The present invention generally relates to sound gathering systems, and more particularly, to sound gathering systems employing microphone arrays.
The subject matter disclosed herein is directed to a sound gathering system that benefits from advantageous design and implementation.
According to one aspect of the present invention, a sound gathering system is provided and includes a plurality of microphones each configured to sample sound coming from a sound source. A plurality of processors are arranged in a processor chain. Each processor is coupled to at least one of the microphones and is configured to store sound samples received from the at least one microphone to a memory. A controller is terminally connected to the processor chain via a first processor. The controller is configured to calculate at least one time delay for each microphone, wherein the at least one time delay for each microphone is provided to the processor coupled thereto and is used by the processor to determine a memory position from which to begin reading sound samples.
According to another aspect of the present invention, a sound gathering system is provided and includes a plurality of microphones, each configured to sample sound coming from a sound source. A processor chain includes a plurality of processors, each coupled to at least one of the microphones and each configured to store sound samples received from the at least one microphone to a memory. A controller is terminally connected to the processor chain via a first processor, the controller configured to generate a time delay instruction containing a plurality of time delays that are each associated with one of the microphones. The time delay instruction is provided to each of the processors over a first channel. Each processor removes at least one time delay from the time delay instruction and determines a memory position from which to begin reading sound samples based on the at least one time delay. The sound samples read from the memory of each processor are summed together over a second channel to generate in-phase signals that are sent to the controller.
According to yet another aspect of the present invention, a method of gathering sound is provided and includes the steps of sampling sound coming from a sound source using a plurality of microphones; arranging a plurality of processors in a processor chain, each processor coupled to at least one of the microphones and each configured to store sound samples received from the at least one microphone to a memory; terminally connecting a controller to the processor chain via a first processor and using the controller to generate a time delay instruction containing a plurality of time delays that are each associated with one of the microphones; providing the time delay instruction to each of the processors over a first channel; removing with each processor at least one time delay from the time delay instruction and determining a memory position from which to begin reading sound samples based on the at least one time delay; and summing together sound samples read from the memory of each processor over a second channel to generate in-phase signals that are sent to the controller.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
As required, detailed embodiments of the present invention are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to a detailed design and some schematics may be exaggerated or minimized to show function overview. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
As used herein, the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
Referring to
Referring to
In operation, the microphones 16a-16c are each configured to sample sound coming from a sound source, exemplarily shown in
While the above-described sampling process is underway, the controller 18 is tasked with determining the location of the sound source 38 relative to each microphone 16a-16c using the sound source locator module 24. The sound source locator module 24 can employ any known sound locating method(s) for determining the location of the sound source 38 such as, but not limited to, sound triangulation. Once the location of the sound source 38 is known, the distance between the sound source 38 and each microphone 16a-16c can be determined. As is exemplarily shown in
Having found the distances between the sound source 38 and each microphone 16a-16c, the controller 18 calculates a time delay for each microphone 16a-16c. As will be described in greater detail below, the time delays are transmitted to the corresponding processors 14a-14c and indicate a starting address block of the ring buffer 22 from which to begin reading sound samples. The time delay for any given microphone 16a-16c is calculated based on the distance between the sound source 38 and the microphone located furthest from the sound source 38 (e.g., microphone 16c), the distance between the sound source 38 and the given microphone 16a-16c, a sampling rate of the given microphone 16a-16c, and the speed of sound. The general equation for calculating the time delay for a given microphone is as follows:
Sd=(D1−D2)*Sr/C
where Sd is the time delay and is expressed as an integer value;
D1 is the distance between the sound source and the microphone located furthest from the sound source;
D2 is the distance between the sound source and the given microphone;
Sr is the sampling rate of the given microphone; and
C is the speed of sound.
Solving the above equation for microphones 16a-16c returns a time delay of 0 for microphone 16a, a time delay of 35 for microphone 16b, and a time delay of 53 for microphone 16c, where the sampling rate S was chosen as 20,000 samples per second and the speed of sound C was chosen to be 1125 feet per second, which is approximately the speed of sound in dry air. From the above equation, it becomes apparent that the time delay for a microphone located furthest from a sound source will generally have a time delay of 0 whereas the time delay for the remaining microphones will generally increase the closer the microphone is to the sound source 38. Thus, once the time delays are implemented, as will be described below, sound samples read from the ring buffers 22 of each processor 14a-14c will be phased according to the microphone that is furthest located from the sound source 38. For simplicity, the above-calculated time delays are each expressed as unrounded integer values. However, in other embodiments, the time delays can be rounded up or down if desired.
The time delays can each be packaged as a byte in a time delay instruction that is transmitted from the controller 18 to each of the processors 14a-14c. The time delay instruction is transmitted over channel_0, where it is first received by processor 14a, followed in turn by processors 14b and 14c. According to one embodiment, the controller 18 waits for the processors 14a-14c to be in synch before outputting the time delay instruction. Upon receiving the time delay instruction, each processor 14a-14c is configured to remove the time delay associated with its corresponding microphone 16a-16c and, with the exception of processor 14c, transmit the time delay instruction to the next processor in the processor chain 12. Once removed from the time delay instruction, the time delay for a given microphone 16a-16c can be stored to the third register R3 of the corresponding processor 14a-14c. Thus, referring to the time delay values calculated above, the value 0 would be stored to third register R3 of processor 14a, the value 35 would be stored to third register R3 of processor 14b, and the value 53 would be stored to third register R3 of processor 14c.
With respect to the embodiments described herein, the integer value of each time delay indicates a starting address block in the ring buffer 22 that is based on the current position of the write pointer and from which to begin reading sound samples. The starting address block for a given ring buffer 22 is determined by subtracting the integer value of the time delay from the current position of the write pointer. Referring again to the time delays calculated above for each microphone 16a-16c, and assuming that the current write pointer of each ring buffer 22 is positioned at address block 30 for illustrative purposes, the starting address block for the ring buffer 22 of processor 14a would be 30, the starting address block for the ring buffer 22 of processor 14b would be 251, and the starting address block for the ring buffer 22 of processor 14c would be 233.
Thus, it can be said that the time delay is responsible for setting the lag between the write pointer and the read pointer for the ring buffer 22 of each processor 14a-14c. Since each address block contains one sound sample, it can also be said that the integer value of a given time delay corresponds to a number of sound samples behind in time from the most recent sound sample written to the ring buffer 22. With respect to the above provided example, the starting address block for the ring buffer 22 of processor 14a is 0 sound samples behind whereas the starting address block for the ring buffers of processors 14b and 14c are 35 and 53 sound samples behind, respectively. If sampling at a rate of 20,000 samples per second, each ring buffer 22 will become full in 14.75 milliseconds and each sound sample, beginning with the most recent, goes back in time 0.05 milliseconds. Thus, when the starting address blocks for each ring buffer 22 is calculated, the read pointer for the ring buffer 22 of processor 14a points to the most recently stored sound sample going back in time 0.05 milliseconds whereas the read pointers for the ring buffers 22 of processors 14b and 14c point to older sound samples going back in time 1.75 milliseconds and 2.65 milliseconds, respectively.
Once the starting address blocks for the ring buffers 22 are determined, the corresponding sound samples can be read from each ring buffer 22 and are transferred over channel_1 from one processor to the next in the direction shown by arrows 36 until finally being received by the controller 18. In this configuration, it generally takes longer for the controller 18 to receive sound samples transmitted from processors in the processor chain 12 that are further located from the controller 18. To account for this, a distance can be added to each processor 14a-14c that is equal to the number of processors a given processor 14a-14c is away from the controller 18 multiplied by the quotient between the speed of sound and the sampling rate.
In addition to sound samples being transferred from one processor to the next, the sound samples read from the ring buffer 22 of one processor can be summed to the sound samples received from another processor to generate in-phase sound signals that are ultimately received by the controller 18. As described further below, summation can occur in one or more registers (e.g., register R1 and/or R2) of the associated processor and by virtue of the time delay equation provided above, each sound signal received by the controller 18 is phased according to microphone 16a, i.e., the microphone that is furthest located from the sound source 38.
Referring to
The method 40 can be performed cyclically, wherein a given cycle includes six phases, each of which is initiated by the sync line 32 turning either low or high. The method 40 is implemented using two read pointers for each ring buffer 22, wherein a first read pointer is used to read sound samples to the first register R1 and a second read pointer is used to read sound samples to the second register R2. The first register R1 and the second register R2 can each be configured as 16-bit registers to prevent data overflow when sound samples are summed together and are each divided into a low 8 bits (LO byte) and a high 8 bits (HI byte). Since each ring buffer 22 has two read pointers, it should be appreciated each processor 14a-14c may remove two time delays from the time delay instruction, a first time delay for setting the starting position of the first read pointer and a second time delay for setting the starting position of the second read pointer.
The first phase begins at steps 42 and 44, wherein each processor 14a-14c reads its ADC 20 and writes the sound sample to the address block currently selected by the write pointer of the corresponding ring buffer 22 after the sync line 32 turns low, as shown in
Referring back to step 46, once processors 14b and 14a have received a sync byte, then the processors 14a-14c are said to be in sync. If on a first pass-through, the controller 18 can now send out the time delay instruction so that each processor 14a-14c can determine the starting position for the first and second read pointers of their respective ring buffers 22. For a given processor 14a-14c, the starting position for the first read pointer of its ring buffer 22 can be determined by subtracting the time delay associated with its first register R1 from the current position of the write pointer. Likewise, the starting position for the second read pointer of its ring buffer 22 can be determined by subtracting the time delay associated with its second register R2 from the current position of the write pointer. Alternatively, if the time delay instruction was sent out in a previous pass-through, there is no need to send another one unless the location of the sound source 38 changes, which may require a new time delay instruction to be sent along with another determination of the starting positions for the first and second read pointers. In the present implementation, the time delays associated with first register R1 and second register R2 of a given processor 14a-14c are typically the same but may differ in other implementations.
Now in sync, each processor 14a-14c writes the LO byte of its corresponding first register R1 to channel_1 at step 50. As shown in
At steps 52 and 54, the LO bytes are read from channel_1 when the sync line 32 turns high, which commences the second phase of the cycle. As shown in
Upon completing step 56, the processors 14a-14c wait for the sync line 32 to turn low at step 58 to start of the third phase of the cycle. After the sync line 32 turns low, each processor 14a-14c reads the next sound sample from its ADC 20 and writes the sound sample to its ring buffer 22 at step 60 (
At this point, processors 14b and 14a will have each received 16 bits of data from processors 14c and 14b, respectively. Likewise, the controller 18 will have received 16 bits of data from processor 14a. At step 66, each processor 14a-14c reads its ring buffer 22 and transfers the sound sample at read pointer 1 to its first register R1 as shown in
Next, at step 70, each processor 14a-14c writes the LO byte of its second register R2 to channel_1. As shown in
The fourth phase of the cycle begins when the sync line 32 turns high at step 72, at which time the LO bytes are read from channel_1 at step 74. As shown in
The fifth phase begins after the sync line 32 turns low at step 78, at which time the HI bytes are read from channel_1 at step 80. As shown in
Upon completing step 80, processors 14b and 14a will have each received 16 bits of data from processors 14c and 14b, respectively. Likewise, the controller 18 will have received 16 bits of data from processor 14a. At step 82, each processor 14a-14c reads its ring buffer 22 and transfers the sound sample at the second read pointer to its second register R2, as shown in
Accordingly, for every pass-through of the method 40, the ADC 20 of each processor 14a-14c is read twice while only one signal associated with the use of the first registers R1 is outputted to the speaker 37 and only one signal associated with the use of the second registers R2 is outputted to the speaker 37. By operating the ADCs 20 in this manner, a finer granularity can be achieved. While the method 40 has been described herein as being implemented using two registers R1, R2, it should be appreciated that a single register or more than two registers can be used in other embodiments.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Number | Name | Date | Kind |
---|---|---|---|
4131760 | Christensen et al. | Dec 1978 | A |
4559642 | Miyaji et al. | Dec 1985 | A |
5400409 | Linhard | Mar 1995 | A |
5581620 | Brandstein et al. | Dec 1996 | A |
5787183 | Chu et al. | Jul 1998 | A |
6421448 | Arndt et al. | Jul 2002 | B1 |
6430295 | Handel et al. | Aug 2002 | B1 |
6529869 | Wietzke et al. | Mar 2003 | B1 |
6757394 | Matsuo | Jun 2004 | B2 |
6912178 | Chu et al. | Jun 2005 | B2 |
7035416 | Matsuo | Apr 2006 | B2 |
7203323 | Tashev | Apr 2007 | B2 |
7254241 | Rui et al. | Aug 2007 | B2 |
7313243 | Hsu | Dec 2007 | B2 |
7460677 | Soede et al. | Dec 2008 | B1 |
7561701 | Fischer | Jul 2009 | B2 |
7630503 | Schulz et al. | Dec 2009 | B2 |
7764801 | Soede et al. | Jul 2010 | B2 |
7787328 | Chu et al. | Aug 2010 | B2 |
7817805 | Griffin | Oct 2010 | B1 |
7970152 | Fischer et al. | Jun 2011 | B2 |
7991168 | Wu et al. | Aug 2011 | B2 |
8150065 | Solbach et al. | Apr 2012 | B2 |
8218787 | Kushida | Jul 2012 | B2 |
8219387 | Cutler et al. | Jul 2012 | B2 |
8233353 | Zhang et al. | Jul 2012 | B2 |
8238573 | Ishibashi et al. | Aug 2012 | B2 |
8243952 | Thormundsson et al. | Aug 2012 | B2 |
8526633 | Ukai et al. | Sep 2013 | B2 |
8559611 | Ratmanski et al. | Oct 2013 | B2 |
9479866 | Adams | Oct 2016 | B2 |
20060013416 | Truong et al. | Jan 2006 | A1 |
20100150364 | Buck | Jun 2010 | A1 |
20130029684 | Kawaguchi et al. | Jan 2013 | A1 |
20130051577 | Morcelli et al. | Feb 2013 | A1 |
20130142355 | Isaac et al. | Jun 2013 | A1 |
20130142356 | Isaac et al. | Jun 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20160182997 A1 | Jun 2016 | US |