This application claims priority to EP application Serial No. 15200375.2 filed Dec. 16, 2015, the disclosure of which is hereby incorporated in its entirety by reference herein.
The disclosure relates to a system and method (generally referred to as a “system”) for sound reproduction and active noise control in a helmet.
Unfortunately, a motorcyclist's hearing may be impeded by engine noise, wind noise and helmet design, among other things. High noise levels, such as those experienced by motorcyclists, may render listening to music or speech in a helmet unpleasant or even impossible. Moreover, high intensity noise, which in turn requires high intensity speech and music signals for a satisfying listening experience, may have long-term consequences on a motorcyclist's hearing ability. Noise affecting a motorcyclist may have many sources, such as engine noise, road noise, other vehicle noise and wind noise. As the speed of a motorcycle increases, typically the most prominent source of noise is wind noise. This effect increases dramatically as speed increases. At highway speeds, noise levels may easily exceed 100 dB when wearing a traditional helmet. This is particularly troublesome for daily motorcyclists as well as occupational motorcyclists, such as police officers. To combat the noise, some motorcycle helmets use sound deadening material around the area of the ears. Other motorcyclists may opt to use earplugs to reduce noise and prevent noise induced hearing loss. Another way to reduce noise are built-in active noise cancellation systems which, however, may have a deteriorating effect on the speech or music.
An exemplary sound reproducing, noise reducing system includes a helmet, two loudspeakers disposed in the helmet at opposing positions, and two microphones disposed at positions in the vicinity of the two loudspeakers. The system further includes two active noise control modules coupled to the two loudspeakers. The active noise control modules are configured to supply to the corresponding loudspeaker a useful signal that represents sound to be reproduced and an anti-noise signal that, when reproduced by the corresponding loudspeaker, reduces noise in the vicinity of the corresponding microphone. The system further includes an audio signal enhancement module connected upstream of the active noise control modules, the audio signal enhancement module being configured to receive audio input signals and to process the audio input signals to provide the useful signals so that the useful signals provide a more realistic sound impression for a listener wearing the helmet than the audio input signals.
An exemplary sound reproducing, noise reducing method includes supplying to a corresponding loudspeaker a useful signal that represents sound to be reproduced and an anti-noise signal that, when reproduced by the corresponding loudspeaker, reduces noise in the vicinity of the corresponding microphone. The method further includes receiving audio input signals and processing the audio input signals to provide the useful signals so that the useful signals provide a more realistic sound impression for a listener wearing the helmet than the audio input signals.
Other systems, methods, features and advantages will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description.
The system may be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views.
An exemplary helmet may comprise several layers, including a shell, a shock-absorbing layer, and a comfort layer. A helmet's shell is the outermost layer and is typically made from resilient, water-resistant materials such as plastic and fiber composites. A helmet's shock-absorbing layer, which is its primary safety layer, may be made out of a rigid, but shock-absorbing material such as expandable polystyrene foam. Further, this layer may have sound and thermo-insulating qualities and may be alternatively referred to as an acoustic layer. Finally, a helmet's comfort layer may be made of a soft material meant to contact with a motorcyclist's skin, such as cotton or other fabric blends as are known in the art. Other layers may be present as well, and some of the aforementioned layers may be omitted or combined.
As is shown in
Each ear-cup 105, 106 embraces, for example, a loudspeaker 108, 109 or any other type of sound driver or electro-acoustic transducer or a group of loudspeakers, built into the ear-cup 105, 106. Additionally, the helmet 100 may include acoustic sensors such as microphones 110 and 111 that sense noise and actively reduce or cancel noise in conjunction with loudspeakers 108 and 109 in each ear-cup 105, 106. The microphones 110 and 111 are disposed in the vicinity of the loudspeakers 108 and 109 (e.g., in the ear cups 105 and 106), which means in the present example that they are disposed on the same side of the helmet 100 as the respective loudspeaker 108, 109 since the loudspeakers 108 and 109 are disposed at opposing positions inside the helmet 100. The microphones 110 and 111 may be disposed at the same curved plane inside the helmet 100 as secondary sources such as loudspeakers 108 and 109.
The loudspeakers 108 and 109 and the microphones 110 and 111 are connected to an audio signal processing module 112. The audio signal processing module 112 may be partly or completely mounted within the shell 101 of helmet 100 and may be isolated from the shell 101 by vibration dampening material. Alternatively, the audio signal processing module 112 is partly or completely disposed outside the helmet 100, and the loudspeakers 108, 109 and the microphones 110, 111 are linked via a wired or wireless connection to the audio signal processing module 112. Furthermore, the audio signal processing module 112—regardless of where it is disposed—may be linked via a wired or wireless connection to an audio signal bus system and/or a data bus system (both not shown in
Reference is now made to
The signals x[n], y[n], e[n], u[n] and v[n] are, for example, in the discrete time domain. For the following considerations their spectral representations X(z), Y(z), E(z), U(z) and V(z) are used. The differential equations describing the system illustrated in
Y(z)=S(z)·V(z)=S(z)·(E(z)+X(z)) (1)
E(z)=W(z)·U(z)=W(z)·Y(z) (2)
In the system of
M(z)=S(z)/(1−W(z)·S(z)) (3)
Assuming W(z)=1 then
lim[S(z)→1]M(z)M(z)→∞ (4)
lim[S(z)→±∞]M(z)M(z)→1 (5)
lim[S(z)→0]M(z)S(z) (6)
Assuming W(z)=∞ then
lim[S(z)→1]M(z)M(z)→0. (7)
As can be seen from equations (4)-(7), the useful signal transfer characteristic M(z) approaches 0 when the transfer characteristic W(z) of the ANC filter 303 increases, while the secondary path transfer function S(z) remains neutral, i.e., at levels around 1, i.e., 0 [dB]. For this reason, the useful signal x[n] has to be adapted accordingly to ensure that the useful signal x[n] is apprehended identically by a listener when ANC is on or off. Furthermore, the useful signal transfer characteristic M(z) also depends on the transfer characteristic S(z) of the secondary path 302 to the effect that the adaption of the useful signal x[n] also depends on the transfer characteristic S(z) and its fluctuations due to aging, temperature, change of listener etc. so that a certain difference between “on” and “off” will be apparent.
While in the ANC module 300 shown in
The differential equations describing the system illustrated in
Y(z)=S(z)·V(z)=S(z)·E(z) (8)
E(z)=W(z)·U(z)=W(z)·(X(z)+Y(z)) (9)
The useful signal transfer characteristic M(z) in the sys-tem of
M(z)=(W(z)·S(z))/(1−W(z)·S(z)) (10)
lim[(W(z)·S(z))→1]M(z)M(z)→∞ (11)
lim[(W(z)·S(z))→0]M(z)M(z)→0 (12)
lim[(W(z)·S(z))→±∞]M(z)M(z)→1. (13)
As can be seen from equations (11)-(13), the useful signal transfer characteristic M(z) approaches 1 when the open loop transfer characteristic (W(z)·S(z)) increases or de-creases and approaches 0 when the open loop transfer characteristic (W(z)·S(z)) approaches 0. For this reason, the useful signal x[n] has to be adapted additionally in higher spectral ranges to ensure that the useful signal x[n] is apprehended identically by a listener when ANC is on or off. Compensation in higher spectral ranges is, however, quite difficult so that a certain difference between “on” and “off” will be apparent. On the other hand, the useful signal transfer characteristic M(z) does not depend on the transfer characteristic S(z) of the secondary path 302 and its fluctuations due to aging, temperature, change of listener etc.
The differential equations describing the system illustrated in
Y(z)=S(z)·V(z)=S(z)·(E(z)+X(z)) (14)
E(z)=W(z)·U(z)=W(z)·(Y(z)−X(z)) (15)
The useful signal transfer characteristic M(z) in the system of
M(z)=(S(z)−W(z)·S(z))/(1−W(z)·S(z)) (16)
lim[(W(z)·S(z))→1]M(z)M(z)→∞ (17)
lim[(W(z)·S(z))→0]M(z)M(z)→S(z) (18)
lim[(W(z)·S(z))→±∞]M(z)M(z)→1. (19)
It can be seen from equations (17)-(19) that the behavior of the system of
In
Y(z)=S(z)·V(z)=S(z)·(E(z)−X(z)/S(z)) (20)
E(z)=W(z)·U(z)=W(z)·(Y(z)−X(z)) (21)
The useful signal transfer characteristic M(z) in the system of
M(z)=(1−W(z)·S(z))/(1−W(z)·S(z))=1 (22)
As can be seen from equation (22), the microphone output signal y[n] is identical to the useful signal x[n], which means that signal x[n] is not altered by the system if the equalizer filter is exact the inverse of the secondary path transfer characteristic S(z). The equalizer filter 601 may be a minimum-phase filter for optimum results, i.e., optimum approximation of its actual transfer characteristic to the inverse of the, ideally minimum phase, secondary path transfer characteristic S(z) and, thus y[n]=x[n]. This configuration acts as an ideal linearizer, i.e., it compensates for any deteriorations of the useful signal due to its transfer from the loudspeaker 108 or 109 to the microphone 110 or 111 representing the listener' s ear. It hence compensates for or linearizes the disturbing influence of the secondary path S(z) to the useful signal x[n] so that the useful signal arrives at the listener as provided by the source, without any negative effect due to acoustical properties of the sound-reproducing noise-reducing helmet, i.e., y[z]=x[z]. As such, with the help of such a linearizing filter it is possible to make a poorly designed sound-reproducing noise-reducing helmet sound like an acoustically perfectly adjusted, i.e., linear one.
In
The differential equations describing the system illustrated in
Y(z)=S(z)·V(z)=S(z)·(E(z)+X(z)) (23)
E(z)=W(z)·U(z)=W(z)·(Y(z)−S(z)·X(z)) (24)
The useful signal transfer characteristic M(z) in the sys-tem of
M(z)=S(z)·(1+W(z)·S(z))/(1+W(z)·S(z))=S(z) (25)
From equation (25) it can be seen that the useful signal transfer characteristic M(z) is identical with the secondary path transfer characteristic S(z) when the ANC system is active. When the ANC system is not active, the useful signal transfer characteristic M(z) is also identical with the secondary path transfer characteristic S(z). Thus, the aural impression of the useful signal for a listener at a location close to the microphone 110 or 111 is the same regardless of whether noise reduction is active or not.
The ANC filter 303 and the filters 601 and 701 may be fixed filters with constant transfer characteristics or adaptive filters with controllable transfer characteristics. In the drawings, the adaptive structure of a filter per se is indicated by an arrow underlying the respective block and the optionality of the adaptive structure is indicated by a broken line.
The system shown in
Referring to
In many situations, it is advantageous to be able to modify the inputs to the two loudspeakers in such a way that the listener perceives the sound stage as extending beyond the positions of the loudspeakers at both sides. This is particularly useful when a listener wants to play back a stereo recording over two loudspeakers that are positioned quite close to each other. A stereo widening processing scheme generally works by introducing cross-talk from the left input to the right loudspeaker, and from the right input to the left loudspeaker. The audio signal transmitted along direct paths from the left input to the left loudspeaker and from the right input to the right loudspeaker are usually also modified before being output from the left and right loudspeakers.
For example, sum-difference processors can be used as a stereo widening processing scheme mainly by boosting a part of the difference signal, L minus R, in order to make the extreme left and right part of the sound stage appear more prominent. Consequently, sum-difference processors do not provide high spatial fidelity since they tend to weaken the center image considerably. They are very easy to implement, however, since they do not rely on accurate frequency selectivity. Some simple sum-difference processors can even be implemented with analogue electronics without the need for digital signal processing.
Another type of stereo widening processing scheme is an inversion-based implementation, which generally comes in two disguises: cross-talk cancellation networks and virtual source imaging systems. A good cross-talk cancellation system can make a listener hear sound in one ear while there is silence at the other ear whereas a good virtual source imaging system can make a listener hear a sound coming from a position somewhere in space at a certain distance away from the listener. Both types of systems essentially work by reproducing the right sound pressures at the listener's ears, and in order to be able to control the sound pressures at the listener's ears it is necessary to know the effect of the presence of a human listener on the incoming sound waves. For example, inversion-based implementations may be designed as a simple cross-talk cancellation network based on a free-field model in which there are no appreciable effects on sound propagation from obstacles, boundaries, or reflecting surfaces. Other implementations may use sophisticated digital filter design methods that can also compensate for the influence of the listener's head, torso and pinna (outer ear) on the incoming sound waves.
As an alternative to the rigorous filter design techniques that are usually required for an inversion-based implementation, a suitable set of filters from experiments and empirical knowledge may be employed. This implementation is therefore based on tables whose contents are the result of listening tests. The stereo widening functionality is described above in connection with loudspeakers disposed in a room but is applied in the following to loudspeakers mounted in a helmet.
The choice of the transfer functions Hd and Hx is motivated by the need for achieving a good spatial effect without degrading the quality of the original audio source material. In the present example, the transfer function Hd, used for both filters 901, 904, is a filter with a flat magnitude response, thus leaving the magnitude of the signal input thereto unchanged while introducing a group delay (it should be noted that group delays, and delays can vary as a function of frequency). Thus, significantly, transfer function Hd permits the respective channel from audio signal source 203 to pass through on a direct path to that channel's respective loudspeaker 108, 109 without any change in magnitude. The transfer function Hx, used for both filters 903, 906, is a filter whose magnitude response is substantially zero at and above a frequency of approximately 2 kHz, and whose magnitude response is not greater than that of transfer function Hd at any frequency below approximately 2 kHz. In addition, a group delay is introduced by filters 903 and 906 (each having transfer function Hx) that is generally greater than the group delay introduced by filters 901 and 904 (each having transfer function Hd).
Additionally or alternatively, the audio signal enhancer (sub-) module 204 shown in
There are numerous types of perceptual audio codecs and each type can use a different set of criteria in determining which portions of the original audio signal will be discarded in the compression process. Perceptual audio codecs can include an encoding and decoding process. The encoder receives the original audio signal and can determine which portions of the signal will be discarded. The encoder can then place the remaining signal in a format that is suitable for data compressed storage and/or transmission. The decoder can receive the data compressed audio signal, decode it, and can then convert the decoded audio signal to a format that is suitable for audio playback. In most perceptual audio codecs the encoding process, which can include use of a perceptual model, can determine the resulting quality of the data compressed audio signal. In these cases the decoder can serve as a format converter that converts the signal from the data compressed format (usually some form of frequency-domain representation) to a format suitable for audio playback.
An audio signal enhancer module can modify a data compressed audio signal that has been processed by a perceptual audio codec such that signal components and characteristics which may have been discarded or altered in the compression process are perceived to be restored in the processed output signal. As used herein, the term audio signal may refer to either an electrical signal representative of audio content, or an audible sound, unless described otherwise.
When audio signals are data compressed using a perceptual audio codec it is impossible to retrieve the discarded signal components. However, an audio signal enhancer module can analyze the remaining signal components in a data compressed audio signal, and generate new signal components to perceptually replace the discarded components.
In
The signal treatment module 1300 may include one or more treatment modules 1301, 1302, 1303, 1304, 1305, 1306, and 1307, which operate on individual sample components of sequential samples of the input signal X to produce the signal treatments 1310 sequentially on a sample-by-sample basis for each of the respective components. The individual sample component of the sequential samples may relate to different characteristics of the audio signal. Alternatively, or in addition, the signal treatment module 1300 may include additional or fewer treatment modules 1300. The illustrated modules may be independent, or may be sub modules that are formed in any of various combinations to create modules.
Another effect encountered when trying to reproduce sounds from a plurality of sound sources is the inability of an audio system to recreate what is referred to as sound staging. Sound staging is the phenomenon that enables a listener to perceive the apparent physical size and location of a musical presentation. The sound stage includes the physical properties of depth and width. These properties contribute to the ability to listen to an orchestra, for example, and be able to discern the relative position of different sound sources (e.g., instruments). However, many recording systems fail to precisely capture the sound staging effect when recording a plurality of sound sources. One reason for this is the methodology used by many systems. For example, such systems typically use one or more microphones to receive sound waves produced by a plurality of sound sources and convert the sound waves to electrical audio signals. When one microphone is used, the sound waves from each of the sound sources are typically mixed (i.e., superimposed on one another) to form a composite signal. When a plurality of microphones are used, the plurality of audio signals are typically mixed (i.e., superimposed on one another) to form a composite signal. In either case the composite signal is then stored on a storage medium. The composite signal can be subsequently read from the storage medium and reproduced in an attempt to recreate the original sounds produced by the sound sources. However, the mixing of signals, among other things, limits the ability to recreate the sound staging of the plurality of sound sources. Thus, when signals are mixed, the reproduced sound fails to precisely recreate the original sounds. This is one reason why an orchestra sounds different when listened to live as compared with a recording.
For example, in some cases, the composite signal includes two separate channels (e.g., left and right) in an attempt to spatially separate the composite signal. In some cases, a third (e.g., center) or more channels (e.g., front and back) are used to achieve greater spatial separation of the original sounds produced by the plurality of sound sources. However, regardless of the number of channels, such systems typically involve mixing audio signals to form one or more composite signals. Even systems touted as “discrete multi-channel”, base the discreteness of each channel on a “directional component”. “Directional components” help create a more engulfing acoustical effect, but do not address the critical losses of veracity within the audio signal itself. Other separation techniques are commonly used in an attempt to enhance the recreation of sound. For example, each loudspeaker typically includes a plurality of loudspeaker components, with each component dedicated to a particular frequency band to achieve a frequency distribution of the reproduced sounds. Commonly, such loudspeaker components include woofer or bass (lower frequencies), mid-range (moderate frequencies) and tweeters (higher frequencies). Components directed to other specific frequency bands are also known and may be used. When frequency distributed components are used for each of multiple channels (e.g., left and right), the output signal can exhibit a degree of both spatial and frequency distribution in an attempt to reproduce the sounds produced by the plurality of sound sources.
Another problem resulting from the mixing of either sounds produced by sound sources or the corresponding audio signals is that this mixing typically requires that these composite sounds or composite audio signals be played back over the same loudspeaker(s). It is well known that effects such as masking preclude the precise recreation of the original sounds. For example, masking can render one sound inaudible when accompanied by a louder sound. For example, the inability to hear a conversation in the presence of loud amplified music is an example of masking. Masking is particularly problematic when-the masking sound has a similar frequency to the masked sound. Other types of masking include loudspeaker masking, which occurs when a loudspeaker cone is driven by a composite signal as opposed to an audio signal corresponding to a single sound source. Thus, in the later case, the loudspeaker cone directs all of its energy to reproducing one isolated sound, whereas, in the former case, the loudspeaker cone must “time-share” its energy to reproduce a composite of sounds simultaneously.
Regarding the sum filters 1407, when applied to audio signals they can provide spectral modifications so that such qualities of the signals are substantially similar for both ears of a listener. Sum filters 1407 can also eliminate undesired resonances and/or undesired peaking possibly included in the frequency response of the audio signals. As for the cross filters1408, when applied to the audio signals they provide spectral modifications so that the signals are acoustically perceived by a listener as coming from a predetermined direction or location. This functionality is achieved by adjustment of head shadowing. In both cases, it may be desired that such modifications are unique to an individual listener's specific characteristics. To accommodate such a desire, both the sum filters 1407 and cross filters 1408 are designed so that the frequency responses of the filtered audio signals are less sensitive to listener specific characteristics. In blocks 1401 and 1402, the sum filters have a transfer function of “1” so that the sum filters can be substituted by a direct connection. As already mentioned, the blocks 1401 to 1406 further include interaural delays 1409 for source angles of 45, 90, and 135 degrees (labeled “T45”, “T90”, and “T135”, respectively). The delay filters 1409 can have typical samplings of 17 samples, 34 samples, and 21 samples, respectively, at a sample rate of 48 kHz. The delay filters 1409 simulate the time a sound wave takes to reach one ear after it first reaches the other ear.
The other components of the module 1400 can transform audio signals from one or more sources into a binaural format, such as direct and indirect HRTFs. Specifically, audio enhancement (sub-) module 1400 transforms audio signals from a 6-channel surround sound system by direct and indirect HRTFs into output signals HL and HR outputted by right and left loudspeakers in a helmet (not shown). These signals outputted by the loudspeakers in the helmet will include the typically perceived enhancements of 6-channel surround sound without unwanted artifacts. Also with respect to each output of the loudspeakers in the helmet respective sets of summations are included to sum three input pairs of 6-channel surround sound. The six audio signal inputs include left, right, left surround, right surround, left rear surround, and right rear surround (labeled “L”, “R”, “LS”, “RS”, “LRS”, and “RRS”, respectively). Also depicted by
The description of embodiments has been presented for purposes of illustration and description. Suitable modifications and variations to the embodiments may be performed in light of the above description. The described systems are exemplary in nature, and may include additional elements and/or omit elements. As used in this application, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of said elements or steps, unless such exclusion is stated. Furthermore, references to “one embodiment” or “one example” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. The terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements or a particular positional order on their objects. A signal flow chart may describe a system, method or software implementing the method dependent on the type of realization. e.g., as hardware, software or a combination thereof.
Number | Date | Country | Kind |
---|---|---|---|
15 200 375.2 | Dec 2015 | EP | regional |