1. Field of the Invention
The present invention relates to a sound source localization apparatus and a sound source localization method.
2. Description of the Related Art
In recent years, robot technology has rapidly progressed and more and more robots such as humanoid robots work with humans. For practical use of the robots, “robot audition” has attracted great attention and various proposals have been made (for example, see K. Nakadai et al., “Active Audition for Humanoid”, in Proc. of 7th National Conf. on Artificial Intelligence (AAAI 2000), pp. 832-839, 2000). Sound source orientation, that is, estimation of sound source localization, is one of the most fundamental processes for robot audition. The subsequent processes such as sound source separation and speech recognition are induced from the results of the sound source localization.
A multiple signal classification (MUSIC) method is one sound source localization sound orientation method used in real world application examples such as robots. The MUSIC method has a merit in that it is easier to detect peaks of the spatial spectrum when compared with other known methods.
However, the MUSIC method is focused on static conditions, and is established on the premise that target sound sources are stronger than noise sources. That is, in the MUSIC method, the sound source orientation of a target is estimated by assuming that a sound source having a great eigenvalue is a target and a sound source having a small eigenvalue is a noise. Therefore, for example, in a system having a stationary noise source with a large amount of power, such as a moving type robot having a heat-dissipating fan, since the influence of noises is great and the above-mentioned assumption is not satisfied, there is a problem that the sound source orientation cannot be estimated correctly.
In a moving type robot having a microphone in its rotatable head, since a correlation matrix for the sound source with the rotation of the head is different from the correlation matrix without the rotation of the head, there is a problem in that it is necessary to prepare for various correlation matrices corresponding to the rotation of the head in advance, and a lot of data must be stored.
The present invention was made in consideration of the above-mentioned problems, and it is an object of the invention to provide a technique of correctly localizing a sound source orientation in a system having a stationary noise source.
To accomplish the above-mentioned object, according to a first aspect of the sound source localization apparatus, there is provided a sound source localization apparatus for localizing a sound source using an eigenvector, including: a sound signal input unit (e.g., a microphone array 100 in an embodiment) inputting a sound signal; a correlation matrix calculation unit (e.g., a correlation matrix calculator 110 in an embodiment) calculating a correlation matrix of the input sound signal; and an eigenvector calculation unit (e.g., an eigenvector calculator 120 in an embodiment) calculating an eigenvalue of the correlation matrix using the calculated correlation matrix. Here, the eigenvector calculation unit calculates the eigenvector using the correlation matrix (e.g., a correlation matrix R in an embodiment) of the input sound signal and one or more predetermined correlation matrices (e.g., a correlation matrix K and correlation matrix C in an embodiment).
In a sound source localization apparatus according to a second aspect of the invention, the eigenvector calculation unit may include a correction unit correcting a predetermined correlation matrix and changes the eigenvector of the predetermined correlation matrix.
In a sound source localization apparatus according to a second aspect of the invention, the sound source localization apparatus may further include a microphone posture information storage unit (e.g., a driving controller 140 or eigenvector calculator 120 in an embodiment) storing microphone posture information indicating a microphone posture. Here, the eigenvector calculation unit may correct the correlation matrix on the basis of the microphone posture information.
According to a fourth aspect of the invention, there is provided a sound source localization method of localizing a sound source using an eigenvector, including: a sound signal input step of inputting a sound signal; a correlation matrix calculation step of calculating a correlation matrix of the input sound signal; and an eigenvector calculation step of calculating an eigenvalue of the correlation matrix using the calculated correlation matrix. In the eigenvector calculation step, the eigenvector is calculated using the correlation matrix of the input sound signal and one or more predetermined correlation matrices.
According to the sound source localization apparatus of the first aspect, because the eigenvector for localizing a sound source is calculated using a predetermined correlation matrix (e.g., a correlation matrix K in an embodiment), a sound source localization can be performed while reducing the effect of stationary noise. In other words, a sound source can be correctly localized in a system having a stationary noise source.
In addition, because the eigenvector for localizing a sound source is calculated using a predetermined correlation matrix (e.g., a correlation matrix C in an embodiment), a localization for a specific sound source can be performed while reducing the effect of other sound sources. In other words, a sound source can be correctly localized in a system having a plurality of sound sources.
According to the sound source localization apparatus of the second aspect, because the predetermined correlation matrix (e.g., a correlation matrix C in an embodiment) is corrected, a target sound source can be appropriately separated and recognized in subsequent processes such as a sound source separation process, or a speech recognition process. For example, a recognition process can be appropriately performed depending on the degree of interest in the sound sources.
According to the sound source localization apparatus of the third aspect, because the predetermined correlation matrix (e.g., a correlation matrix C in an embodiment) is corrected based on the microphone posture information, a sound source can be correctly localized in accordance with the microphone posture even when the microphone posture is changed. In other words, because it is not necessary to prepare various correlation matrices beforehand depending on the microphone posture, a sound source can be correctly localized in accordance with the microphone posture while reducing the amount of data to be stored.
According to the sound source localization method of the fourth aspect, an effect similar to that in the first aspect can be obtained.
Hereinafter, an embodiment of the invention will be described.
Outline of a Sound Source Localization Apparatus
A sound source localization apparatus 1 according to an embodiment of the invention, specifically, a robot 4 provided with the sound source localization apparatus 1 according to the embodiment, will be roughly described with reference to
As shown in
The driving controller 140 outputs a control signal to the head function unit 150 to control the driving of the head 42. For example, the driving controller 140 outputs the control signal to the head function unit 150 on the basis of sound source direction information (to be described later) output from the sound source localization unit 130 as well as a command received from the outside via a command receiving unit (not shown).
The head function unit 150 controls the rotation of the head 42 on the basis of the control signal from the driving controller 140. The orientation (the posture of the microphone array 100) of the microphone array 100 mounted on the head 42 is changed with the rotation of the head 42.
The microphone array 100 includes plural microphones and collects plural sounds by the use of the microphones. That is, the microphone array 100 receives plural sound signals. Specifically, the microphone array 100 receives sound signals from various sound sources. The sound sources include target sound sources (also referred to as “sound sources”) generating a sound signal (hereinafter, referred to as “target sound signal”) to be originally acquired and noise sources generating a sound signal (noise) not to be originally acquired. The noise sources include external noise sources and internal noise sources of the robot 4. A heat-dissipating fan (not shown) mounted on the reception unit 45 is an example of the internal noise source of the robot. The microphone array 100 outputs the input sound signals to the correlation matrix calculator 110.
The correlation matrix calculator 110 calculates a correlation matrix of the sound signals input from the microphone array 100. The correlation matrix calculator 110 outputs the calculated correlation matrix to the eigenvector calculator 120.
The eigenvector calculator 120 calculates an eigenvector using the correlation matrix. For example, the eigenvector calculator 120 calculates the eigenvector of the correlation matrix using the correlation matrix (the correlation matrix of the input signals) calculated by the correlation matrix calculator 110. For example, the eigenvector calculator 120 calculates the eigenvector of the correlation matrix of the input signals and other eigenvectors using the correlation matrix of the input signals and one or more predetermined correlation matrices. The eigenvector calculator 120 outputs the calculated eigenvectors to the sound source localization unit 130.
The eigenvector calculator 120 corrects the predetermined correlation matrices to change the eigenvectors of the predetermined correlation matrices. When the eigenvectors are changed, the eigenvector calculator 120 outputs the changed eigenvectors to the sound source localization unit 130. The eigenvectors of the predetermined correlation matrices are changed by the correction of the eigenvector calculator 120, thereby adjusting the intensity of the measured signals (plural sound signals (target sound signals and noise signals) collected by the microphone array 100). The details of the predetermined correlated matrices and the eigenvector calculator 120 will be described later.
The sound source localization unit 130 localizes the sound source using the eigenvectors. The sound source localization unit 130 outputs sound source direction information indicating the localized sound source direction to the driving controller 140. The details of the sound source localization unit 130 will be described later.
Techniques for Sound Source Localization Apparatus
Technical details (including technical details serving as a basis of the sound source localization apparatus 1 according to this embodiment) of the sound source localization apparatus 1 according to this embodiment will be described in detail with reference to
A common signal model will be first described.
As shown in
In the MUSIC method used for the localization, a steering vector G(ω,ψ) is calculated before the localization as described below. When it is assumed that the orientation of the head is φ=0, the number of sound sources is L=1, and the noise is nm(t,φ)=0 and the sound source signal sl(t,θl) is an impulse signal, the Fourier transform of xm(t)=am,l(t,0,θl)sl(t,θl) is expressed by Expression 3.
X(ω)=A1(ω,0,θ1)S1(ω,θ1)=A1(ω,0,θ1) Expression 3
Since the sound signal is Sl(ω,θl)=1, X(ω) in the l-th sound source direction θl is defined as a steering vector. Accordingly, the steering vector G(ω,ψ) is defined as a steering vector at each ψ before measuring the sound source direction θ, that is, before the localization, by Expression 4.
G(ω,ψ)=A1(ω,0,ψ) Expression 4
During the localization, x(t) is measured at the sampling time τ (Notice that now nm(t,φ) of Expression 1 cannot be assumed to be zero.). When x(τ) having been subjected to the Fourier transform is X(ω,τ), the correlation matrix R(ω,φ) of x(τ) is expressed by Expression 5.
R(ω,φ)=X(ω,τ)X*(ω,τ) Expression 5
Here, ( )* represents the complex conjugate transpose operator.
When φ=0 is assumed for the simplicity, the eigenvalue decomposition (SEVD) of R(ω,φ) is expressed by Expression 6.
R(ω,φ)=E(ω,φ)ΛE−1(ω,φ) Expression 6
Here, Λ is diag(λ1, λ2, . . . , λM) having the values of R(ω,φ) (where λ1≧λ2≧ . . . ≧λM). Since λm represents the intensity of a sound source, λi and ei(l≦i≦L) are the eigenvalue and the eigenvector of the sound source. λi and ei(L+1≦i≦M) are the eigenvalues and the eigenvectors of noises.
Accordingly, in a specific spectrum, specifically, in the steering expression P(ω,ψ) expressed by Expression 7, when the steering vector G(ω,ψ) correctly indicates the sound source direction, G(ω,ψ)em=0 and thus the peak is infinite.
As described above, in the MUSIC method based on the eigenvalue decomposition (SEVD), since it provides easy detectable and reliable peaks, it has been used for the robotic localization. It also realizes the easy implementation for robots in terms of the numerical algorithm. Since noises cannot be assumed to be white noises in the real world, the noises and the sound sources are correlated with each other and thus the peaks are not infinite.
As described above, the MUSIC method properly works in localization only when the assumption that the sound sources are stronger than the noise sources is satisfied. In the robotic localization, this problem is not avoidable since N(ω,ψ) of Expression 2 is greater than the first term in many cases. Therefore, since some of ei(1≦i≦L) are chosen from noises, Expression 7 returns undesired peaks.
In the sound source localization apparatus 1 according to this embodiment, the correlation matrices for the GEVD are dynamically designed to select sounds to be cancelled or focused. Hereinafter, the function of cancelling or focusing sounds is called “target source selection”. In the sound source localization apparatus 1 according to this embodiment, correlation matrices in which the degree of cancel or focusion is controlled are designed in terms of the target source selection. Hereinafter, the function of controlling the degree of cancellation or focusing is called “dynamic FoA”. The localization performed by humans is implemented by the dynamic FoA. Hereinafter, the localization performed by humans is called “intelligent localization”.
The sound source localization apparatus 1 according to this embodiment employs the dynamic transformation of correlation matrices with the change in head orientation in consideration of the rotation of the robot head, that is, the change in head orientation. Hereinafter, the transformation or the localization using the transformed correlation matrices is called “correlation matrix estimation”. The system including the GEVD, the target source selection, the dynamic FoA, and the correlation matrix estimation is called “selective attention system”.
GEVD
The GEVD method is used to solve the problem of the MUSIC method. When the power of noises is stronger than the power of the target sounds, the problem is that the eigenvectors e1, . . . , eL of noises are selected as described above. The way to solve this problem is to define the correlation matrix K(ω,φ) of noises N(ω,φ) as expressed by Expression 8.
K(ω,φ)=N(ω,φ)N*(ω,φ) Expression 8
N(ω,φ) is measured using Sl(ω,θl)=0 in Expression 2. Accordingly, in the GEVD method, R(ω,φ) is expressed by Expression 9.
R(ω,φ)ên(ω,φ)={circumflex over (λ)}mK(ω,φ)êm(ω,φ) Expression 9
Here, {circumflex over (λ)}m and êm are new eigenvalues and eigenvectors.
The noises are whitened by Expression 9. If K is a regular matrix, Expression 10 can be obtained from Expression 9 and the eigenvalue decomposition is simplified.
K−1(ω,φ)R(ω,φ)êm(ω,φ)={circumflex over (λ)}mêm(ω,φ) Expression 10
When the noises are uncorrelated to the target sounds, K is not a regular matrix. However, in many cases of the robotic sound source localization, the noises and the target sounds are correlated to each other and thus Expression 10 is valid.
The GEVD spatial spectrum is expressed by Expression 11.
In the GEVD method, all noises are suppressed and eL+1, . . . , eM are not selected as the eigenvectors. That is, the GEVD method is a robust localization method for noises.
Target Source Selection
In the target source selection, a specific sound is selected using the GEVD method. The inverse matrix of K(ω,φ) in Expression 10 can be considered as a “cancel operator” for cancelling noises N(ω,φ) from the correlation matrix R(ω,φ). On the contrary, R(ω,φ) in Expression 10 can be considered as a “focus operator” for focusing the sounds and the noises.
The main idea of the target source selection is based on the cancel operator and the focus operator. By the selection of the cancel operator and the focus operator, a desired localization environment can be designed. Accordingly, assuming that plural sounds are not detected at the same time, the operators of the sounds are calculated. First, when no sound is in the environment, the robot's own environmental noise N(ω,φ), which is pre-measured by φ in advance, is sensed by the microphone array and the noise correlation matrix K(ω,φ) thereof is calculated.
Then, the first sound S1(ω,θ1) is sensed by the microphone array and a new correlation matrix R1(ω,φ,θ1) of the measured signal X(ω) is obtained as expressed by Expression 12. Expression 12 has information on both the environmental noise and the first sound.
X(ω)=A1(ω,φ,θ1)S1(ω,θ1)+N(ω,φ) Expression 12
Since K−1(ω,φ) cancels the noise elements from R1(ω,φ), the correlation matrix C1(ω,φ) of the first sound is expressed by Expression 13. Intuitively, C1(ω,φ) can be considered to be the correlation matrix of A1(ω,φ,θ1)S1(ω,θ1). Strictly speaking, it is assumed that the noise and the sound are uncorrelated to each other so that Expression 13 does not include a cross term.
C1(ω,φ)=K−1(ω,φ)R1(ω,φ) Expression 13
Similarly, the second sound is sensed to obtain R2(ω,φ) and the correlation matrix C2(ω,φ) of the second sound is obtained as expressed by Expression 14.
C2(ω,φ)=C1−1(ω,φ)K−1(ω,φ)R2(ω,φ) Expression 14
Similarly, the above-mentioned process is repeated up to the L-th sound and the correlation matrices C1, . . . , CL are obtained. The general term of C1 is described by Expression 15.
Here, Cl is the focus operator for the l-th sound and Cl−1 is the cancel operator for the l-th sound Al(ω,φ,θl)Sl(ω,θl).
In cancelling and focusing arbitrary sounds, V(ω,φ) is defined as a designed correlation matrix. That is, the general form of V(ω,φ) is described by Expression 16.
Here, pi is an integer in the range of −1≦pi≦1.
Expression 10 can be rewritten as Expression 17 and can localize arbitrary sounds.
V(ω,φ)R(ω,φ)êm(ω,φ)={circumflex over (λ)}mêm(ω,φ) Expression 17
Dynamic FoA
In Expression 16, pi is only an integer and the focusing and cancelling of sounds is thus discretely carried out in the target source selection, whereby the intelligent localization is not implemented. The dynamic FoA is necessary for the implementation of the intelligent localization.
The main idea of the dynamic FoA is to transform each Cl continuously from 1 to Cl−1 or from Cl−1 to 1. Here, Cl−1 is used for the decaying as described above, but Cl1 is used instead of Cl−1 for the focusing. The eigenvalue decomposition of Cl−1 is described by Expression 18.
Cl−1(ω,φ)=El(ω,φ)Λl−1El−1(ω,φ) Expression 18
Here, Λl−1=diag(λl,1−1, . . . , λl,M−1) is assumed.
For the decaying, Expression 19 is defined. A decay parameter Dl is continuously changed from 0 to −1 depending on the importance of each sound. Specifically, the decay does not occur when the decay parameter Dl is 0, the degree of decay increases as the decay parameter gets close to −1, and the degree of decay is the greatest when the decay parameter is −1. Since the decay parameter Dl has the above-mentioned features, various setting examples can be considered in practical use. For example, localizing a sound of interest, a degree of interest for the sound may be set and Dl may be set depending on the degree of interest. Specifically, as the degree of interest for a sound becomes lower, the value is set to be closer to −1. For example, in localizing a sound with a high degree of speech recognition, Dl may be set depending on the degree of speech recognition. Specifically, as the degree of speech recognition becomes lower, the value is set to be closer to −1. That is, the value may be set to be close to −1 with a decrease in the degree. With the lapse of time after the robot senses a sound, the decay parameter may be slowly made to be smaller.
ClD
When a human hears a new sound, the human listens to the new sound, checks if the sound is to be listened, and gradually cancels the sound. The dynamic FoA achieves such an intelligent localization.
Correlation Matrix Estimation
The sound source localization with the rotation of the robot head will be described. The correlation matrix estimation is to solve the problem that the orientation of the microphone array and the directions of target sounds and noises are changed with the rotation of the head. The orientation φ of the head is set as a variable.
As described above, even when Cl(ω,φ) is acquired from Expression 15, the rotation of the head from φ to φ′ changes Cl(ω,φ) to Cl(ω,φ′) for all the correlation matrices. Accordingly, the estimation from Cl(ω,φ) to Cl(ω,φ′) is necessary. The steering vector G(ω,ψ) is used for the estimation. As described in the target source selection, Cl(ω,φ) can be considered as the correlation matrix of Al(ω,φ,θl)Sl(ω,θl). That is, it is described by Expression 20.
In Expression 20, since SlSl* is not dependent on φ, the transformation matrix Tl(ω,φ,φ′) of Cl(ω,φ) from φ to φ′ is defined as Expression 21.
Tl(ω,φ,φ1)={Al(φ)Al*(φ)}−1{Al(φ1)Al*(φ1)} Expression 21
That is, the post-rotated correlation matrix C1^(ω,φ,φ′) after the head rotates from φ to φ′ is described by Expression 22 using the pre-rotated correlation matrix Cl(ω,φ) and the transformation matrix Tl(ω,φ,φ′).
Ĉl(ω,φ,φ′)=Tl(ω,φ,φ′)Cl(ω,φ) Expression 22
System Implementation
The GEVD, the target source selection, the dynamic FoA, and the correlation matrix estimation have a feature that their functions are sound-independent operations. Accordingly, the functions can be easily implemented algorithmically. Since the operations can deal with sounds one by one dynamically, the selective attention system can be highly adapted to various environmental changes.
For example, the operations steps for the localization are described in the following order:
1. Determination of Rl(ω,φ) (1≦l≦L);
2. Determination of Cl(ω,φ) by Expression 15;
3. Determination for target source selection by {dot over (p)}i in Expression 16;
4. Decision for the dynamic FoA by defining Dl in Expression 19 depending on importance of sounds; and
5. Transformation of C1(ω,φ) by Expression 22 with head rotation.
In this work, Honda ASIMO with an embedded 8-ch microphone array is used as a robot for the experimental validation. The position of the array is on its head, and it has a uniform-circular-array-like geometry. Two speakers are located at 60° and −60° of the front side of ASIMO, and emit different sounds (may emit the same sound). The distance between ASIMO and the sounds is 1 m, which is deemed to be far field with respect to the microphone array. ASIMO has its own fan on the back side, which is regarded as a loud environmental noise. The sounds lower than the fan noise are used for the validation of the GEVD. The architecture of the experimental setup is shown in
Evaluation
Here, the validity of the proposed methods is evaluated by both simulation and experiment. The common conditions for the evaluation are as follows.
First, the MUSIC method and the GEVD are compared numerically to represent how strong the GEVD is to the environmental noises. It is assumed for the evaluation that the head orientation is fixed to 0°.
The selective attention system is evaluated.
C1(ω,−60)=K−1(ω,−60)R1(ω,−60) Expression 23
In
In
Ĉ1(ω,−60,60)=T1(ω,−60,60)C1(ω,−60) Expression 24
Ĉ2(ω,−60,60)=T2(ω,−60,60)C2(ω,−60) Expression 25
The right side of
V(ω,60)=Ĉ2−1(ω,−60,60)K−1(ω,60) Expression 26
As shown in
Details of Eigenvector Calculator
The eigenvector calculator 120 will be described in detail based on the above description. In
The localization of a desired signal will be described with reference to
For example, when a signal 1 is to be localized, the eigenvector calculator 120 calculates an eigenvector em^ using the correlation matrix R of the input signals s, the noise matrix K, and the correlation matrix C2 (Expression 17), as shown in
Similarly, when the signal 2 is to be localized, the eigenvector calculator 120 calculates an eigenvector em^ using the correlation matrix R of the input signals s, the noise matrix K, and the correlation matrix C1, as shown in
When merely noise is to be cancelled, it is sufficient for the eigenvector calculator 120 to calculate the eigenvector em^ using the correlation matrix R of the input signals s and the noise correlation matrix K.
The sound source localization unit 130 outputs ψ as the localization result to the driving controller 140. The driving controller 140 acquiring ψ calculates the head orientation φ on the basis of ψ. The driving controller 140 calculating φ outputs control information including φ to the head 42 to rotate the head 42 and outputs φ to the eigenvector calculator 120. The eigenvector calculator 120 acquiring φ stores φ as microphone posture information. The microphone posture information is information representing the posture of the microphone array 200 (the posture of the head 42).
The adjustment of the degree of cancellation of a signal will be described with reference to
The rotation of the head 42 will be described with reference to
According to the above-described embodiment, it is possible to localize a sound source correctly in the system including a stationary noise source. In a system including plural sound sources, it is also possible to localize a specific sound source correctly. In the subsequent processes such as sound source separation and speech recognition, it is possible to separate and recognize a desired sound source properly. In addition, it is possible to localize a sound source correctly depending on the microphone posture without preparing various correlation matrices corresponding to the microphone postures beforehand.
In the embodiment, the eigenvector calculator 120 stores the microphone posture information (φ); however, the driving controller 140 instead of the eigenvector calculator 120 may store the microphone posture information (φ). When the driving controller 140 stores the microphone posture information (φ), the driving controller 140 outputs the microphone posture information (φ) to the eigenvector calculator 120 in response to the request from the eigenvector calculator 120.
In the embodiment, φ calculated from ψ output from the sound source localization unit 130 is used as the microphone posture information, but the head function unit 150 and the like may actually measure the posture of the head 42 and use the measurement result as the microphone posture information, instead of using φ as the microphone posture information. When the actual measurement result is used as the microphone posture information, the head function unit 150 and the like can measure the posture of the head 42 in response to the request from the eigenvector calculator 120, thereby making it unnecessary to store the microphone posture information.
The above-mentioned operations of the sound source localization apparatus 1 according to the embodiment of the invention may be performed by recording a program for performing the operations of the sound source localization apparatus 1 according to the embodiment of the invention in a computer-readable recording medium and causing a computer system to read the program recorded in the recording medium and to execute the program. Here, the “computer system” includes an OS or hardware such as peripherals. The “computer system” includes a homepage providing environment (or display environment) in using a WWW system. Examples of the “computer-readable recording medium” include memory devices of portable mediums such as a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, and a CD-ROM, a hard disk built in the computer system, and the like.
The “computer-readable recording medium” may include a recording medium keeping a program for a predetermined time, such as a volatile memory (for example, DRAM (Dynamic Random Access Memory) in the computer system serving as a server or a client when the program is transmitted via a network such as Internet or a communication line such as a phone line. The program may be transmitted to another computer system from the computer system having the program stored in the memory device or the like via a transmission medium or transmission waves in a transmission medium. Here, the “transmission medium” for transmitting a program means a medium having a function of transmitting information, such as networks (communication networks) like Internet or communication circuits (communication lines) like phone lines. The program may embody a part of the above-mentioned functions. The program may embody the above-mentioned functions in cooperation with a program previously recorded in the computer system, that is, may be a so-called differential file (differential program).
While preferred embodiments of the invention have been described and illustrated above, it should be understood that these are exemplary of the invention and are not to be considered as limiting. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit or scope of the present invention. Accordingly, the invention is not to be considered as being limited by the foregoing description, and is only limited by the scope of the appended claims.
This application claims benefit from U.S. Provisional application Ser. No. 61/217,803, filed Jun. 4, 2009, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6157403 | Nagata | Dec 2000 | A |
6504490 | Mizushima | Jan 2003 | B2 |
8189765 | Nishikawa et al. | May 2012 | B2 |
20080001821 | Tanaka | Jan 2008 | A1 |
20080089531 | Koga et al. | Apr 2008 | A1 |
20100202633 | Kim et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
2006030834 | Mar 2006 | WO |
Entry |
---|
Nakadai, Kazuhiro et al., “Active Audition for Humanoid,” Proceedings of 17th National Conference on Artificial Intelligence, AAAI-2000, 8 pages, (2000). |
Roy, R. et al., “ESPRIT—A Subspace Rotation Approach to Estimation of Parameters of Cisoids in Noise,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-34(5):1340-1342 (1986). |
Asano, Futoshi et al., “Localization and Extraction of Brain Activity Using Generalized Eigenvalue Decomposition,”IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2008, pp. 565-568 (2008). |
Inagaki, Yoshiyuki et al., “DOA Estimation of Desired Signals by Cyclic ESPRIT Based on Noise Subspace and Its Performance Improvement,” Journal of the Institute of Electronics, Information and Communication Engineers, vol. J88-B(9):1780-1788 (2005). |
Japanese Office Action for Application No. 2010-124874, 7 pages, dated Sep. 10, 2013. |
Number | Date | Country | |
---|---|---|---|
20100329479 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
61217803 | Jun 2009 | US |