The present invention relates to a musical instrument having a sound tube each having a tubular sounding body and a cap.
As a percussion instrument capable of performing a melody, there are known chimes (tubular bells) that generate sounds of different pitches by hitting a plurality of metal tubes (sound tubes) of different lengths suspended from a frame. For example, see Adams Percussion brochure 2015, pages 76-81, at:
This type of chimes is often used for performance of orchestral music and the like. But in orchestral music and the like, chimes are often used in a form imitating church bells. For this reason, it is desirable for sounds generated by the sound tubes of the chimes to be deep like sounds from church bells. The conventional sound tube, configuration, however, does not generate sufficiently deep sound. This problem is common not only to sound tubes used for chimes, but also to tubular sounding bodies in general.
The present development solves the problems mentioned above. That is, the present sound tube can produce deeper sound using conventional tubular sound bodies.
One aspect of the present invention is a sound tube for a musical instrument. The sound tube includes a tubular sounding body and a cap having a center through hole and weighing inclusive between 210-300 g disposed at one end of the tubular sounding body to reduce the pitch of low-order harmonics included in the sound generated by the sound tube.
Another aspect is the cap. The cap includes a first portion configured to extend into an interior of one end of the tubular sounding body, a second portion having an outer diameter that is larger than that of the first portion, and extending outside of the tubular sound body in a state where the cap is attached to the one end, and a center through hold extending through both the first portion and the second portion.
Another aspect is a musical instrument that includes at least one sound tube described above suspended from a support.
By setting the weight of the cap to not less than 210 g, the pitch of low-order harmonics, such as the first order harmonic to the third order harmonic, included in the sound generated by the sound tube can be lowered. By lowering the pitch of low-order harmonics this way, the sound generated by the sound tube becomes deeper. The present development thus makes it possible to make the sound generated by the sound tube deeper using the cap.
The hanger 30 has two strut mounting parts 31 fixed to the struts 22 at both left and right ends, and two hanger bars 32 provided between the two strut mounting parts 31. On the hanger bar 32 there are provided hanger pins 33 that extend to the performer's side (front side). Each sound tube 10 is suspended from the hanger 30 by hanging a wire 40 attached to the sound tube 10 to the hanger pin 33 and a fixing pin (not shown in the figure) provided on the hanger bar 32. The suspension method of suspending the sound tube 10 on the hanger 30, and the specific configuration and function thereof, other than the frame 20 including the hanger 30, and the sound tube 10, can be conventional.
In the chime 1 shown in
In the cylindrical sounding body 11, there are formed two through holes 119 at positions that are symmetric with respect to the center axis A. A wire 40 for suspending the sound tube 10 on the hanger 30 (
As shown in
In addition, in the cap 12 shown in
In general, in the sound tubes 10 used for the chime 1 (
If the weight of the cap 12 is made excessively high, there is a possibility that when the plurality of sound tubes 10 are arranged in the manner of the chimes 1 shown in
As is apparent from
As described above, by increasing the weight of the cap 12 it is possible to improve sound vibrancy of the sound tube 10, and to make the sound generated by the sound tube 10 deep. To make the weight of the cap 12 heavy, the dimensions of each part of the cap 12 are appropriately adjusted.
The weight of the cap 12 can be made heavier by increasing the maximum diameter D1 of the large diameter part 122. But if the maximum diameter D1 of the large diameter part 122 is made excessively large, the caps 12 of the adjacent sound tubes 10 come into contact with each other when arranging the plurality of sound tubes 10. The maximum diameter D1 of the large diameter part 122 is appropriately set in consideration of this point.
The weight of the cap 12 can be made heavier also by increasing either one of the length L1 of the attachment part 121 or the length L2 of the large diameter part 122. But since the attachment part 121 is positioned inside the tubular sounding body 11, if the length L1 thereof becomes too long, there is a possibility that the vibration mode of the tubular sounding body 11 is influenced. To reduce the influence on the vibration mode of the tubular sounding body 11, when increasing the weight of the cap 12, it is preferable to provide the large diameter part 122 with a proportion that is equal to or greater than the increment of the weight. In this case, the ratio of the length L2 of the large diameter part 122 to the length L1 of the attachment part 121 (L2/L1) can be set greater than or equal to a certain value. The ratio of the length L2 of the large diameter part 122 to the length L1 of the attachment part 121 (L2/L1) is preferably not less than 0.5, and more preferably not less than 0.7. In other words, the length L2 of the large diameter part 122 is preferably at least 0.5 times, and more preferably, at least 0.7 times the length L1 of the attachment part 121. The length L2 of the large diameter part 122 can be 1 time or less of the length L1 of the attachment part 121. In the present embodiment, the length L1 of the attachment part 121 is 17.5 mm, and the length L2 of the large diameter part 122 is 12 to 16 mm. In this case, the ratio (L2/L1) is approximately 0.68 to 0.92. In contrast, in the case of general caps, L2/L1 can be less than 0.5. For example, for general caps, the length of the attachment part can be 17.5 mm, and the length of the large diameter part can be 8 mm.
The weight of the cap 12 can also be increased by reducing the diameter D2 of the center hole 129 provided in the cap 12. By reducing the diameter D2 of the center hole 129, the weight of the cap 12 can be increased without changing the length L2 of the large diameter part 122 or the length L1 of the attachment part 121. Therefore, it is possible to suppress a change in the external shape of the sound tube 10 and a change in the vibration mode of the tubular sounding body 11. But if the diameter D2 of the center hole 129 is made excessively small, the sound generated by the sound tube 10 becomes muffled. The diameter D2 of the center hole 129 is preferably 6 mm or more, and more preferably 10 mm or more to keep the sound generated by the sound tube 10 from becoming muffled. In the present embodiment, the diameter D2 can be 6 to 16 mm. The diameter of the center hole provided in the general caps can be, for example, 12.7 mm or 13 mm.
In the above embodiment, preferable ranges of the weight of the cap 12 and the dimension of each part are defined for a single sound tube 10. In a modified embodiment, it is also possible to adjust the weight of the cap 12 according to the pitch of each sound tube 10 when using a plurality of sound tubes 10 having different pitches. In general, a musical instrument having a plurality of sound tubes 10 with different pitches is required to generate totally balanced sounds where the sounds generated on the lower pitch side are deeper, and the sounds generated at the higher pitch side are not excessively deep. Therefore, it is preferable to make the cap 12 of the sound tube 10 with a lower pitch heavier than the cap 12 of the sound tube 10 with a higher pitch, so that the sound generated by the sound tube 10 with a lower pitch is made sufficiently deep, while the sound generated by the sound tube 10 with a higher pitch is not excessively deep.
In the above embodiment, the chime 1 has the sound tubes 10 arranged in two rows on the front side and the rear side. In another modified embodiment the chime can have the sound tubes 10 arranged in a single row or a chime having only a single sound tube 10. Furthermore, the embodiment of the present invention can be applied not only to a musical instrument having sound tubes 10, but also to a sound tube 10 itself, which is separately provided to be able to be used in chimes. Moreover, the embodiment of the present invention is not limited to the sound tube 10 for the chime 1 that generates sound by being struck. Indeed, it also can be applied to various types of sound tubes that generate sound by other methods such as friction, as long as it is a tubular sounding body (sound tube).
The shape of the cap 12 is not limited to the shape shown in
The sound tube according to an embodiment of the present invention thus can include a tubular sounding body and a cap that is assembled to one end of the tube body. A weight of the cap can be inclusive between 210 to 300 g. The cap can include an insertion part or first portion that is inserted into or disposed in the interior of the tubular sounding body in an assembled state where the cap is assembled to the tube body, and an exposed part or second portion that is exposed to the outside of the tubular sounding body in the assembled state. The length of the exposed part in the assembly direction when assembling the cap to the tube body can be at least 0.5 times the length of the insertion part in the assembly direction. By making the length of the exposed part at least 0.5 times the length of the insertion part, it is possible to keep the insertion part inserted into the tube body from becoming excessively long. Therefore, the influence of the insertion part on the vibration mode of the tube body itself can be further reduced.
The musical instrument according to an embodiment of the present invention can include the above sound tube. The sound tube includes at least two sound tubes having pitches different from each other. The cap provided for the sound tube having a low pitch of the two sound tubes can be heavier than the cap provided for the sound tube having a high pitch of the two sound tubes. By making the cap of the sound tube with a lower pitch heavier than the cap of the sound tube with a higher pitch, it is possible to cause the musical instrument having the sound tubes to generate totally balanced sounds where the sounds generated on the lower pitch side are sufficiently deep while the sounds generated at the higher pitch side are not excessively deep.
The embodiment of the present invention can be realized in various forms. For example, it can be realized in the form of a sound tube, or a musical instrument, such as a chime using the sound tube. The present invention thus can be applied to a sound tube.
Given the present disclosure, one versed in the art would appreciate that there can be other embodiments and modifications within the scope and spirit of the present development. Accordingly, all modifications attainable by one versed in the art from the present disclosure within the scope and spirit of the present development are to be included as further embodiments of the present development. The scope of the present invention accordingly is to be defined as set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2016-057308 | Mar 2016 | JP | national |
The present application is a continuation application of International Application No. PCT/JP2017/011142, filed Mar. 21, 2017, which claims priority to Japanese Patent Application No. 2016-057308, filed Mar. 22, 2016. The contents of these applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1100671 | Deagan | Jun 1914 | A |
1100672 | Deagan | Jun 1914 | A |
2559334 | Alexander | Jul 1951 | A |
5410937 | Okamoto | May 1995 | A |
9916820 | Inoue | Mar 2018 | B2 |
20170278494 | Inoue | Sep 2017 | A1 |
20190019487 | Inoue | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
S62006798 | Jan 1987 | JP |
H09152862 | Jun 1997 | JP |
Entry |
---|
Adams. “Chimes.” Adams Percussion Brochure 2015: p. 76-81. Retrieved from Web. Feb. 22, 2016. Cited in Specification. |
International Search Report issued in Intl. Appln No. PCT/JP2017/011142 dated Jun. 6, 2017. English translation provided. |
Written Opinion issued in Intl. Appln. No. PCT/JP2017/011142 dated Jun. 6, 2017. |
Extended European Search Report issued in European Appln. No. 17770196.8 dated Oct. 14, 2019. |
Number | Date | Country | |
---|---|---|---|
20190019487 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2017/011142 | Mar 2017 | US |
Child | 16138130 | US |