion is preferably such a height so as not to interfere with a flow passage of the fluid as viewed from the introduction direction of the fluid.
According to this configuration, it is possible to prevent increase of a pressure loss. When the protrusion exists in the flow passage of the fluid, the protrusion becomes an obstacle to the flow, and therefore there is a fear that a pressure loss increases. The height of the protrusion is set to be less than such a height so as not to interfere with the flow passage, so that it is possible to prevent increase of the pressure loss.
The non-flat section may include a recess.
According to this configuration, the recess is provided, so that it is possible to weaken resonance inside the expansion chamber, suppress rise of inner sound pressure of the sound deadening device, and prevent reduction in a sound deadening effect, similarly to the protrusion. Additionally, the recess is provided, so that an effect of a side branch is added.
The recess is preferably composed of a hole, and a blocking plate that blocks the hole.
According to this configuration, it is possible to implement the recess with a simple configuration. In a case where the introducing and damping section is manufactured by casting, sand and the like in the expansion chamber can be discharged by use of the hole. Additionally, even after the sound deadening device is assembled, and installed in a unit, a stick or the like is inserted into each section from the hole to come into contact with each section, so that it is possible to confirm a state and operation of each section.
The non-flat section may include a protrusion and a recess. Additionally, a height of the protrusion is preferably such a height so as not to interfere with a flow passage of the fluid as viewed from the introduction direction of the fluid. The recess is preferably composed of a hole, and a blocking plate that blocks the hole.
A screw hole for fixing the blocking plate is preferably provided in the protrusion.
According to this configuration, it is possible to fix the blocking plate with a bolt by sufficiently hooking a thread without increasing the plate thickness of the sound deadening device body.
An area where the non-flat section is formed is preferably not more than a half of an area where the non-flat section is not formed in an inner wall surface where the non-flat section is formed.
According to this configuration, the formation area of the non-flat section is set to be not more than a half of the non-formation area, so that it is possible to hold the original frequency characteristic of the expansion chamber. The original frequency characteristic of the expansion chamber means a sound deadening characteristic due to interference of a sound wave in the direction perpendicular to the inner wall surface on which the non-flat section is formed. When the formation area of the non-flat section exceeds a predetermined value, the non-flat section itself acts as a wall surface, and therefore the original frequency characteristic of the expansion chamber is lost (changes).
A part of the non-flat section is preferably provided at a center between facing surfaces forming the expansion chamber in the introduction direction of the fluid.
A part of the non-flat section is provided at a central position between the facing surfaces, which causes resonance, so that it is possible to more effectively suppress the resonance inside the expansion chamber. Since particle velocity is the fastest at the central position between the facing surfaces, the non-flat section interferes with particles whose particle velocity is fast, and acts on the particles, so that a larger sound deadening effect can be exerted.
The sound deadening device preferably includes a plurality of damping sections for sound that are disposed in a flow direction of the fluid, wherein the damping section located at an uppermost stream among the plurality of damping sections is preferably the introducing and damping section, the damping section located at a lowermost stream among the plurality of damping sections is preferably a discharging and damping section, and the discharging and damping section preferably includes: a second intermediate communication section that is a portion communicated with an adjacent damping section adjacent to the discharging and damping section; a valve section that is disposed in the discharging and damping section, and is capable of blocking the second intermediate communication section; an urging member that elastically urges the valve section in a direction in which the second intermediate communication section is closed; a valve holder that holds the valve section, and is detachably attached to a housing including the plurality of damping sections; and a discharge section that is provided at a portion different from the valve holder, and leads out the fluid from the discharging and damping section.
According to this configuration, the valve section is disposed inside the discharging and damping section located at the lowermost stream, and therefore the sound deadening device can be made compact. Additionally, a plurality of the damping sections are disposed in the flow direction of the fluid, and the intermediate communication section is provided in the partition section between the damping sections, so that it is possible to damp a sound wave in a wide frequency range. Additionally, the valve section capable of blocking the intermediate communication section is provided in the valve holder of the housing, and therefore it is possible to prevent a reverse flow of the fluid. The valve section is provided in the valve holder that is detachably attached to the housing, and the discharge section is provided in a part other than the valve holder of the housing, and therefore the valve section can be maintained without detaching a pipe disposed on the downstream side of the discharge section. That is, it is possible to damp sound in the wide frequency range, and easily maintain the valve section for preventing the reverse flow of the fluid, with a compact structure.
According to the present invention, a non-flat section is provided on an inner wall surface of a sound deadening device, so that it is possible to suppress resonance of a sound wave, and improve a sound deadening effect.
Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. Terms representing directions and positions (such as an “upstream side” and a “downstream side”) are used in the following description for convenience' sake, and are used in order to facilitate understanding of the invention. Accordingly, the technical scope of the present invention is not limited by meaning of these terms. Additionally, the following description is merely an exemplification of a mode of the present invention, and does not intend to limit the present invention, application thereof or usage thereof.
(First Embodiment)
A configuration of the sound deadening device 2 of the first embodiment will be described with reference to
In the sound deadening device body 8, a partition wall 15 that projects radially inward from the side wall 9 is provided at a position separated from the blocking section 28 in the direction of the axis P (left in the figure) by a predetermined distance (e.g., about ⅓ of an overall length). In the partition wall 15, a first intermediate communication section (lead-out section) 16 which is a circular through hole concentric with the axis P as viewed from the direction of the axis P is formed. Additionally, an annular partition section 20 is disposed between the partition wall 15 and the opening 44 so as to be concentric with the axis P. The partition section 20 has a second intermediate communication section 18 which is a circular through hole concentric with the axis P as viewed from the direction of the axis P, and is detachably fastened to the sound deadening device body 8 by using bolts 22.
Inside the sound deadening device body 8, an introducing and damping section 10, an adjacent damping section 12, and a discharging and damping section 14 are provided in order from the upstream side to the downstream side in the direction of the axis P. The introducing and damping section 10 and the adjacent damping section 12 are partitioned by the partition wall 15, and share the first intermediate communication section 16 which communicates these. Additionally, the adjacent damping section 12 and the discharging and damping section 14 are partitioned by the partition section 20, and share the second intermediate communication section 18 which communicates these. In this embodiment, the sound deadening device body 8 is formed in the cylindrical shape, but may be formed in a polygonal cylindrical shape.
The introducing and damping section 10 includes a circular introduction section 24 that is disposed at an uppermost stream, and introduces compressed air in the direction orthogonal to the axis P, and an expansion chamber 26 that is communicated with the introduction section 24 and the first intermediate communication section 16. The introduction section 24 is disposed in the sound deadening device body 8 other than an end in the direction of the axis P of the expansion chamber 26, namely, in the side wall 9. The expansion chamber 26 is defined by respective inner surfaces of the side wall 9, the blocking section 28, and the partition wall 15, and has a flow passage cross-section larger than respective flow passage cross-sections of the introduction section 24 and the first intermediate communication section 16. On an inner wall surface of the blocking section 28, a flat surface 30 orthogonal to the axis P, and protrusions (non-flat sections) 32 having such a shape as to project in the direction of the axis P from the flat surface 30 (left in the figure) are formed.
In a case where this area relation is satisfied, placement is not limited to the placement illustrated in
In this embodiment, the four protrusions 32 are provided. However, the number of the protrusions 32 is not limited to this, and may be one or a plural number. The shape of each protrusion 32 is not limited to the columnar shape, and may be a polygon such as a triangle and a square, a ring-shaped column body, or a pyramid.
In this embodiment, the four protrusions 32 have the same height. However, the height of each protrusion 32 only needs not to interfere with compressed air introduced from the introduction section 24, the protrusions 32 may have the different heights, and some of the protrusions 32 may have the same height. The protrusions 32 are preferably formed integrally with the sound deadening device body 8, but may be separately formed, and the materials of the protrusions may not be particularly limited. The protrusions 32 are disposed only on the inner wall surface of the blocking section 28 (end of the sound deadening device 2), but are preferably disposed on a surface which is located on a side close to the first intermediate communication section 16 and faces the protrusions 32 in the expansion chamber 26 of the introducing and damping section 10. Consequently, further sound deadening effect can be expected.
With reference to
The expansion chamber 35 of the adjacent damping section 12 is a sound absorption chamber having a porous plate 36. The porous plate 36 is formed of metal such as iron and aluminum, or synthetic resin. The porous plate 36 extends in the direction of the axis P between the first intermediate communication section 16 and the second intermediate communication section 18, and disposed on the radially outside of the first intermediate communication section 16 and the second intermediate communication section 18. That is, the porous plate 36 divides the expansion chamber 35 radially. In the porous plate 36, a plurality of through holes 38 through which compressed air passes extend in the direction of the axis P. A back air layer 40 is formed in a space of the expansion chamber 35, the space being on the radially outside of the porous plate 36 and on the radially inside of the sound deadening device body 8.
Pressure damping due to viscous friction of a medium (such as air) and the inner wall surface inside the through holes 38 to a sound wave is generated by the porous plate 36 having the through holes 38 and the back air layer 40. Furthermore, pressure damping due to a whirl generated when the medium is jetted from the through holes 38 is also generated. Consequently, a sound absorbing effect is exerted. Particularly, as to the pressure damping due to the viscous friction with the inner wall surface, the effect is large with respect to sound having a resonance frequency, and the resonance frequency can be arbitrarily designed by the thickness of the back air layer 40, the cross-sectional areas or the aperture ratios of the through holes 38, and the plate thickness of the porous plate 36. In this embodiment, the porous plate 36 and the back air layer 40 are formed. However, in place of these, a sound absorbing material made of porous material such as glass wool and rock wool may be used. In addition to this, in a case where a use environment is at a high temperature, a metal fiber material such as iron and stainless steel may be used.
With reference to
The valve section 50 includes a valve body 52 and an urging member 54. The valve section 50 is disposed coaxially with the axis P. A forward end part 52a in the direction of the axis P presses the second intermediate communication section 18, so that the valve body 52 can block the second intermediate communication section 18. The valve section 50 has a first end 56 fixed to the lid 46, and a second end 58 fixed to the valve body 52. The urging member 54 has such size as to elastically urge the valve body 52 in the direction of the axis P, and block the second intermediate communication section 18 by the valve body 52, in a state where the lid 46 is mounted on the opening 44 of the sound deadening device body 8.
Now, action of the sound deadening device 2 of the first embodiment will be described.
With reference to
When the compressed air is introduced from the introduction section 24 to the expansion chamber 26, the flow passage cross-sectional area of the compressed air is increased. That is, since impedance rapidly changes, a sound wave is reflected inside the introducing and damping section 10 to be damped. More specifically, the sound wave is reflected on a boundary between the introduction section 24 and the expansion chamber 26, and a boundary between the first intermediate communication section 16 and the expansion chamber 26 to be damped. Thus, the expansion chamber 26 is provided to change the flow passage cross-sectional area, so that the compressed air can damp sound generated when the compressed air circulates. The introducing and damping section 10 of this embodiment is a low-frequency side damping section that damps a sound wave in a low frequency range.
In the introducing and damping section 10, the protrusions 32 are provided on the inner wall surface of the blocking section 28, so that it is possible to weaken the resonance of a sound wave, suppress rise of inner sound pressure of the sound deadening device 2, and prevent reduction in a sound deadening effect. Generally, in such a sound deadening device 2, compressed air introduced from the introduction section 24 generates resonance having a predetermined frequency between the facing surfaces 34a, 34b of the expansion chamber 26. This resonance having the predetermined frequency occurs when a half-wavelength ½λ of a wavelength λ of a sound wave coincides with a distance between the facing surfaces 34a, 34b, or its integer multiples. In these cases, the sound deadening effect is lowered. In this embodiment, the protrusions 32 interfere with the sound wave having the frequency at which this resonance is caused, so that it is possible to suppress the resonance. Accordingly, it is possible to suppress rise in the inner sound pressure, and lower the sound deadening effect.
When the protrusions 32 exist in the flow passage of compressed air, the protrusions become obstacles to the flow, and therefore there is a fear that a pressure loss increases. In order to prevent this, the height of each protrusion 32 is set to be less than such a height so as not to interfere with the flow passage, so that it is possible to prevent increase of the pressure loss (refer to
In the inner wall surface of the blocking section 28, the formation area of the protrusions 32 is set to be not more than a half of the non-formation area (i.e., area of the flat surface 30) (refer to
In a case where a part of the protrusions 32 is provided at the central position between the facing surfaces 34a, 34b in the vertical direction, which causes resonance, it is possible to more effectively suppress the resonance in the expansion chamber 26. Particle velocity is the fastest at the central position between the facing surfaces 34a, 34b, and therefore a larger sound deadening effect can be exerted by interference and action of the protrusions 32.
With reference to
Thus, compressed air, in which sound waves in the low frequency range and the high frequency range are damped, passes through the second intermediate communication section 18, presses down the valve body 52 of the valve section 50 toward the opening 44 against urging force of the urging member 54, and flows into the expansion chamber 43 of the discharging and damping section 14, the flow passage cross-sectional area of which is larger.
In the discharging and damping section 14, in the compressed air that flows from the second intermediate communication section 18, a sound wave in a low frequency range particularly is reflected inside the discharging and damping section 14 to be damped, similarly to a case where compressed air is introduced into the introducing and damping section 10. Thus, the flow passage cross-sectional area is changed, so that it is possible to damp a sound wave that is generated when compressed air is generated, and that is propagated downstream. Accordingly, the discharging and damping section 14 is a low-frequency side damping section that damps a sound wave in the low frequency range. Then, the travelling direction for allowing circulation in the direction of the axis P is bent in the direction orthogonal to the direction of the axis P, and the compressed air is led out from the discharge section 42.
According to these configurations, the valve section 50 is disposed inside the discharging and damping section 14 located at a lowermost stream, and therefore the sound deadening device 2 can be made compact. Additionally, a plurality of the damping sections 10, 12, 14 are disposed in the compressed air flow direction, and the first intermediate communication section 16 and the second intermediate communication section 18 are provided between the respective damping sections, so that it is possible to damp a sound wave in a wide frequency range. Additionally, the valve section 50 capable of blocking the second intermediate communication section 18 is provided in the valve holder 46 of the sound deadening device body 8, and therefore it is possible to prevent a reverse flow of compressed air. The valve section 50 is provided in the valve holder 46 that is detachably attached to the sound deadening device body 8, and the discharge section 42 is provided in a part other than the valve holder 46 of the sound deadening device body 8, and therefore the valve section 50 can be maintained without detaching a pipe disposed on the downstream side of the discharge section 42. That is, it is possible to damp the sound wave in the wide frequency range, and easily maintain the valve section 50 for preventing the reverse flow of compressed air, with a compact structure.
(Second Embodiment)
As illustrated in
The recess 62 is provided, so that it is possible to weaken resonance inside the expansion chamber 26, suppress rise of inner sound pressure of the sound deadening device 2, and prevent reduction in a sound deadening effect, similarly to the protrusions 32 of the first embodiment. Additionally, the recess 62 is provided, so that an effect of a side branch is added.
The recess 62 is composed of the hole 64 and the blocking plate 66, so that, for example, in a case where the sound deadening device body 8 is manufactured by casting, the blocking plate 66 is detached, and sand and the like in the expansion chamber 26 can be discharged from the hole 64. Additionally, even after the sound deadening device 2 is assembled, and installed in a unit, a stick 70 or the like is inserted into each section from the hole 64, so that, for example, it is possible to confirm a state and operation of the valve section 50 (refer to
In a case where this area relation is satisfied, the placement of the recess 62 is not limited to the placement illustrated in
(Third Embodiment)
As illustrated in
Thus, a part for suppressing resonance in the introducing and damping section 10 may be a form in which protrusions 32 and the recess 62 are combined. This is because even in a case where the protrusions 32 and the recess 62 are combined, the protrusions 32 and the recess 62 interfere with a sound wave causing resonance in an expansion chamber 26 to suppress the resonance, similarly to the case of the protrusions 32 of the first embodiment and the case of recess 62 of the second embodiment.
Inside each protrusion 32, a screw hole 72 for fixing the blocking plate 66 is provided. With this configuration, it is possible to fix the blocking plate with bolts 22 by sufficiently hooking threads without increasing the thickness of the sound deadening device body 8. Additionally, the height of each protrusion 32 (protruding amount in the direction of an axis P) is set so as not to interfere with compressed air introduced from an introduction section 24, similarly to the first embodiment.
In a case where this area relation is satisfied, the placement of the protrusions 32 and the recess 62 is not limited to the placement illustrated in
In the first to third embodiments, the protrusions 32 or the recess 62 are disposed on the surface along the compressed air introduction direction. However, the placement place is not limited to this, and only needs to be a surface along the travelling direction of a sound wave, resonance of which is to be suppressed. Accordingly, for example, the placement place may be a surface facing the introduction direction (facing surfaces 34a, 34b) or the like.
In the first to third embodiments, the sound deadening device 2 including the three damping sections, namely, the introducing and damping section 10, the adjacent damping section 12, the discharging and damping section 14 is described. However, for example, even when the sound deadening device includes only the introducing and damping section 10, a sound deadening effect can be expected. Accordingly, a plurality of damping sections is not always needed, and the sound deadening device may include only one damping section.
In the above embodiment, a compressor is exemplified. However, the sound deadening device 2 may be incorporated in, for example, a vehicle having an engine and the like, a railroad vehicle, a ship, or the like, other than the compressor.
Number | Date | Country | Kind |
---|---|---|---|
2015-020473 | Feb 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/050044 | 1/4/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/125505 | 8/11/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5475189 | Field | Dec 1995 | A |
5712454 | Ozawa et al. | Jan 1998 | A |
6427802 | Yokoi et al. | Aug 2002 | B1 |
9449592 | Dedene | Sep 2016 | B2 |
9938873 | Bartlett | Apr 2018 | B2 |
10174654 | Haberle | Jan 2019 | B2 |
Number | Date | Country |
---|---|---|
S49-128144 | Dec 1974 | JP |
S51-42839 | Apr 1976 | JP |
S55-146215 | Nov 1980 | JP |
S61-294116 | Dec 1986 | JP |
H02-124214 | Oct 1990 | JP |
H05-033626 | Feb 1993 | JP |
H08-200038 | Aug 1996 | JP |
H08-200039 | Aug 1996 | JP |
H11-336526 | Dec 1999 | JP |
2001-289167 | Oct 2001 | JP |
Entry |
---|
International Preliminary Report on Patentability issued in PCT/JP2016/050044; dated Aug. 17, 2017. |
International Search Report issued in PCT/JP2016/050044; dated Feb. 9, 2016. |
Number | Date | Country | |
---|---|---|---|
20180025714 A1 | Jan 2018 | US |