The present invention relates to a sound detection device that is provided in a moving body and a sound detection method using a sound detection device provided in a moving body.
For example, Japanese Unexamined Utility Model (Registration) Application Publication No. 5-92767 discloses a sound detection device and a sound detection method that determine the presence and approach of a sound source to be detected, such as a nearby vehicle, on the basis of a change in the sound pressure of a detected sound in a specified frequency band over time.
However, for example, when not the sound pressure of a sound to be detected, such as a traveling sound of a nearby vehicle, but the sound pressure of background noise increases, the erroneous determination that the sound source to be detected is present or approaches is likely to be made. Therefore, it is necessary to improve the accuracy of determination.
An object of the invention is to provide a sound detection device and a sound detection method that can accurately determine the presence, approach, or separation of the sound source to be detected.
According to an aspect of the invention, there is provided a sound detection device that is provided in a moving body and includes: a sound detection unit configured to detect an ambient sound of the moving body; and a determination unit configured to determine at least one of the presence of a sound source to be detected around the moving body, the approach of the sound source to the moving body, and the separation of the sound source from the moving body, on the basis of a degree of correlation between sound pressure information of a first preset frequency band in the ambient sound detected by the sound detection unit and sound pressure information of a second frequency band different from the first frequency band in the ambient sound detected by the sound detection unit.
According to the sound detection device of the above-mentioned aspect of the invention, at least one of the presence of the sound source to be detected, the approach of the sound source to the moving body, and the separation of the sound source from the moving body is determined on the basis of the degree of correlation between the sound pressure information of the first frequency band and the sound pressure information of the second frequency in the ambient sound. Here, there is a large difference in frequency characteristics between the sound to be detected and background noise. Therefore, when a specified frequency band is set to the first frequency band and a frequency band other than the specified frequency band is set to the second frequency band, it is possible to determine whether the sound to be detected is included in the ambient sound, on the basis of the degree of correlation between the sound pressure information of the first frequency band and the sound pressure information of the second frequency band. As a result, it is possible to accurately determine the presence, approach, or separation of the sound source to be detected.
The determination unit may determine that the sound source approaches the moving body when the degree of correlation between the sound pressure information items decreases over time and may determine that the sound source is separated from the moving body when the degree of correlation between the sound pressure information items increases over time. According to this structure, it is possible to determine the approach or separation of the sound source on the basis of a change in the degree of correlation between the sound pressure information items of different frequency bands over time.
The sound detection device according to the above-mentioned aspect of the invention may further include: a generation unit configured to generate a sound other than a sound from the sound source on the basis of the ambient sound detected by the sound detection unit; and a removal unit configured to remove the sound generated by the generation unit from the detected ambient sound when it is determined that the sound source is not present. According to this structure, since the sound other than the sound from the sound source to be detected is removed from the ambient sound, it is possible to accurately determine the presence of the sound source to be detected even in a situation in which background noise is dominant.
The sound detection device according to the above-mentioned aspect of the invention may further include: a second determination unit configured to determine whether the sound detection device is in a situation in which the sound detection device can detect the sound source, on the basis of the detection result of the sound source and the sound pressure of the ambient sound detected by the sound detection unit. According to this structure, it is possible to determine whether the sound detection device is in the situation in which the sound detection device can detect the sound to be detected, on the basis of the detection result of the sound source to be detected and the sound pressure of the ambient sound.
The determination unit may be more likely to determine that the sound source is present as the degree of correlation between the sound pressure information items decreases.
The degree of correlation between the sound pressure information items may be calculated on the basis of at least one of the continuity of an intensity distribution, a degree of approximation of the shapes of probability density distributions, and scale parameters of the probability density distributions between a sound in the first frequency band and a sound in the second frequency band.
The determination unit may determine at least one of the presence of the sound source, the approach of the sound source to the moving body, and the separation of the sound source from the moving body, on the basis of a degree of correlation among the sound pressure information of the first frequency band, the sound pressure information of the second frequency band, and sound pressure information of a third frequency band different from the first and second frequency bands in the ambient sound detected by the sound detection unit. According to this structure, even when there is a little overlap between the frequency characteristics of a sound from a sound source other than the sound source to be detected and the frequency characteristics of the sound to be detected, it is possible to accurately determine the presence, approach, or separation of the sound source to be detected, on the basis of the degree of correlation among the sound pressure information items of three or more different frequency bands.
The moving body may be a vehicle.
According to another aspect of the invention, there is provided a sound detection method using a sound detection device provided in a moving body. The sound detection method includes: a sound detection step of detecting an ambient sound of the moving body; and a determination step of determining at least one of the presence of a sound source to be detected around the moving body, the approach of the sound source to the moving body, and the separation of the sound source from the moving body, on the basis of a degree of correlation between sound pressure information of a first preset frequency band in the ambient sound detected in the sound detection step and sound pressure information of a second frequency band different from the first frequency band in the ambient sound detected in the sound detection step. Therefore, when a specified frequency band is set to the first frequency band and a frequency band other than the specified frequency band is set to the second frequency band, it is possible to determine whether the sound to be detected is included in the ambient sound, on the basis of the degree of correlation between the sound pressure information of the first frequency band and the sound pressure information of the second frequency band. As a result, it is possible to accurately determine the presence, approach, or separation of the sound source to be detected.
According to the invention, it is possible to provide a sound detection device and a sound detection method that can accurately determine the presence, approach, or separation of the sound source to be detected.
Hereinafter, sound detection devices and sound detection methods according to embodiments of the invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same components are denoted by the same reference numerals and the description thereof will not be repeated. A case in which the sound detection devices and the sound detection methods according to the embodiments of the invention are applied to a vehicle which is an example of a moving body will be described below.
First, a first embodiment of the invention will be described with reference to
In the related art, in the detection of a nearby vehicle, for example, when not the sound pressure of a sound to be detected, such as a traveling sound of the nearby vehicle, but the sound pressure of background noise, such as an engine sound of a host vehicle or wind noise, increases, the erroneous determination that a nearby vehicle is present is likely to be made. For example, one of the causes of the erroneous determination is the impossibility of determining whether the increase in the sound pressure is caused by an increase in the sound to be detected.
The sound detection device and the sound detection method according to the first embodiment determine whether the sound to be detected is included in an ambient sound on the basis of the degree of correlation between the sound pressure information items of two different frequency bands, thereby accurately determining the presence of the sound source to be detected.
A microphone 1 is connected to the ECU 10. Only one microphone 1 may be connected as illustrated in
The ECU 10 includes an intensity distribution calculation unit 11, frequency distribution calculation units 12a and 12b, distribution characteristic calculation units 13a and 13b, a distribution characteristic comparison unit 14, a sound source detection unit 15, and a detection result determination unit 16. The ECU 10 includes, for example, a CPU, a ROM, and a RAM as main components. The CPU executes a program to implement the functions of the intensity distribution calculation unit 11, the frequency distribution calculation units 12a and 12b, the distribution characteristic calculation units 13a and 13b, the distribution characteristic comparison unit 14, the sound source detection unit 15, and the detection result determination unit 16. In addition, the functions of the intensity distribution calculation unit 11, the frequency distribution calculation units 12a and 12b, the distribution characteristic calculation units 13a and 13b, the distribution characteristic comparison unit 14, the sound source detection unit 15, and the detection result determination unit 16 may be implemented by two or more ECUs.
The intensity distribution calculation unit 11 calculates an intensity distribution of a detected sound. For example, the intensity distribution calculation unit 11 performs Fourier transform on a sound signal of the detected sound to calculate an amplitude spectrum of the detected sound.
The frequency distribution calculation unit 12a calculates a frequency distribution of the detected sound in a preset frequency band A (first frequency band) on the basis of the intensity distribution of the detected sound. The frequency distribution calculation unit 12b calculates the frequency distribution of the detected sound in a frequency band B (second frequency band) different from the frequency band A on the basis of the intensity distribution of the detected sound. For example, the frequency distribution calculation units 12a and 12b calculate the probability density distribution (histogram) of the amplitude spectrum on the basis of the amplitude spectrum of the detected sound.
The frequency band A is set to a specified frequency band in which the sound to be detected is detected, for example, a frequency band of about 800 Hz to 3000 Hz in which the traveling sound of the vehicle is detected. The frequency band B is set to a frequency band which is at least partially different from the frequency band A.
The distribution characteristic calculation unit 13a calculates the distribution characteristics of the frequency band A on the basis of the frequency distribution of the frequency band A. The distribution characteristic calculation unit 13b calculates the distribution characteristics of the frequency band B on the basis of the frequency distribution of the frequency band B. For example, the distribution characteristic calculation units 13a and 13b perform γ distribution fitting on the discrete value of the probability density distribution to calculate a shape parameter and a scale parameter indicating the characteristics of a γ distribution.
Here, the probability density distribution p(x) of the γ distribution in which a shape parameter α and a scale parameter θ are known is represented by Expression (1). In addition, a maximum likelihood estimate αML of the shape parameter and a maximum likelihood estimate θML of the scale parameter in a data sample string {x: x1, x2, . . . , xN} are represented by Expressions (2) and (3), respectively. In the expressions, γ is calculated using an expected value E as follows: γ=log(E[x])−E[log x].
The distribution characteristic comparison unit 14 compares the distribution characteristic of the frequency band A with the distribution characteristics of the frequency band B. The distribution characteristic comparison unit 14 compares, for example, the scale parameter of the frequency band A with the scale parameter of the frequency band B. The comparison result of the scale parameters is represented by, for example, the difference or ratio between the scale parameters.
The sound source detection unit 15 detects the sound source to be detected, such as a nearby vehicle, on the basis of the detected sound. For example, the sound source detection unit 15 detects the presence or absence and direction of the sound source on the basis of the sound pressure characteristics, frequency characteristics, and phase characteristics of the detected sound.
The detection result determination unit 16 determines the detection result of the sound source to be detected, on the basis of the comparison result of the distribution characteristics. The detection result determination unit 16 functions as a determination unit that determines whether the sound source to be detected is present around the moving body, on the basis of the degree of correlation between the sound pressure information of the first preset frequency band in the ambient sound and the sound pressure information of the second frequency band different from the first frequency band in the ambient sound. The detection result determination unit 16 is more likely to determine that the sound source to be detected is present as the degree of correlation between the sound pressure information items decreases.
The degree of correlation between the sound pressure information items is calculated on the basis of at least one of the continuity of the intensity distribution, the degree of approximation of the shapes of the probability density distributions, and the scale parameters of the probability density distributions between a sound in the first frequency band and a sound in the second frequency band. The degree of correlation between the sound pressure information items decreases as the continuity of the amplitude spectrum is reduced, as the degree of approximation of the probability density distributions decreases, or as the absolute value of the difference between the scale parameters increases or the ratio between the scale parameters is further away from 1.
The detection result determination unit 16 is more likely to determine that the sound to be detected is included in the ambient sound and the detection result of the sound source is valid as the degree of correlation between the frequency characteristics of the frequency band A and the frequency characteristics of the frequency band B decreases. For example, the detection result determination unit 16 is more likely to determine that the detection result of the sound source is valid as the absolute value of the difference between the scale parameters of the two frequency bands increases or the ratio between the scale parameters is further away from 1.
In a case in which the sound source is detected, for example, the detection result determination unit 16 determines that the detection result is invalid when the degree of correlation between the frequency characteristics is greater than a threshold value and determines that the detection result is valid when the degree of correlation between the frequency characteristics is less than the threshold value. When the sound source is detected, the valid detection result means that the sound to be detected is detected and the invalid detection result means that background noise is detected. For example, the determination result of the presence or absence of the sound source is used for driving assist for the driver of the host vehicle and for notification assist for the drivers of the nearby vehicles.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
On the other hand, as illustrated in
As described above, the sound detection device and the sound detection method according to the first embodiment determine whether the sound to be detected is included in the ambient sound on the basis of the degree of correlation between the sound pressure information items of two different frequency bands. Therefore, it is possible to accurately determine whether the sound source to be detected is present.
Next, a sound detection device and a sound detection method according to a second embodiment of the invention will be described with reference to
The sound detection device and the sound detection method according to the first embodiment determine whether the sound source to be detected is present, but cannot determine the approach or separation of the sound source. For example, the determination result of approach or separation is used to exclude a sound source which is being separated from processing targets during a driving assist process or a notification assist process.
The sound detection device and the sound detection method according to the second embodiment determine the approach or separation of the sound source to be detected, on the basis of a change in the degree of correlation between the sound pressure information items of different frequency bands over time.
The detection result determination unit 26 determines the detection result of the sound source to be detected, on the basis of the comparison result of distribution characteristics. In addition, the detection result determination unit 26 determines that the detection result of the sound source is invalid when the sound source is determined to be separated, which will be described below.
The comparison result storage unit 27 stores the comparison result of the distribution characteristics. For example, the comparison result storage unit 27 stores the result of the comparison between a scale parameter of a frequency band A and a scale parameter of a frequency band B.
The characteristic correlation calculation unit 28 calculates an autocorrelation value between the comparison result of the distribution characteristics in the previous processing cycle and the comparison result of the distribution characteristics in the current processing cycle. For example, the characteristic correlation calculation unit 28 calculates an autocorrelation value between the comparison result of the scale parameters in the previous processing cycle and the comparison result of the scale parameters in the current processing cycle. When it is determined that the detection result of the sound source is valid, the characteristic correlation calculation unit 28 calculates the autocorrelation value.
The approach/separation determination unit 29 determines the approach or separation of the sound source to be detected, on the basis of the autocorrelation value between the comparison results of the distribution characteristics. The approach/separation determination unit 29 functions as a determination unit that determines the approach of the sound source to be detected around a moving body to the moving body or the separation of the sound source from the moving body, on the basis of the degree of correlation between the sound pressure information of a first preset frequency band in an ambient sound and the sound pressure information of a second frequency band different from the first frequency band in the ambient sound. The approach/separation determination unit 29 determines that the sound source approaches the moving body when the degree of correlation between the sound pressure information items decreases over time and determines that the sound source is separated from the moving body when the degree of correlation between the sound pressure information items increases over time.
For example, the approach/separation determination unit 29 determines that the sound source approaches when the degree of approximation between the shape parameters of the frequency bands A and B decreases over time and determines that the sound source is separated when the degree of approximation increases over time. The reason is that the domination of the frequency characteristics of the frequency band A in which the sound to be detected is detected is strengthened as the sound source approaches and is weakened as the sound source is separated.
As illustrated in
As described above, according to the sound detection device and the sound detection method of the second embodiment, it is possible to determine the approach or separation of the sound source to be detected, on the basis of a change in the degree of correlation between the sound pressure information items of different frequency bands over time. In addition, it is possible to invalidate the detection result of the sound source which is being separated and to appropriately perform driving assist or notification assist.
Next, a sound detection device and a sound detection method according to a third embodiment of the invention will be described with reference to
In the sound detection device and the sound detection method according to the first embodiment, it is determined whether the detection result of the sound source to be detected is valid on the basis of the degree of correlation between the sound pressure information items of two different frequency bands. However, for example, when it is determined that the detection result is invalid in a situation in which background noise is dominant, it is impossible to accurately determine whether a sound source is present.
The sound detection device and the sound detection method according to the third embodiment remove background noise included in an ambient sound from the ambient sound to accurately determine whether the sound source to be detected is present even in the situation in which the background noise is dominant.
The noise model generation unit 37 generates a noise model on the basis of a detected sound. The noise model generation unit 37 functions as a generation unit that generates a sound other than the sound from the sound source to be detected, on the basis of the detected ambient sound. The noise model is generated by estimating background noise included in the detected sound. The noise model generation unit 37 generates or updates the noise model when it is determined that the detection result of the sound source to be detected is invalid.
The noise removal unit 38 removes noise from the detected sound using the noise model. The noise removal unit 38 functions as a removal unit that removes the generated sound from the detected ambient sound when it is determined that there is no sound source. The noise removal unit 38 removes noise from the detected sound using the noise model when it is determined that the detection result of the sound source is invalid. The noise removal is performed using the noise model which has been generated or updated in advance.
As illustrated in
As described above, according to the sound detection device and the sound detection method of the third embodiment, a sound other than the sound to be detected in the ambient sound, that is, background noise is removed from the ambient sound. Therefore, it is possible to accurately determine whether the sound source to be detected is present, even in a situation in which the background noise is dominant.
Next, a sound detection device and a sound detection method according to a fourth embodiment of the invention will be described with reference to
In the sound detection device and the sound detection method according to the first embodiment, it is determined whether the sound to be detected is included in the ambient sound on the basis of the degree of correlation between the sound pressure information items of two different frequency bands. However, for example, in some cases, in a situation in which there is a sound source other than the sound source to be detected and there is a little overlap between the frequency characteristics of a sound from the sound source and the frequency characteristics of the sound to be detected, it is impossible to appropriately determine whether the sound to be detected is included in the ambient sound.
The sound detection device and the sound detection method according to the fourth embodiment accurately determine whether the sound source to be detected is present, on the basis of the degree of correlation between the sound pressure information items of three or more different frequency bands, even in a situation in which there is a little overlap between the frequency characteristics of a sound from a sound source other than the sound source to be detected and the frequency characteristics of the sound to be detected.
The frequency distribution calculation unit 42c calculates the frequency distribution of a detected sound in a frequency band C (third frequency band) different from frequency bands A and B on the basis of the intensity distribution of the detected sound. The frequency band C is set to a second unspecified frequency band which is at least partially different from the frequency bands A and B. It is preferable that the frequency band C is set to a high (or low) frequency side when the frequency band B is lower (or higher) than the frequency band A.
The distribution characteristic calculation unit 43c calculates the distribution characteristics of the frequency band C on the basis of the frequency distribution of the frequency band C. The distribution characteristic comparison unit 44 compares the distribution characteristics of the frequency band A, the distribution characteristics of the frequency band B, and the distribution characteristics of the frequency band C.
The detection result determination unit 46 determines the detection result of the sound source to be detected, on the basis of the comparison result of the distribution characteristics. The detection result determination unit 46 determines whether a sound source is present, on the basis of the degree of correlation among the sound pressure information of a first frequency band, the sound pressure information of a second frequency band, and the sound pressure information of a third frequency band different from the first and second frequency bands in the detected ambient sound.
The detection result determination unit 46 is more likely to determine that the sound to be detected is included in the ambient sound and the detection result of the sound source is valid as the degree of correlation between the frequency characteristics of the frequency band B and the frequency characteristics of the frequency band C increases and as the degree of correlation between the frequency characteristics of the frequency band A and the frequency characteristics of the frequency bands B and C decreases. For example, the detection result determination unit 46 determines whether the detection result of the sound source is valid on the basis of the difference or ratio between the scale parameters of three frequency bands.
As illustrated in
In the situation illustrated in
In the situation illustrated in
In the situation illustrated in
In the situation illustrated in
In the situation illustrated in
As described above, according to the sound detection device and the sound detection method of the fourth embodiment, it is possible to accurately determine whether the sound source to be detected is present, on the basis of the degree of correlation among the sound pressure information items of three or more frequency bands, even in a situation in which there is a little overlap between the frequency characteristics of a sound from a sound source other than the sound source to be detected and the frequency characteristics of the sound to be detected.
Next, a sound detection device and a sound detection method according to a fifth embodiment of the invention will be described with reference to
In the sound detection device and the sound detection method according to the first embodiment, when the sound source is detected and it is determined that the detection result is invalid, it becomes apparent that background noise is detected. However, it is impossible to determine whether the sound source to be detected can be appropriately detected in the current situation.
The sound detection device and the sound detection method according to the fifth embodiment determine whether the sound to be detected can be detected in the current situation, on the basis of the validity of the detection result and the sound pressure of an ambient sound.
The sound pressure calculation unit 57 calculates the sound pressure of a detected sound.
The circumstance determination unit 58 determines the circumstances of the sound detection device on the basis of the comparison result of the distribution characteristics and the sound pressure of the detected sound. The circumstance determination unit 58 functions as a second determination unit that determines whether the sound detection device is in a situation in which it can detect the sound source to be detected on the basis of the detection result of the sound source to be detected and the sound pressure of a detected ambient sound.
The circumstance determination unit 58 is more likely to determine that the sound detection device is in a situation in which it cannot appropriately detect the sound source as the distribution characteristics of the frequency bands A and B become closer to each other and as the sound pressure of the detected sound increases. That is, the circumstance determination unit 58 determines that the sound source cannot be appropriately detected when the sound to be detected is not included in the ambient sound and the sound pressure is equal to or greater than a prescribed value. For example, the determination result of the circumstances of background noise is used in order to suppress driving assist or notification assist in a situation in which the sound to be detected cannot be appropriately detected, thereby avoiding inappropriate assist due to a detection error.
As illustrated in
Therefore, it is possible to determine whether the sound detection device is in a situation in which it can appropriately detect the sound source to be detected, on the basis of the validity of the detection result and the sound pressure of the ambient sound.
The above-described embodiments are preferred embodiments of the sound detection device and the sound detection method according to the invention. The sound detection device and the sound detection method according to the invention are not limited to the embodiments. The sound detection device and the sound detection method according to the invention may be modified, without departing from the scope and spirit of the claims, or may be applied to other techniques.
The first to fifth embodiments may be combined with each other. For example, in the second embodiment, it may not be determined whether there is a sound source to be detected and the approach or separation of the sound source may be directly determined.
For example, in the second embodiment, after a sound other than the sound from the sound source to be detected is removed from the ambient sound, the approach or separation of the sound source may be determined. Alternatively, after it is determined whether there is a sound source to be detected on the basis of the sound pressure information items of three or more frequency bands, the approach or separation of the sound source may be determined. Alternatively, after it is determined whether the sound detection device is in a situation in which it can detect the sound source to be detected, the approach or separation of the sound source may be determined.
In the above-described embodiments, the case in which γ distribution fitting is used to calculate the distribution characteristics has been described. However, other distribution fitting methods may be used to calculate the distribution characteristics.
The sound detection device and the sound detection method according to the embodiments of the invention may be applied to a moving body, such as a moving robot, other than the vehicle.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2012/083701 | 12/26/2012 | WO | 00 |