This Application claims priority of Taiwan Patent Application No. 111117766, filed on May 12, 2022, the entirety of which is incorporated by reference herein.
The present disclosure relates to a sound-receiving system and an electronic device including the same, and more particularly, to a sound-receiving system that may improve sound quality and an electronic device including the same.
Frequency response refers to the volume of a microphone's response to different sound frequencies. The human ear may hear frequencies from 20 hertz (Hz) to 20 kilohertz (kHz), and microphones are marked with their frequency response in this way. The line in the graph of a microphone with good frequency response is flat. That is, it may reflect nearly equal sound-receiving effects at most of the main frequencies, which is very suitable for recording real ambient sound. However, in reality, the frequency response of the microphone is not flat.
The sound-receiving tube (sound-guiding tube) of a microphone may be very long, especially for those installed in electronic devices (for example, laptops, tablets, mobile phones, etc.), which are limited by their configuration requirements. As a result, the frequency response of the microphone will generate irregular amplification in the voice band, which in turn affects the recording quality, voice recognition, and voice call quality.
Therefore, there is a need for a sound-receiving system that overcomes existing problems, so as to increase the reliability of the microphone and reduce the cost.
An embodiment of the present invention provides a sound-receiving system, including a sound-guiding tube, a microphone, and an acoustic perforated sheet. The sound-guiding tube has a winding path, including a first end, a second end, and a sound-receiving hole. The second end is opposite the first end. The sound-receiving hole is disposed at the first end. The microphone is abutted against the second end. The acoustic perforated sheet is disposed adjacent to the sound-receiving hole and is a distance away from the sound-receiving hole. The sound-receiving hole is offset from the microphone. The acoustic perforated sheet reduces and filters the frequency response of a specific frequency range of the microphone.
In some embodiments, the specific frequency range of the microphone is from 100 Hz to 8000 Hz. In some embodiments, the acoustic perforated sheet reduces the frequency response of the specific frequency range of the microphone by between 15 dB and 40 dB. In some embodiments, the smaller the mesh opening of the acoustic perforated sheet, the more the frequency response of the specific frequency range of the microphone is reduced, and the more the frequency response is filtered. In some embodiments, the sound-guiding tube further includes a first tube portion and a second tube portion. The first end and the sound-receiving hole are located at the first tube portion. The second end is located at the second tube portion. The microphone is abutted against the second tube portion. The first extension direction of the first tube portion is not parallel to the second extension direction of the second tube portion. In some embodiments, the acoustic perforated sheet is disposed in the first tube portion. In some embodiments, the sound-guiding tube has an L-like shape. In some embodiments, the length of the first tube portion is greater than 2 mm, and the length of the second tube portion is greater than 0.5 mm. In some embodiments, the diameter of the sound-receiving hole is greater than 1 mm, and the length of the sound-guiding tube is between 3 mm and 4 mm, or greater than 4 mm.
In some embodiments, the sound-guiding tube further includes a first tube portion, a second tube portion, and a third tube portion. The first end and the sound-receiving hole are located at the first tube portion. The second end is located at the second tube portion. The microphone abuts the second tube portion. The third tube portion is located between the first tube portion and the second tube portion. The first extension direction of the first tube portion is not parallel to the third extension direction of the third tube portion. The second extending direction of the second tube portion is not parallel to the third extending direction of the third tube portion. In some embodiments, the acoustic perforated sheet is disposed in the first tube portion. In some embodiments, the sound-guiding tube has a Z-like shape. In some embodiments, the length of the first tube portion is greater than 0.7 mm, the length of the second tube portion is greater than 1 mm, and the length of the third tube portion is greater than 1 mm. In some embodiments, the diameter of the sound-receiving hole is greater than 1 mm, and the length of the sound-guiding tube is between 3 mm and 4 mm, or greater than 4 mm. In some embodiments, in the equivalent circuit model of the sound-receiving system, the acoustic perforated sheet is analogous to an equivalent resistance and an equivalent inductance. In some embodiments, in the equivalent circuit model of the sound-receiving system, the acoustic perforated sheet is expressed as the following equation:
where ZA is the acoustic impedance of the acoustic perforated sheet, where a is the radius of the mesh openings of the acoustic perforated sheet, where b is d+w+d, where d is the diameter of the wire of the acoustic perforated sheet, where w is the side length of the wire of the acoustic perforated sheet, where t is the thickness of the acoustic perforated sheet, where N is the number of mesh openings in the acoustic perforated sheet, where μ is the kinematic coefficient for air, where ω is the frequency, where ρ0 is the density of air, wherein
is the analog resistance of the acoustic perforated sheet, and
is the analog inductance of the acoustic perforated sheet.
An embodiment of the present invention provides an electronic device, including: a housing, a glass panel, and the sound-receiving system of claim 1. The glass panel is connected to the housing. The sound-receiving hole of the sound-receiving system is exposed to the glass panel or the housing, and the microphone of the sound-receiving system is shielded by the glass panel or the housing.
The present disclosure may be clearly understood from the following detailed description in conjunction with the drawings. It should be noted that in accordance with standard industry practice, various features are not drawn to scale, and they are used for illustration purposes only. In fact, the dimensions of various features may be arbitrarily increased or decreased for clarity.
In order to make the purposes, features, and advantages of the present disclosure more obvious and easy to understand, the following embodiments are provided and described in detail with the accompanying drawings. Wherein the configuration of each element in the embodiments is for illustrative purposes, and is not intended to limit the present disclosure. In addition, some of the reference numerals in the drawings in the embodiments are repeated for the purpose of simplifying the description, which do not indicate the relationship between different embodiments. The directional terms mentioned in the following embodiments, such as up, down, left, right, front or rear, etc., are only for referring to the directions of the attached drawings. Accordingly, the directional terms are illustrative and not for limiting of the present disclosure.
The ordinal numbers in this specification and the claims, such as “first”, “second”, “third”, etc., do not have a sequential relationship with each other, and are only used to mark and distinguish two different elements with the same name.
Please refer to
The display module 2 is connected to the host module 3, and the display module 2 may include a glass panel 10, a housing 20, a lens module 30, and at least one sound-receiving system 40. The glass panel 10 may be connected to the housing 20. The lens module 30 may be disposed between the glass panel 10 and the housing 20. That is, the lens module 30 may be disposed under the glass panel 10.
For example, in the embodiment shown in
As shown in
According to some embodiments of the present disclosure, the two sound-receiving systems 40 may be separated from the lens module 30 by 25 mm to 50 mm. That is, the two sound-receiving systems 40 may be separated from each other by 50 mm to 100 mm.
For example, according to some embodiments of the present disclosure, the two sound-receiving systems 40 may be separated from the lens module 30 by 33 mm. That is, the two sound-receiving systems 40 may be separated from each other by 66 mm.
Referring to
Please refer to
Referring to
As shown in
Please refer to
According to some embodiments of the present disclosure, the diameter of the sound-receiving hole 414 may be greater than 1 mm. According to some embodiments of the present disclosure, the length of the first tube portion 411 may be greater than 0.7 mm, the length of the second tube portion 412 may be greater than 1 mm, and the length of the third tube portion 413 may be greater than 1 mm. According to some embodiments of the present disclosure, the length of the sound-guiding tube 41 (the sum of the lengths of the first tube portion 411, the second tube portion 412, and the third tube portion 413) may be between 3 mm and 4 mm, or greater than 4 mm.
For example, according to some embodiments of the present disclosure, the diameter of the sound-receiving hole 414 may be 1.39 mm. According to some embodiments of the present disclosure, the length of the first tube portion 411 may be 0.75 mm, the length of the second tube portion 412 may be 5.19 mm, and the length of the third tube portion 413 may be 2.5 mm. For example, according to some embodiments of the present disclosure, the length of the sound-guiding tube 41 (the sum of the lengths of the first tube portion 411, the second tube portion 412, and the third tube portion 413) may be 8.44 mm.
Please refer to
As shown in
For example, the first extension direction ED1 may be substantially parallel to the Z axis; the second extension direction ED2 may be substantially parallel to the Z axis; and the third extension direction ED3 may be substantially parallel to the Y axis.
Therefore, please refer to
Referring to
The sound-receiving hole 414 is located on the first tube portion 411, and the sound-receiving hole 414 is disposed on the first end 41a. The microphone 43 abuts against the second tube portion 412 and the second end 41b. That is, the sound-receiving hole 414 is not aligned with the microphone 43. In other words, the sound-receiving hole 414 is offset from the microphone 43.
As shown in
Please refer to
Since external sound waves may enter the sound-guiding tube 41 from the sound-receiving hole 414, and the sound waves may reach the microphone 43 along the path PA formed by the first tube portion 411, the second tube portion 412, and the third tube portion 413. Therefore, even if the microphone 43 is shielded by the glass panel 10, the microphone 43 may still achieve a good sound-receiving effect.
However, the length of the acoustic wave conduction path PA affects the frequency of the peak of the frequency response of the microphone 43. When the sound wave conduction path PA is longer, the frequency of the peak of the frequency response of the microphone 43 is lower; conversely, when the sound wave conduction path PA is shorter, the frequency of the peak of the frequency response of the microphone 43 is higher.
The peak of the frequency response of the microphone 43 may lie in a specific frequency range. This specific frequency range may be a speech frequency range. For example, the specific frequency range may be between 100 Hz to 8000 Hz, 100 Hz to 9000 Hz, 100 Hz to 10000 Hz, 100 Hz to 15000 Hz, or 1000 Hz to 8000 Hz, 1000 Hz to 9000 Hz, 1000 Hz to 10000 Hz, 1000 Hz to 15000 Hz, etc.
When the frequency of the peak of the frequency response of the microphone 43 is located in a specific frequency range, it is necessary to reduce (flatten) and filter the peak of the frequency response of the microphone 43 in the specific frequency range to achieve good sound quality.
As shown in
According to some embodiments of the present disclosure, the acoustic perforated sheet 42 may reduce the frequency response of the specific frequency range of the microphone 43 by between 15 dB and 40 dB. For example, the acoustic perforated sheet 42 may reduce the frequency response of a particular frequency range of the microphone 43 by 16 dB, 18 dB, 24 dB, 30 dB, or more than 30 dB.
In addition, the sound-receiving system 40 of the embodiment of the present disclosure may also shift the peak of the frequency response to a higher frequency. For example, as shown in
According to some embodiments of the present disclosure, the acoustic perforated sheet 42 may shift the peak of the frequency response to about 12,000 Hz, 15,000 Hz, or above 15,000 Hz.
Please refer to
The acoustic perforated sheet 42 may be a perforated sheet, a mesh screen, or the like. For example, the acoustic perforated sheet 42 may be an acoustic mesh having item names B090, B160, B260, and the like. For example, the acoustic perforated sheet 42 may be a porous plate or screen having a mesh count of 230, 480, or 508, or the like. For example, the acoustic perforated sheet 42 may be a porous plate or screen with mesh openings of 41 microns, 21 microns, or 18 microns.
According to some embodiments of the present disclosure, the acoustic perforated sheet 42 may be a mesh having an item name of B090, having a mesh count of 230, and having a mesh opening of 41 microns.
According to some embodiments of the present disclosure, when the fineness of the acoustic perforated sheet 42 is higher (e.g., the mesh count is higher, or the mesh opening is smaller), the acoustic perforated sheet 42 may filter more of dust and noise. That is, the smaller the mesh opening of the acoustic perforated sheet 42, the more the frequency response of the specific frequency range of the microphone 43 is reduced, and the more the frequency response is filtered. Therefore, a finer acoustic perforated sheet 42 may achieve better sound quality.
According to some embodiments of the present disclosure, the acoustic perforated sheet 42 may have a reduced impedance when the fineness of the acoustic perforated sheet 42 is relatively low (e.g., the mesh count is relatively low, or the mesh opening is relatively large), which in turn requires less power. Therefore, the acoustic perforated sheet 42 with lower fineness may achieve the effect of saving power.
According to some embodiments of the present disclosure, the microphone 43 may include a microelectromechanical systems microphone (MEMS mic), and an application specific integrated circuit (ASIC), so the microphone 43 may convert the sound waves received into electrical signals for recording.
Please refer to
According to some embodiments of the present disclosure, the acoustic perforated sheet 42 may be disposed away from the sound-receiving hole 414 for a distance, and the distance may be in the range of ¼ to ½ of the sum of the length of the section A and the length of the section B.
In addition, according to some embodiments of the present disclosure, the length of the section A may be greater than 0.4 mm, and the length of the section B may be greater than 0.3 mm. That is, the acoustic perforated sheet 42 may be away from the sound-receiving hole 414 (or the first end 41a) by more than 0.4 mm, and the acoustic perforated sheet 42 may be away from the interface between the first tube portion 411 and the third tube portion 413 by more than 0.3 mm.
Please continue to refer to
The section D may be further divided into section D1 and section D2. The section D1 is from the interface between the second tube portion 412 and the third tube portion 413 to the interface between the section D1 and the section D2; the section D2 is from the interface between the section D1 and the section D2 to the second end 41b (or the interface between the second tube portion 412 and the microphone 43).
According to some embodiments of the present disclosure, the section A and the section B may be different elements. For example, the section A and the section B may not be integrally formed. According to some embodiments of the present disclosure, the section A may be composed of the same material as the bezel of the display module 2. For example, the section A may be composed of plastic.
According to some embodiments of the present disclosure, the section B, the section C, and the section D1 may be integrally formed. According to some embodiments of the present disclosure, the section B, the section C, and the section D1 may be composed of the same material as the bezel of the display module 2. For example, the section B, the section C, and the section D1 may be composed of plastic. In this way, the stability of the sound-receiving system 40 may be increased.
According to some embodiments of the present disclosure, the section D2 and the section D1 may be different elements. For example, the section D2 and the section D1 may not be integrally formed. According to some embodiments of the present disclosure, the section D2 may be composed of a material different from that of the bezel of the display module 2. For example, the section D2 may be composed of rubber.
According to other embodiments of the present disclosure, the section B, the section C, and the section D1 are not integrally formed. In one embodiment, the section C is not an independent element; rather, the section C may be a gap formed by other elements of the display module 2. In this way, the manufacturing cost of the sound-receiving system 40 may be reduced.
Please refer to
As shown in
The acoustic perforated sheet 42 may also be shown as the schematic view shown in
Moreover, if the sound-receiving system 40 is analogized to an equivalent circuit model, the acoustic perforated sheet 42 may be analogized to resistance and inductance, and the equation of its impedance is as follows:
Wherein, ZA is the acoustic impedance of the acoustic perforated sheet 42, and
is the analog resistance of the acoustic perforated sheet 42, and
is the analog inductance of the acoustic perforated sheet 42.
N is the number of mesh openings in the acoustic perforated sheet 42; μ is the kinematic coefficient for air, and in some embodiments, at a temperature of 20 ° C. and a pressure of 0.76 meters of mercury (mHg), μ may be 1.56×10−5 Ns/m2; ω) is the frequency; ρ0 is the air density, and in some embodiments, ρ0 may be 1.18 kg/m3.
Please refer to
The external acoustic wave may be analogized as an equivalent power source P; the section A may be analogized as an equivalent resistance RA and an equivalent inductance MA; the acoustic perforated sheet 42 may be analogized as an equivalent resistance RM and an equivalent inductance MM; the section B may be analogized as an equivalent capacitance CB; the section C may be analogized as an equivalent inductance MC; the section D may be analogized as an equivalent capacitance CD and an equivalent inductance MD.
Therefore, the acoustic perforated sheet 42 may still achieve the effect of reducing and filtering the peak of the frequency response in the equivalent circuit model.
Please refer to
As shown in
That is, as shown in
Likewise, the sound-receiving hole 414 is located on the first tube portion 411, and the sound-receiving hole 414 is disposed on the first end 41a. The microphone 43 abuts against the second tube portion 412 and the second end 41b. That is, the sound-receiving hole 414 is not aligned with the microphone 43. In other words, the sound-receiving hole 414 is offset from the microphone 43.
Please refer to
Since external sound waves may enter the sound-guiding tube 41 from the sound-receiving hole 414, and the sound waves may reach the microphone 43 along the path PA formed by the first tube portion 411 and the second tube portion 412. Therefore, even if the microphone 43 is shielded by the housing 20, the microphone 43 may still achieve a good sound-receiving effect.
Please continue to refer to
According to some embodiments of the present disclosure, the diameter of the sound-receiving hole 414 may be greater than 1 mm. According to some embodiments of the present disclosure, the length of the first tube portion 411 may be greater than 2 mm, and the length of the second tube portion 412 may be greater than 0.5 mm. According to some embodiments of the present disclosure, the length of the sound-guiding tube 41 (the sum of the lengths of the first tube portion 411 and the second tube portion 412) may be between 3 mm and 4 mm, or greater than 4 mm.
For example, according to some embodiments of the present disclosure, the diameter of the sound-receiving hole 414 may be 1.39 mm. According to some embodiments of the present disclosure, the length of the first tube portion 411 may be 3.88 mm, and the length of the second tube portion 412 may be 0.60 mm. For example, according to some embodiments of the present disclosure, the length of the sound-guiding tube 41 (the sum of the lengths of the first tube portion 411 and the second tube portion 412) may be 4.48 mm.
Please refer to
According to some embodiments of the present disclosure, the length of the section A may be greater than 1 mm, and the length of the section B may be greater than 1 mm. That is, the acoustic perforated sheet 42 may be away from the sound-receiving hole 414 (or the first end 41a) by more than 1 mm, and the acoustic perforated sheet 42 may be away from the interface between the first tube portion 411 and the second tube portion 412 by more than 1 mm.
The section B may be further divided into section B1 and section B2. The section B1 is from the acoustic perforated sheet 42 to the interface between the section B1 and the section B2; the section B2 is from the interface between the section B1 and the section B2 to the interface between the first tube 411 and the second tube 412.
The section C is from the interface between the first tube portion 411 and the second tube portion 412 to the second end 41b (or the interface between the second tube portion 412 and the microphone 43).
According to some embodiments of the present disclosure, the section A and the section B may be different elements. For example, the section A and the section B may not be integrally formed. According to some embodiments of the present disclosure, the section A may be composed of the same material as the housing 20. For example, the section A may be made of plastic or metal.
According to some embodiments of the present disclosure, the section B1 and the section B2 may not be integrally formed. According to some embodiments of the present disclosure, the section B1 may be composed of the same material as the bezel of the display module 2. For example, the section B1 may be made of plastic. The section B2 may be composed of rubber.
According to some embodiments of the present disclosure, the section C may be composed of rubber. According to some embodiments of the present disclosure, the section B2 and the section C may be integrally formed.
Even though the present disclosure mainly describes disposing the acoustic perforated sheet 42 at the interface between the section A and the section B, the acoustic perforated sheet 42 may also be disposed at other positions of the sound-guiding tube 41.
For example, the acoustic perforated sheet 42 may be disposed in the sound-receiving hole 414 (or the first end 41a), in the section A, in the section B, in the section B1, at the interface between the section B1 and the section B2, in the section B2, at the interface between the section B and the section C, in the section C, at the interface between the section C and the section D, in the section D1, at the interface between the section D1 and the section D2, in the section D2, at the second end 41b.
In general, the sound-receiving system according to the embodiment of the present disclosure may reduce (flatten) and filter the peak of the frequency response of the microphone, thereby achieving good sound quality. The embodiments of the present disclosure may solve the problems of recording quality, voice recognition, and voice call quality of a sound-receiving system with a long sound-guiding tube. Moreover, the sound-receiving system of the embodiment of the present disclosure may reduce the manufacturing cost, and may further increase the stability of the device.
Although the embodiments of the present disclosure and their advantages have been disclosed above, it should be understood that those skilled in the art may make changes, substitutions and modifications without departing from the spirit and scope of the present disclosure. In addition, the protection scope of the present disclosure is not limited to the process, machine, manufacture, material composition, device, method and steps in the specific embodiments described in the specification. It should be understood that the processes, machines, manufactures, compositions of matter, devices, methods and steps developed in the present or in the future may be used in accordance with the present disclosure as long as they may implement substantially the same functions or achieve substantially the same results in the embodiments described herein. Therefore, the scope of the present disclosure includes the above-mentioned processes, machines, manufactures, compositions of matter, devices, methods and steps. In addition, each claimed scope constitutes a separate embodiment, and the protection scope of the present disclosure also includes the combination of each claimed scope and the embodiments.
Number | Date | Country | Kind |
---|---|---|---|
111117766 | May 2022 | TW | national |