1. Field of the Invention
The present invention generally relates to a source driver circuit, and more particularly to a source driver circuit of an LCD apparatus.
2. Description of Prior Art
Please refer to
The non-invert amplifiers 11 and 12 output display signals 13 that drive the TFT liquid crystal panel 1 to the demultiplexer 16. Furthermore, the display controller 2 transmits a timing signal 17 to the shift register 14 for transmitting the display signals 13 from the demultiplexer 16 to the TFT liquid crystal panel 1. In the meantime, the display controller 2 also transmits a transfer clock 18 to the shift register 14. Moreover, the display controller 2 transmits pulses 19 to the level shifter 15 according to the transfer clock 18.
The display controller 2 outputs the gate driving control signals 4 to the gate driver circuit 3. And then, the controlled gate driver circuit 3 activates any one gate control line of the TFT liquid crystal panel 1.
Display data are the gradation voltage signals which are generated by the reference voltage circuits 5 and 6 for applying to the TFT liquid crystal panel 1. Then, the gradation voltage signals are converted by the DACs 9 and 10. The analog signals obtained by aforesaid conversion are inputted into the non-invert amplifiers 11 and 12. For cyclically reversing the polarities of the gradation voltages applied to the TFT liquid crystal panel 1, the reference voltage circuits 5 and 6, the voltage selectors 7 and 8, the DACs 9 and 10, the non-invert amplifiers 11 and 12 are all the essential elements during driving the liquid crystals.
More specifically, the LCD apparatus of prior arts needs a positive reference voltage circuit 5 and a negative reference voltage circuit 6 for cyclically reversing the polarities of the gradation voltages of driving the liquid crystals of the TFT panel 1. Correspondingly, two voltage selectors 7 and 8, two DACs 9 and 10, two non-invert amplifiers 11 and 12 become necessary. Therefore, an occupied area of the source driver circuit is large and power consumption thereof is also high. For a tendency towards microminiaturization and low power consumption of LCD apparatus s, there is a need to resolve the aforesaid drawbacks to satisfy demands for microminiaturization and low power consumption of LCD apparatus.
An objective of the present invention is to provide a source driver circuit for an LCD apparatus with a small occupied area and low power consumption.
For solving the problems, the present invention provides a source driver circuit that includes a reference voltage circuit and a voltage selector. The reference voltage circuit and the voltage selector are shared by a positive voltage driving system and a negative voltage driving system. By employing an invert amplifier and a non-invert amplifier thereof, the source driver circuit of the present invention is capable of outputting LCD display signals with different polarities respectively.
The source driver circuit of the LCD apparatus according to the present invention comprises a reference voltage (Gamma) circuit, a negative voltage driving DAC, a positive voltage driving DAC, an invert amplifier, a non-invert amplifier and a voltage selector. The reference voltage circuit generates a reference voltage. The negative voltage driving DAC divides display data into negative gradation voltages. The positive voltage driving DAC divides the display data into positive gradation voltages. The invert amplifier provides the negative gradation voltages for driving the LCD apparatus and the non-invert amplifier provides the positive gradation voltages for driving the LCD apparatus. The voltage selector selectively provides the reference voltage from the reference voltage circuit for the positive voltage driving DAC and the negative voltage driving DAC. Specifically, the reference voltage circuit and the voltage selector are shared by the positive voltage driving system and the negative voltage driving system so that the source driver circuit can have a small occupied area and low power consumption.
The foregoing positive voltage driving system includes the reference voltage circuit, the voltage selector, the positive voltage driving DAC and the non-invert amplifier. The foregoing negative voltage driving system includes the reference voltage circuit, the voltage selector, the negative voltage driving DAC and the invert amplifier. Accordingly, a source driver circuit with a small occupied area and low power consumption can be achieved and applied in an LCD apparatus according to the present invention.
Furthermore, the source driver circuit of the present invention further comprises a select switch. The select switch is coupled to the positive voltage driving DAC, the negative voltage driving DAC and the voltage selector respectively. The select switch is capable of selectively and alternately switching the reference voltage from the voltage selector outputted to the positive voltage driving DAC and the negative voltage driving DAC.
Moreover, the source driver circuit of the present invention can be employed in an LCD apparatus for driving the liquid crystal panel thereof. Furthermore, the LCD apparatus having the source driver circuit of the present invention can be applied in an electronic device. The electronic device can be a cellular phone, a digital camera, a Personal Digital Assistant, a media display in car, a display for airplane, a digital frame and a portable DVD player.
In conclusion, the source driver circuit of the LCD apparatus provided by the present invention can have advantages of a small occupied area and low power consumption than prior arts.
Refer to
A positive voltage driving system of the source driving circuit includes the reference voltage circuit 5, the voltage selector 7, the positive voltage driving DAC 41 and the non-invert amplifier 40. A negative voltage driving system of the source driving circuit includes the reference voltage circuit 5, the voltage selector 7, the negative voltage driving DAC 21 and the invert amplifier 20. The reference voltage circuit 5 and the voltage selector 7 are shared by the positive voltage driving system and the negative voltage driving system. With the select switch 61, the output of the voltage selector 7 to the negative voltage driving DAC 21 and the positive voltage driving DAC 41 can be selectively and alternately switched. The negative voltage driving DAC 21 converts gradation voltage signals from the voltage selector 7 into analog signals. The invert amplifier 20 inverts the analog signals from the voltage selector 7 and works as an analogue buffer for applying the inverted signal to the TFT liquid crystal panel. The positive voltage driving DAC 41 converts gradation voltage signals from the voltage selector 7 into analog signals. The non-invert amplifier 40 works as an analogue buffer for applying the signal from DAC 41 to the TFT liquid crystal panel without converting the analog signals from the positive driving DAC. Accordingly, comparing with prior arts, one reference voltage circuit and one voltage selector can be omitted, so that it can decrease the occupied area of the source driving circuit.
Refer to
Refer to
Hence, the terminals of the voltage selector (VH, VL) are coupled with the storage capacitor 304 through the trigger switch 301. For inputting the reference voltage (Vref) into the storage capacitor 304 and the negative feedback capacitor 305, the reference voltage terminal is coupled with the input terminal of the storage capacitor 304 and the input terminal the negative feedback capacitor 305. Moreover, the ground terminal of the storage capacitor 304 and that of the negative feedback capacitor 305 are coupled with the input terminal of the amplifier 32. The input terminal of the negative feedback capacitor 305 is coupled to the output terminal of the amplifier 32 through the trigger switch 303. The negative voltage driving DAC 31 provides the reference voltage (Vref: 0V) through the setup switch 302. Then, the negative voltage driving DAC 31 selects a reference voltage through the trigger switch 301 from the terminals of the voltage selector (VH, VL) and inputs the reference voltage to corresponding storage capacitors 304 (one of the 8C, 4C, 2C, 1C, 1C) to proceed the D/A conversion, and divides the display data into gradation voltages. Thereafter, the amplifier 22 is used to invert the gradation voltages and works as an analogue buffer for applying negative gradation voltages to pixels of the TFT liquid crystal panel.
Refer to
Refer to
Hence, the output terminals of the voltage selector (VH, VL) are coupled with the storage capacitor 504 through the setup switch 501. For inputting the reference voltages into the storage capacitor 504, the reference voltage terminal is coupled with the input terminal of the storage capacitors 504 through the setup switch 501. Moreover, the ground terminal of the storage capacitor 504 is coupled with the input terminal of the amplifier 52. The input terminal of the storage capacitors 504 is coupled to the output terminal of the amplifier 52 through the trigger switch 502. The positive voltage driving DAC 51 selects a reference voltage through the setup switch 501 from the terminals of the voltage selector (VH, VL) and inputs the reference voltage to corresponding storage capacitors 504 (one of the 8C, 4C, 2C, 1C, 1C) to proceed the D/A conversion, and divides the display data into gradation voltages. Thereafter, the amplifier 52 works as an analogue buffer for applying the positive gradation voltages to the pixels of the TFT liquid crystal panel.
The LCD apparatus having the source driver circuit of the present invention can be applied in a cellular phone, a digital camera, a PDA (Personal Digital Assistant), an automotive display, a navigation display, a digital frame and a portable DVD player.
As is understood by a person skilled in the art, the foregoing preferred embodiments of the present invention are illustrative rather than limiting of the present invention. It is intended that they cover various modifications and similar arrangements be included within the spirit and scope of the appended claims, the scope of which should be accorded the broadest interpretation so as to encompass all such modifications and similar structure.
Number | Date | Country | Kind |
---|---|---|---|
2008-067646 | Mar 2008 | JP | national |