The present disclosure relates to a sound receiving structure and a sound receiving electronic device using the sound receiving structure; more particularly, the present disclosure relates to a sound receiving structure that can be readily assembled without affecting the sound reception quality.
In a smart sound receiving electronic device, a microphone is installed in the sound receiving electronic device to receive a voice instruction of a user. Thus, the smart sound receiving electronic device performs a corresponding response or action in response to the voice instruction. As shown in
When the housing 500, the sound guiding tube 600 and the circuit board 700 are assembled, the three holes, namely, the housing hole 510, the sound guiding hole 610 and the circuit board hole 710, need to be aligned with one another in order to form a complete sound receiving channel. To readily align the housing hole 510, the sound guiding hole 610 and the circuit board hole 710, the size of the sound guiding hole 610 is designed to be larger than that of the housing hole 510, and the size of the housing hole 510 is designed to be larger than that of the circuit board hole 710. However, an ideal structure of a sound receiving channel should gradually decrease in size from an outer end to an inner end to prevent distortion of the sound received. Thus, if the size of the sound guiding hole 610 is designed to be larger than that of the housing hole 510, the sound received can be distorted by the large-sized sound guiding hole 610 such that the sound reception quality of the microphone 720 is undesirably affected. Furthermore, in a conventional sound receiving electronic device, the sound guiding tube 600 is closely adhered below the housing 500; however, wind shear sounds generated due to insufficient airtightness between the sound guiding tube 600 and the housing 500 can result in interference of the sound reception quality.
Therefore, there is a need for a sound receiving structure that can be readily assembled without affecting the sound reception quality of a microphone.
It is a primary object of the present disclosure to provide a sound receiving structure that can be readily assembled without affecting the sound reception quality and to provide a sound receiving electronic device using the sound receiving structure.
To achieve the above object, a sound receiving electronic device of the present disclosure includes a housing and a sound receiving structure. The housing includes a housing hole. The sound receiving structure is applied to receive a sound and includes a circuit board and an accommodating structure. The circuit board includes a plate, a sound guiding tube and a microphone. The plate includes a circuit board hole. The sound guiding tube is provided above the plate and located in the housing hole, and the sound guiding tube includes a sound guiding hole aligned with the circuit board hole, wherein a diameter of the circuit board hole is smaller than a diameter of the sound guiding hole. The microphone is provided below the plate and corresponds in position to the circuit board hole. A sound can pass through the sound guiding hole and the circuit board hole and then enter the microphone. The accommodating structure is fastened to the housing, and an accommodating space is formed between the accommodating structure and the housing to accommodate the circuit board.
According to an embodiment of the present disclosure, a diameter of the sound guiding tube is equal to a diameter of the housing hole.
According to an embodiment of the present disclosure, the sound receiving structure further includes a blocking fabric, which is connected to the housing and covers the housing hole.
According to an embodiment of the present disclosure, the sound receiving structure further includes a first buffer member, which is located between the circuit board and the housing.
According to an embodiment of the present disclosure, the sound receiving structure further includes a second buffer member, the accommodating structure further includes an accommodating structure bottom surface, and the second buffer member is located between the accommodating structure bottom surface and the circuit board.
According to an embodiment of the present disclosure, the second buffer member further includes a recess in which the microphone is located.
According to an embodiment of the present disclosure, the sound guiding tube is connected above the plate by an adhesive.
According to an embodiment of the present disclosure, the accommodating structure further includes an accommodating structure fastening hole and an accommodating structure fastening rod, the housing further includes a housing fastening portion, and the accommodating structure fastening rod passes through the accommodating structure fastening hole and is fastened to the housing fastening portion.
Refer to
As shown in
As shown in
In one embodiment of the present invention, the accommodating structure 30 is fastened to the housing 310. An accommodating space 31 is formed between the accommodating structure 30 and the housing 310 and accommodates the circuit board 20, the first buffer member 50, the second buffer member 60 and the adhesive layer 70. The accommodating structure 30 includes an accommodating structure bottom surface 32, two accommodating structure fastening holes 33 and two accommodating structure fastening rods 34. The accommodating structure fastening rod 34 is, for example, a screw. The accommodating structure fastening rods 34, which are in the form of screws, pass through the accommodating structure fastening holes 33 and are fastened to the housing fastening portions 312, which are in the form of screw hole structures, thereby securely fastening the accommodating structure 30 to the housing 310. It should be noted that, although a position of only one housing fastening portion 312 is depicted in the drawings, according to positions of the two accommodating structure fastening holes 33 in
In one embodiment of the present invention, the blocking fabric 40 is an elastic fabric providing a decorative function and allowing the sound to pass through. The blocking fabric 40 is connected to the housing 310 and covers the housing hole 311 so as to prevent the housing hole 311 from being seen by a user and thus from affecting an aesthetic appearance.
In one embodiment of the present invention, the first buffer member 50 is, for example, a rubber piece. The first buffer member 50 is located between the circuit board 20 and the housing 310 and provides a buffer function to prevent mutual collision among components and hence from generating noise. Moreover, the first buffer member 50 can also absorb sounds entering from the gap between the sound guiding tube 10 and the housing hole 311 so as to prevent undesired entering sounds from affecting the sound reception quality.
In one embodiment of the present invention, the second buffer member 60 is, for example, a rubber piece. The second buffer member 60 is located between the accommodating structure bottom surface 32 and the circuit board 20. The second buffer member 60 includes a recess 61, in which the microphone 23 is located. The second buffer member 60 provides a buffer function to prevent mutual collision among components and hence from generating noise. Moreover, the second buffer member 60 can also absorb sounds entering from the gaps between the sound guiding tube 10, the housing hole 311 and the circuit board 20 so as to prevent undesired entering sounds from affecting the sound reception quality.
In one embodiment of the present invention, the adhesive layer 70 is, for example, a double-sided adhesive tape and covers the circuit board 20 (as a dotted region shown on the circuit board 20 in
To assemble the sound receiving structure 1 of the present invention, a double-sided adhesive tape (not shown) is first applied to the bottom of the sound guiding tube 10, and the adhesive layer 70 is applied to the plate 21. Next, one side of the sound guiding tube 10 with the double-sided adhesive tape applied is placed on the adhesive layer 70, and the sound guiding hole 11 is aligned with the circuit board hole 22, hence completing the sound receiving channel for transmitting a sound. Then the first buffer member 50 is placed on the adhesive layer 70, and the sound guiding tube 10 is placed in the housing hole 311 such that the first buffer member 50 is located between the circuit board 20 and the housing 310 to provide a buffer effect and to absorb noise. The second buffer member 60 is then placed on the accommodating structure bottom surface 32 of the accommodating structure 30 such that the second buffer member 60 covers the bottom of the circuit board 20 and the microphone 23 is located in the recess 61; by this design, the second buffer member 60 provides a buffer effect and absorbs noise. Next, the accommodating structure fastening rods 34 in the form of screws are passed through the respective accommodating structure fastening holes 33 and are fastened to the respective corresponding housing fastening portions 312 in the form of screw hole structures so as to securely fasten the accommodating structure 30 to the housing 310. Finally, the blocking fabric 40 is arranged to cover the housing hole 311 to prevent the housing hole 311 and the sound guiding tube 10 from affecting the aesthetic appearance, and the assembly process of the sound receiving structure 1 is thus completed.
With the design of the sound receiving structure 1 of the present invention, an assembly worker can easily align the sound guiding hole with the circuit board hole so as to assemble the sound receiving structure 1. Furthermore, the size of the sound receiving channel formed by the sound guiding hole and the circuit board hole gradually decreases in size from an outer end to an inner end, and such gradually narrowing structure is capable of preventing distortion of a sound received. Moreover, the first buffer member and the second buffer member can provide a buffer effect and absorb noise, thus further ensuring the sound reception quality. In addition, the housing hole of the present invention is merely for accommodating the sound guiding tube rather than forming a sound receiving channel, and hence the airtightness between the housing hole and the sound guiding tube does not at all affect the sound reception quality.
Number | Date | Country | Kind |
---|---|---|---|
10721141.9 | Aug 2018 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
8295528 | Rombach | Oct 2012 | B2 |
8509459 | Isvan | Aug 2013 | B1 |
9078063 | Loeppert | Jul 2015 | B2 |
10051355 | Zoellin | Aug 2018 | B2 |
10277983 | Yoo | Apr 2019 | B2 |
10362378 | Doi | Jul 2019 | B2 |
20050018864 | Minervini | Jan 2005 | A1 |
20080123891 | Kato | May 2008 | A1 |
20090034777 | Nho | Feb 2009 | A1 |
20120250925 | Lillelund | Oct 2012 | A1 |
20130070950 | Chen | Mar 2013 | A1 |
20150373446 | Chen | Dec 2015 | A1 |
20180242065 | Doi | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
10-0650280 | Nov 2006 | KR |
10-2010-0065123 | Jun 2010 | KR |
10-2014-0135256 | Nov 2014 | KR |
Number | Date | Country | |
---|---|---|---|
20200059722 A1 | Feb 2020 | US |