This application is a National Stage of International Application No. PCT/CN2020/126801, filed on Nov. 5, 2020, which claims priority to Chinese Patent Application No. 201911089625.9, filed on Nov. 8, 2019, both of which are hereby incorporated by reference in their entireties.
The present disclosure relates to the technical field of electro-acoustic devices, and particularly to a sound-producing device.
A speaker is a basic sound-producing unit that converts electrical signals into acoustic signals. A damper is a component in a speaker that adjusts vibration direction of a vibrating diaphragm thereof, and restrains polarization of the vibrating diaphragm by mechanical restoring force. Performance of a damper greatly influences acoustic performance and service life of a speaker.
A traditional damper is of an annular shape. An annular damper is provided as a corrugated structure along its radial direction. A damper is usually made of materials such as CONEX, blended fabric, cloth, etc. Limited by the above material types, it is difficult for a prior art damper to make its Kms very small. Since Kms and Cms of a sound-producing device are reciprocal to each other, the compliance Cms of the damper will degrade if the vibration amplitude thereof is large. This results in a relatively high resonance frequency F0 of the speaker. Since F0 is an important factor influencing acoustic performance of the speaker, a high F0 will result in degraded bass sensitivity of the speaker product. At the same time, a speaker using the traditional damper has a relatively high total harmonic distortion (THD), which degrades acoustic performance of the speaker and greatly influences user experience.
Moreover, hardness of the damper increases in a high-temperature and humid environment since material of the damper is usually chemical fiber, blended fabric, etc. As such, the damper is prone to be deformed or even broken, and thus its fatigue performance also degrades. Service life of the speaker will also be significantly shortened, because failure of the damper will directly cause failure of the speaker.
Therefore, it is necessary to improve the damper to solve the problem of poor acoustic performance and short service life of prior art speakers.
The present disclosure aims to provide a sound-producing device, which can improve acoustic performance of existing sound-producing devices and prolong service lives thereof.
A sound-producing device, including:
Optionally, the sound-producing device has a total harmonic distortion THD of less than 2.5% at a frequency of 200 Hz.
Optionally, the sound-producing device has a total harmonic distortion THD of less than 2% at a frequency of 300 Hz.
Optionally, a width of the planar elastic part gradually increases along a direction from the first connecting part to the second connecting part, with extension lines of two sides of the planar elastic part in its width direction intersecting at a point in a direction in which the first connecting part faces away from the second connecting part and forming an acute angle.
Optionally, the acute angle is no less than 10°.
Optionally, the acute angle is greater than 20°.
Optionally, each bending of the planar elastic part constitutes a bending track; and a number of bending tracks is no less than 3.
Optionally, each bending of the planar elastic part constitutes a bending track; and an interval between two adjacent bending tracks is no greater than 1.5 mm.
Optionally, the damper is formed by winding a metal wire into a line-like shape, and an interval between two adjacent bending tracks is greater than a wire diameter of the metal wire.
Optionally, the wire diameter of the metal wire is 0.2 mm to 0.5 mm.
Optionally, the wire diameter of the metal wire is 0.3 mm to 0.4 mm.
Optionally, the damper includes two planar elastic parts which are formed by both ends of the first connecting part being bent and extending in an S shape respectively.
Optionally, the first connecting part is in the shape of an arc between the two planar elastic parts.
Optionally, the first connecting part is in the shape of a broken line between the two planar elastic parts.
Optionally, the second connecting part is of a hook structure.
Advantages of the technical solution of the present disclosure are: a sound-producing device with the abovementioned damper is using a damper that can achieve a smaller Kms. Comparing with the prior art, F0 of the device is made lower, thereby achieving good acoustic performance and effectively prolonging service life of the sound-producing device.
Other features and advantages of the present disclosure will be readily apparent from the following detailed description of exemplary embodiments of the present disclosure with reference to the drawings.
The accompanying drawings, which are incorporated into this specification and constitute a part thereof, illustrate embodiments of the present disclosure and, together with the description, serve to explain the principles of the present disclosure.
Reference signs are as follows: 1—damper; 11—first connecting part; 12—second connecting part; 13—planar elastic part;
Note: two bending tracks constitute one corrugation.
Various exemplary embodiments of the present disclosure will now be described in detail with reference to the accompanying drawings. It is to be noted that unless otherwise specified, relative arrangement, numerical expressions and numerical values of components and steps illustrated in these embodiments do not limit the scope of the present disclosure.
Description to at least one exemplary embodiment is in fact illustrative only, and is in no way limiting to the present disclosure or application or use thereof.
Techniques, methods and devices known to those skilled in the prior art may not be discussed in detail; however, the techniques, methods and devices shall be regarded as part of the description where appropriate.
In all the illustrated and discussed examples, any specific value shall be explained as only exemplary rather than restrictive. Thus, other examples of exemplary embodiments may have different values.
It is to be noted that similar reference numbers and alphabetical letters represent similar items in the drawings below, such that once a certain item is defined in a drawing, further discussion thereon in the subsequent drawings is no longer necessary.
A damper is a component installed in the speaker to adjust the vibration and center the voice coil at the same time. The performance of the damper has a great influence on the acoustic performance and service life of the speaker, such as the distortion and low frequency sensitivity of the speaker.
A traditional damper is of an annular shape, and is provided as a corrugated structure in the radial direction thereof. A damper is usually made of CONEX, blended fabrics, cloth and other materials. As such, when a voice coil is of large vibration amplitude, compliance Cms of the damper degrades. That is, mechanical stiffness Kms is large (Kms and Cms are reciprocal to each other) while compliance is poor in symmetry. This results in a relatively high resonance frequency F0 of the speaker. Since F0 is an important factor influencing acoustic performance of the speaker, a high F0 will result in degraded bass sensitivity of the speaker product. At the same time, a speaker using the traditional damper has a relatively high total harmonic distortion (THD), which degrades acoustic performance of the speaker and greatly influences user experience.
Moreover, hardness of the damper increases in a high-temperature and humid environment since material of the damper is usually chemical fiber, blended fabric, etc. As such, the damper is prone to be deformed or even broken, and thus its fatigue performance also degrades. Service life of the speaker will also be significantly shortened, because failure of the damper will directly cause failure of the speaker.
Therefore, in order to solve the above technical problems, the present disclosure provides improvements to existing dampers.
A sound-producing device, as shown in
The sound-producing device includes a damper, and in a preferred embodiment, the damper serves as a damper of the sound-producing device. One end of the damper is provided as a first connecting part. A voice coil is installed in the sound-producing device, and the first connecting part is connected to the voice coil of the sound-producing device. Optionally, the voice coil includes a voice coil body and a bobbin, both of which are tubular structures. The voice coil body is a coil wound on a bobbin, and the bobbin is used for supporting the voice coil body. The first connecting part of the damper can be connected to the bobbin, and can also be connected to the voice coil body. The other end of the damper is provided as a second connecting part, which is fixed on the sound-producing device. Optionally, the sound-producing device further includes a casing, and the second connection portion is fixed on the casing. The first connecting part is bent and extends toward the second connecting part to form a planar elastic part connected between the first connecting part and the second connecting part. Optionally, the planar elastic part may be a homocentric structure just like a spring, and has the ability to elastically deform. The damper is connected to the voice coil via the first connecting part, while the second connecting part is connected to the sound-producing device and installed in the sound-producing device. As a damper of the sound-producing device, it can adjust vibration of the sound-producing device, and at the same time functions to center the voice coil. When the planar elastic part is capable of elastic deformation, it has better polarization adjustment performance.
Optionally, the mechanical stiffness Kms of the damper is 0.2 N/mm to 2 N/mm. The mechanical stiffness Kms is the reciprocal of compliance, which reflects the compliance of the damper to the driving force. Kms is an important factor influencing the acoustic performance of the sound-producing device. The damper of the present disclosure has a mechanical stiffness Kms of 0.2 N/mm to 2 N/mm. Within this range of mechanical stiffness, the damper has good compliance with driving force, and refrains from plastic deformation and damage when the sound-producing device is vibrating with a large displacement. Therefore, when the mechanical stiffness of the damper is 0.2 N/mm to 2 N/mm, the sound-producing device can achieve better acoustic performance.
Optionally, the resonance frequency F0 of the sound-producing device is 50 Hz to 300 Hz; the resonance frequency F0 is an important parameter that influences the low-frequency performance of the sound-producing device, and its calculation formula is as follows:
F0=½π√{square root over (Kms/Mms)}
It can be seen from the above formula that Kms and Mms are two factors that influence F0. The smaller Kms is, the smaller the resonance frequency F0 is, and the better the acoustic performance of the sound-producing device is. The larger Mms, the smaller the resonance frequency F0. Under the existing technical conditions, in order to achieve a small mechanical stiffness, it is bound to put forward higher demands on performance of the material, which will undoubtedly increase the manufacturing cost of the sound-producing device. On the other hand, if the resonance frequency F0 is reduced by increasing the equivalent mass of the sound-producing device, it not only violates the principle of light weight of the product, but also adversely influences other performances of the sound-producing device. Therefore, in the present disclosure, by limiting the resonance frequency F0 within the range of 50 Hz to 300 Hz, the sound-producing device can achieve good low-frequency acoustic performance, while balancing the relationship between the low-frequency acoustic performance on one hand and the product manufacturing cost and other properties of the sound-producing device on the other hand.
According to an embodiment of the present disclosure, the impedances of the existing damper (curve b) and the sound-producing device using the above-mentioned damper (curve c) are measured, and the measured results are shown in
Total Harmonic Distortion (THD) is a parameter that reflects the degree of sound reproduction of a sound-producing device. The larger THD value is, the more serious the sound distortion of the sound-producing device is, and the worse the listening effect of the sound-producing device is. Therefore, in order to achieve a good sense of hearing, the sound-producing device is required to have a small total harmonic distortion THD. According to an embodiment of the present disclosure, the total harmonic distortion THD of an existing damper (curve b) and a sound-producing device using the above-mentioned damper (curve c) is measured, and the results are shown in
Optionally, in the frequency range of 100 Hz to 300 Hz, the total harmonic distortion THD of the sound-producing device is less than 10%. In the above frequency range, limiting the total harmonic distortion THD of the sound-producing device to less than 10% can ensure a small sound distortion of the sound-producing device, thereby enabling the user to enjoy a better listening effect. Preferably, at a frequency of 200 Hz, the total harmonic distortion THD of the sound-producing device is limited to less than 2.5%. Preferably, at a frequency of 300 Hz, the total harmonic distortion THD of the sound-producing device is limited to less than 2%.
Optionally, a width of the planar elastic part gradually increases along a direction from the first connecting part to the second connecting part, with extension lines of two sides of the planar elastic part in its width direction intersecting at a point in a direction in which the first connecting part faces away from the second connecting part and forming an acute angle. In one embodiment, the acute angle is no less than 10°. Further, in a preferred embodiment, the acute angle is greater than 20°.
It is found from actual testing that the acute angle formed upon extension and intersection of the two side edges of the planar elastic part will influence the mechanical stiffness of the damper.
Optionally, each bending of the planar elastic part constitutes a bending track, and a number of bending tracks is no less than 3. In this design, the effective amount of deformation of the damper can satisfy the use demands on the sound-producing device. This enables the sound-producing device to achieve good acoustic performance, with its service life satisfying the design demands. Of course, the user can adjust the effective number of turns of the damper according to actual needs, which is not specifically limited in the present disclosure. In one embodiment, each bending of the planar elastic part constitutes a bending track, and the interval between two adjacent bending tracks is no more than 1.5 mm. In a preferred embodiment, every two adjacent bending tracks are equally spaced.
As shown in
In one embodiment, an interval between two adjacent bending tracks is greater than a wire diameter of the metal wire of the damper. In one embodiment, the wire diameter of the metal wire of the damper is 0.2 mm to 0.5 mm. In a more preferred embodiment, the wire diameter of the metal wire of the damper is 0.3 mm to 0.4 mm.
As shown in
In one embodiment, the first connecting part, the planar elastic part and the second connecting part are integrally formed. That is, the entire damper is wound by a metal wire and formed into a line-like shape. This forming approach is convenient for operation and processing in terms of technology. At the same time, by reasonably selecting the type of metal material and adjusting the performance of the damper, a damper with good compliance and high fatigue strength can be obtained, enabling the sound-producing device to achieve a smaller resonance frequency F0 and a longer service life. In addition, the metal material has good temperature resistance and humidity resistance, and the damper made thereof may be used in extreme environments such as high temperature and high humidity with little impact on the acoustic performance and service life of the sound-producing device. In addition, a damper made of metal material can be used to replace the lead wire in the sound-producing device, for inputting electrical signals to the voice coil body. On one hand, this arrangement can reduce production cost of the sound-producing device; on the other hand, it can solve the compliance problem of the lead wire under the trend of miniaturization of the existing sound-producing device, and alleviate the problem of poor hearing caused by the compliance of the lead wire, thereby enabling the sound-producing device products to reduce their height.
In one embodiment, as shown in
Optionally, as shown in
Optionally, the first connecting part is in the shape of an arc between the two planar elastic parts.
Optionally, the first connecting part is in the shape of a broken line between the two planar elastic parts. In this embodiment, the zigzag shape of the broken line forms an outwardly convex structure along the height direction of the voice coil. During use, the convex structure is attached to the periphery of the voice coil to function as a firm support for the voice coil.
Optionally, as shown in
Although the present disclosure has been described in detail in connection with some specific embodiments by way of illustration, those skilled in the art should understand that the above examples are provided for illustration only and should not be taken as a limitation on the scope of the disclosure. Those skilled in the art will appreciate that modifications may be made to the above embodiments without departing from the scope and spirit of the present disclosure. We therefore claim as our invention all that comes within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201911089625.9 | Nov 2019 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/126801 | 11/5/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/088929 | 5/14/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5757945 | Sakamoto | May 1998 | A |
7515727 | Watanabe | Apr 2009 | B2 |
9942680 | Little | Apr 2018 | B1 |
10863257 | Pierce | Dec 2020 | B1 |
20050111689 | True | May 2005 | A1 |
20170339478 | Xiao | Nov 2017 | A1 |
20190149924 | Cheng | May 2019 | A1 |
20220377465 | Yang | Nov 2022 | A1 |
20220408192 | Yang | Dec 2022 | A1 |
20220417664 | Hsu | Dec 2022 | A1 |
20230199393 | Chen | Jun 2023 | A1 |
20230232157 | Liu | Jul 2023 | A1 |
Number | Date | Country | |
---|---|---|---|
20220386034 A1 | Dec 2022 | US |