Exemplary embodiments of the present invention will be understood in more detail from the following descriptions taken in conjunction with the accompanying drawings.
Exemplary embodiments of the present invention now will be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. The present invention may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these exemplary embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like reference numerals refer to like elements throughout this application.
Referring to
The source driver circuit 510 and the grayscale voltage generator 540 operate in a similar manner as the source driver circuit 120i and the grayscale voltage generator 230 of
The intermediate voltage generator 560 includes a voltage regulator 562, and may further include a capacitor 564. The voltage regulator 562 provides a regulated output voltage R_VGc irrespective of a change of an input voltage VGc. The input voltage VGC may correspond to one of the reference grayscale voltages, or may it correspond to a central reference grayscale voltage. The voltage level of the regulated output voltage R_VGc may be the same as the voltage level of the input voltage VGc. The capacitor 564 may be selectively connected to an output terminal of the voltage regulator 562 for stabilizing the regulated output voltage R_VGc.
The switching control unit 530 includes a panel type selector 531, a first switching signal controller 533, a second switching signal controller 535, a first switch 537, and a second switch 539.
The panel type selector 531 outputs a panel select signal based on a most significant bit (MSB) of the display data Dm and a panel type signal NW_SEL. The MSB of the display data Dm directs that the display data Dm is close to a worst case pattern or a best case pattern. According to exemplary embodiments of the present invention, the display data Dm may correspond to the worst case pattern when the MSB corresponds to “0”, whereas the display data Dm may correspond to the best case pattern when the MSB corresponds to “1”. According to exemplary embodiments of the present invention, the panel type signal NW_SEL may correspond to logic “1” when the panel type corresponds to a normal black panel, whereas the panel type signal NW_SEL may correspond to logic “0” when the panel type corresponds to a normal white panel. The opposite situation may be possible according to other exemplary embodiments. The panel type selector 531 may be implemented with an exclusive OR gate. In summary, the panel type selector 531 outputs logic “1” when the MSB of the display data and the panel type signal NW_SEL are different from each other.
The first switching signal controller 533 receives a first control signal E_CR_ON and a second control signal L_CR_ON, and selectively outputs one of the first control signal E_CR_ON and the second control signal L_CR_ON in response to an output signal (panel select signal) of the panel type selector 531. The first switching signal controller 533 may be implemented with a 2-to-1 multiplexer. The first control signal E_CR_ON corresponds to a switching control signal between the regulated output voltage R_VGc of the intermediate voltage generator 560 and the source output Sout so that the source output Sout may transit to the final level prior to VCOM. The second control signal L_CR_ON corresponds to a switching control signal between the regulated output voltage R_VGc of the intermediate voltage generator 560 and the source output Sout so that the source output Sout and VOM may transit to respective final levels simultaneously. That is, when the first control signal E_CR_ON is selected as an output signal I_CR_ON of the first switching signal controller 533, the source output Sout transits to final level prior to VCOM whereas the source output Sout and VCOM transit to respective final levels when the second control signal L_CR_ON is selected as the output signal I_CR_ON of the first switching signal controller 533.
The second switching signal controller 535 receives a third control signal E_GRAY_ON and a fourth control signal L_GRAY_ON, and selectively outputs one of the third control signal E_GRAY_ON and the fourth control signal L_GRAY_ON in response to the panel select signal. The second switching signal controller 535 may be implemented with a 2-to-1 multiplexer. The third control signal E_GRAY_ON corresponds to a switching control signal between the output of the buffer 517 and the source output Sout so that the source output Sout may transit to the final level prior to VCOM. The fourth control signal L_GRAY_ON corresponds to a switching control signal between the output of the buffer 517 and the source output Sout, so that the source output Sout and VCOM may transit to respective final levels simultaneously. That is, when the third control signal E_GRAY_ON is selected as an output signal I_GRAY_ON of the second switching signal controller 535, the source output voltage Sout transits to the final level prior to VCOM, whereas the source output voltage Sout and VCOM transit to respective final levels when the second control signal L_GRAY_OM is selected as the output signal I_CR_ON of the second switching signal controller 535.
The first switch 537 selectively connects the regulated output voltage R_VGc as the source output voltage Sout. The second switch 539 selectively connects the output of the buffer 517 as the source output Sout.
The arrangement of the liquid crystal material in the liquid crystal capacitor Ceq varies according to a voltage difference between the source output Sout and the VCOM voltage, thereby operating the display panel.
Referring to
The intermediate voltage output circuit 650 includes a third driver 651 that buffers and outputs a reference voltage VDD fed thereto, and switches 653 and 655 that are controlled by intermediate voltage control signals VCIR and VSSR respectively. The switch 653 is controlled to connect the output of the third driver 651 to the VCOM node N, and the switch 655 is controlled to connect the VCOM node N to a ground voltage VSS.
At this time, control signal CR_ON is disabled, and control signal GRAY_ON is enabled. In addition, the source output Sout is driven to VH, because the worst case pattern is assumed.
Referring to
At time T1, the polarity signal M switches to logic “1” to invert the display data, the control signal VCML_ON is disabled to cause the switch 640 to be opened, and control signal VSSR is enabled to cause to the switch 655 to be closed, thereby connecting the VCOM node N to an intermediate voltage VSS (for example, ground). During time period P1, VCOM is driven to VSS from VCOML. At time T1, control signal CR_ON is enabled, and control signal GRAY_ON is disabled. Accordingly, the switch 537 is closed, and the switch 539 is opened. Dining time period P1, the source output Sout is driven to VGc.
At time T2, the control signal VSSR is disabled to cause the switch 655 to be opened, the control signal VCIR is enabled to cause the switch 653 to be closed, thereby connecting the VCOM node N to the output of the third driver 651. Accordingly, during time period P2, VCOM is driven to an intermediate voltage (VDD) from VSS by using VDD power supply. During time period P2, the source output Sout is maintained at VGc, because control signals CR_ON and GRAY_ON are in the same state as in time period P1.
At time T3, the control signal VCIR is disabled to cause the switch 653 to be opened, and the control signal VCMH_ON is enabled to cause the switch 630 to be closed, thereby connecting the output of the first driver 610 to the VCOM node N. Therefore, during time period P3, VCOM is driven to VCOMH from the intermediate voltage (VDD) by the first driver 610. At time T3, the control signal CR_ON is disabled to cause the switch 537 to be opened, and the control signal GRA_ON is enabled to cause the switch 539 to be closed, thereby driving the source output Sout to VL from VGc.
At time T4, the polarity control signal M switches to logic “0” that indicates display data having a “positive” polarity, the control signal VCMH_ON is disabled to cause the switch 640 to be opened, and the control signal VCIR is enabled to cause the switch 653 to be closed, thereby connecting the VCOM node N to the output of the third driver 651. During time interval P4, VCOM is driven to VDD from VCOMH by the third driver 651. At time T4, the control signal CR_ON is enabled to cause the switch 537 to be closed, and the control signal GRAY_ON is disabled to cause the switch 539 to be opened, thereby driving the source output Sout to VGc from VL during time period P4.
At time T5, the control signal VCIR is disabled to cause the switch 653 to be opened, and the control signal VCMH_ON is enabled to cause the switch 630 to be closed, thereby connecting the VCOM node N to VSS. During time period P5, VCOM is driven to VSS from VDD. The source output Sout is maintained at VGc, because control signals CR_ON and GRAY_ON are in the same state as they were during the time period P4.
At time T6, the control signal VSSR is disabled to cause the switch 655 to open, and the control signal VCML_ON is enabled to cause the switch 640 to be closed, thereby connecting the VCOM node N to the output of the second driver 620. During time interval P5, VCOM is driven to VCOML from VSS. At time T6, the control signal CR_ON is disabled to cause the switch 537 to be opened, and the control signal GRAY_ON is enabled to cause the switch 539 to be closed, thereby driving the source output Sout to VH from VGc during time period P6.
In
I
VCOMH=(m(VCOMH−VDD+VGc)Ceq)/2T=(m(VCOMH−VDD+(VH−VL)/2)Ceq)/2T, [Equation 5]
where m denotes a number of source channels, Ceq denotes a capacitance of an equivalent capacitor, and T denotes a toggling period of VCOM.
In addition, the average load current consumption for VCOML driven from VCL is formulated by the following Equation 6.
I
VCOML=(m(VGc−VCOML)Ceq)/2T=(m((VH−VL)/2−VCOML)Ceq)/2T [Equation 6]
I
SRC=(m(VGc−VCOML)Ceq)/2T=(m((VH−VL)/2−VCOML)Ceq)/2T [Equation 7]
I
VDD=(m(VGc−(VH−VL−VGc−VCOML)Ceq)2T=m*VCOML*Ceq/2T [Equation 8]
When AVDD corresponds to an output voltage boosted by ‘a’ from an external input power supply voltage, and VCL corresponds to an output voltage boosted by ‘−b’ from the external input power supply voltage, the total average current consumption is formulated by following Equation 9.
When Equation 9 is subtracted from Equation 4, a difference of the current consumptions may be obtained as the following Equation 10.
m((a+b)*VCOMH−(a+1)VCOML+(a+b/2)(VH−VL)+a*VDD)Ceq)/2T [Equation 10]
The current consumption is reduced by the amount of equation 10 when the common voltage generator of
Referring to
At time T1, the polarity signal M switches to logic “1” to invert the display data, the control signal VCML_ON is disabled to cause the switch 640 to be opened, and control signal VSSR is enabled to cause to the switch 655 to be closed, thereby connecting the VCOM node N to an intermediate voltage VSS (for example, ground). During the time period P1, VCOM is driven to VSS from VCOML.
While the exemplary embodiments of the present invention and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations may be made herein without departing from the scope of the present invention. At time T1, control signals E_CR_ON aid L_CR_ON are enabled, and control signals E_GRAY_ON and L_GRAY_ON are disabled. Therefore, the first, output signal I_CR_ON is enabled to cause the switch 537 to be closed, and the second output signal I_GRAY_ON is disabled to cause the switch 539 to be opened, thereby connecting the output of the intermediate voltage generator 560 to the source output Sout. During time period P1, the source output Sout is driven to VGc from VH.
At time T2, the control signal VSSR is disabled to cause the switch 655 to be opened, the control signal VCIR is enabled to cause the switch 653 to be closed, thereby connecting the VCOM node N to the output of the third driver 651. Accordingly, during time period P2, VCOM is driven to VDD from AVSS by using the power supply VDD. During time period P2, the source output Sout is maintained at VGc, because the signals E_CR_ON, L_CR_ON, E_GRAY_ON, L_GRAY_ON, I_CR_ON and I_GRAY_ON are in the same state as during time period P1.
During time period P3, VCOM is maintained at VDD, the same state as time period P2. At time T3, the control signal E_CR_ON is disabled, and the first output signal I_CR_ON is disabled accordingly to cause the switch 537 to be opened, and the control signal E_GRAY_ON is disabled, and the second output signal I_GRAY_ON is disabled accordingly to cause the switch 539 to be closed, thereby connecting the output of the buffer 517 to the source output Sout. During time period P3, the source output Sout is driven to VL, the lowest grayscale reference voltage, from VGc. Accordingly, the source output Sout transits to the final level (VL) prior to VCOM.
At time T4, the control signal VCIR is disabled to cause the switch 653 to be opened, and the control signal VCMH_ON is enabled to cause switch 630 to be closed, and thereby connecting the output of the first driver 610 to the VCOM node N. During time interval P4, VCOM is driven to VCOMH from VDD by the first driver 610. During time period P4, the source output Sout is maintained at VL, the same state as during time period P3.
At time T5, the polarity control signal M switches to logic “0”, the control signal VCMH_ON is disabled to cause the switch 630 to be opened, and the control signal VCIR is enabled to cause the switch 653 to be closed, thereby connecting the VCOM node N to the output of the third driver 651. During time period P5, VCOM is driven to VCOMH from VDD. At time T5, control signals E_CR_ON and R_CR_ON are enabled, and control signals E_GRAY_ON and I_GRAY_ON are disabled. Accordingly, the output signal I_GRAY_ON is disabled to cause the switch 539 to be opened, and the output signal I_CR_ON is enabled to cause the switch 537 to be closed, thereby connecting the output of the intermediate voltage generator 560 to the source output Sout. Accordingly, the source output Sout is driven to VL from VGc.
At time T6, the control signal VCIR is disabled to cause the switch 653 to be opened, and the control signal VSSR is enabled to cause the switch 655 to be closed, thereby connecting the VCOM node N to an intermediate voltage (VSS). During time period P6, VCOM is driven to VSS from VDD, and the source output Sout is maintained at VGc as in time period P5. During time period P7, VCOM is maintained at VSS as during time period P6.
At time T7, the control signal E_CR_ON is disabled, and the output signal I_CR_ON is disabled to cause the switch 537 to be opened. In addition, the control signal E_CR_ON is enabled, and the output signal I_GRAY_ON is enabled to cause the switch 539 to be closed, thereby connecting the output of the buffer 517 to the source output Sout. Therefore, during time period P7, the source output is driven to VH from VGc. During time period P7, the source output transits to a final level (VH) prior to VCOM.
At time T8, the control signal VSSR is disabled to cause the switch 655 to be opened, and the control signal VCML_ON is enabled to cause the switch 640 to be closed, thereby connecting the VCOM node N to the output of the second driver 620. Therefore, during time period P8, the VCOM is driven to VCOML from VSS, and the source output Sout is maintained at VH as in time period P7.
In
In
I
VCOMH=(m(VCOMH−VDD)Ceq)/2T, [Equation 11]
where m denotes a number of source channels, Ceq denotes an equivalent capacitance, and T denotes a toggling period of VCOM.
In addition, the average load current consumption for VCOML driven from VCL is formulated by the following Equation 12.
I
VCOML
=−m*VCOML*Ceq/2T [Equation 12]
Further, the average load current consumption for source driven from AVDD is formulated by the following Equation 13.
I
SRC=(m((VH−VL)/2−VCOML)Ceq)/2T [Equation 13]
I
VDD
=m*VCOML*Ceq/2T [Equation 14]
In addition, the average load current consumption of VCOM driver for VDD is formulated by the following Equation 15.
I
VDD
=m(VH−VL)/2*Ceq)/2T [Equation 15]
When AVDD corresponds to an output voltage boosted by “a” from an external input power supply voltage, and VCL corresponds to an output voltage boosted by “−b” from the external input power supply voltage, the total average current consumption is formulated by the following Equation 16.
I
TOT
=m(a(VCOMH−VDD+(1−b)VCOML+(VH−VL)/2)Ceq)/2T [Equation 16]
When Equation 16 is subtracted from Equation 9, a difference of the current consumptions may be obtained as the following Equation 17.
m(a(VH−VL−VCOML)+(b−1)(VH−VL)/2)Ceq/2T [Equation 17]
The current consumption is reduced by the amount of Equation 10 when the common voltage generator of
In
At time T3, the output signal I_CR_ON is disabled, and the output signal I_GRAY_ON is enabled. The output signal I_CR_ON is identical to the control signal L_CR_ON, and the output signal I_GRAY_ON is identical to the control signal L_GRAY_ON. The control signal L_GRAY_ON corresponds to a switching control such that the source output Sout and VCOM may transit simultaneously to respective final levels. Therefore, VCOM and the source output Sout transit simultaneously to respective final levels (VCOMH and VH). At time T6, the output signal I_CR_ON is disabled, and the output signal I_GRAY_ON is enabled. Accordingly, VCOM and the source output Sout transit simultaneously to respective final levels (VCOML and VL) during time period P6. That is, reduction of current consumption is relatively large when VCOM and the source output Sout transit simultaneously to respective levels in the case of the best case pattern.
As described above, the source driving circuit, the method of driving the data line of the display, and the liquid crystal display apparatus including the same according to the exemplary embodiments of the present invention may significantly reduce current consumption by controlling timing of the transition to final levels of the source output and VCOM.
Having thus described exemplary embodiments of the present invention, it is to be understood that the invention defined by the appended claims is not to be limited by particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope thereof as hereinafter claimed.
Number | Date | Country | Kind |
---|---|---|---|
2006-39460 | May 2006 | KR | national |