1. Field of Invention
The present invention relates to a source driving circuit, and more particular, a source driving circuit with high efficiency and low consumption.
2. Description of Related Art
Various types of electronic devices have display devices, such as TVs, laptop computers, monitors and mobile communication terminals. The display devices are requested to be thin and/or light in order to save the volume and the cost of the electronic devices. To satisfy these requirements, various Flat Panel Displays (FPDs) have been developed as alternatives to more conventional cathode ray tube displays.
A liquid crystal display (LCD) is one kind of the FPDs. In the LCD device, a source driver plays an important role, which converts the digital video data into driving voltages and delivers the driving voltages to pixels on a display panel of the LCD. The source driver includes an output buffer for enhancing the driving ability of the driving voltage so as to avoid signal attenuation.
The output buffer 100 is used as a unit-gain buffer by connecting the output node Vout to the input node Vin−, such that the output buffer 100 is under a static state when the differential input signals at the input nodes Vin+ and Vin− are equal. When the output buffer 100 is under a transient state, it can either be under a charge state or under a discharge state. If the signal at the input node Vin+ is higher than the signal at the input node Vin−, the output buffer 100 is under the charge state so as to pull high the voltage at the output node Vout. During this charge state, the current flowing through transistors N1 and N3 is comparatively larger than the current flowing through the transistors N2 and N4, such that the charge current Ich flowing through the transistor N8, mirrored from the current from the transistor N3, is rising so as to quickly pull high the voltage at the output node Vout.
If the signal at the input node Vin− is higher than the signal at the input node Vin+, the output buffer 100 is under the discharge state. During this discharge state, the current flowing through the transistors N2 and N4 is comparatively larger than the current flowing through the transistors N1 and N3, such that the charge current flowing through the transistor N9, mirrored from the current from the transistor N4, becomes larger, and thus the discharge current Idisch, mirrored from the current of transistor N6, is rising to quickly pull low the voltage at the output node Vout.
However, the size of the display panel is getting larger, and thus the larger charge current Ich and the discharge current Idisch are required for driving larger display panel.
For solving the problem mentioned above, the invention provides a source driving circuit with high efficiency and low consumption to drive a display panel. The source driving circuit adapted to drive the display panel includes a first output buffer. The first output buffer includes a first differential input stage, a first output stage and a second output stage. The first differential input stage receives a first input signal and a second input signal via a first input terminal and a second input terminal respectively. The first output stage includes a first level adjustment circuit and a first self-bias providing circuit. The first level adjustment circuit provides a first level voltage according to the signals received by the first differential input stage. The self-bias providing circuit provides a first biased voltage to the first level adjustment circuit. The second output stage provides a first charge current and a first discharge current to output a first output signal based on the first level voltage.
In an embodiment of the foregoing source driving circuit, the source driving circuit further includes a second output buffer. The second output buffer includes a second differential input stage, a third output stage and a fourth output stage. The second differential input stage receives a third input signal and a fourth input signal via a third input terminal and a fourth input terminal respectively. The third output stage includes a second level adjustment circuit, and a second self-bias providing circuit. The second level adjustment circuit provides a second level voltage according to the signals received by the second differential input stage. The second self-bias providing circuit provides a second biased voltage to the first level adjustment circuit and the second level adjustment circuit. The fourth output stage provides a second charge current and a second discharge current to output a second output signal based on the second level voltage.
In an embodiment of the foregoing source driving circuit, a first current and a second current are generated in the first differential input stage respectively according to the first input signal and the second input signal. The first level adjustment circuit receives a first level current mirrored from the first current or the second current to generate the first level voltage. In addition, a third current and a fourth current are generated in the second differential input stage respectively according to the third input signal and the fourth input signal. The second level adjustment circuit receives a second level current mirrored from the third current or the fourth current to generate the second level voltage.
In an embodiment of the foregoing source driving circuit, the first self-bias providing circuit generates the first biased voltage based on the second current. In addition, the second self-bias providing circuit generates the second biased voltage based on the fourth current.
The present invention provides a source driving circuit including an output buffer with two output stages for increasing the driving ability. As for the output buffer, the level adjustment circuit in the first of the output stages can dynamically adjust the level voltage according to the signals received by the differential input stage for controlling the last one of the output stages. In addition, the level adjustment circuit is biased by the self-bias providing circuit within the output buffer. The bias voltage provided by the self-bias providing circuit is associated with one of currents induced in the differential input stage. Therefore, the source driving circuit can increase the charge and the discharge abilities more efficiently.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
An output buffer for providing larger charge current and discharge current is provided in the embodiment of the invention. The output buffer is for example used in a source driving circuit of a display panel.
The first output stage 212 includes transistors M5 through M8, a level adjustment circuit 212a and a self-bias providing circuit 212b. The transistors M3 and M5 compose a mirror circuit structure for mirroring the first current In1 to generate a first level current IL1 flowing through the transistor M5. The transistors M6 through M8 also compose a cascade mirror circuit structure for mirroring the second current In2 to generate the first level current IL1 flowing through the transistor M8. The transistors M5 and M8 and the level adjustment circuit 212a are in the same current path, so that the current flowing through the transistor M5 and the current flowing through the transistor M8 are the same current, i.e. the first level current IL1, when the level adjustment circuit 212a forms a short circuit. The level adjustment circuit 212a including transistors M9 and M10 provides a first level voltage at the first node V1 and a second level voltage at the second node V2 based on the differential input stage 211 so as to drive the second output stage 213. The level adjustment circuit 212a receives the first level current IL1, mirrored from the first current In1 or the second current In2 to generate the first level voltage and the second level voltage.
The self-bias providing circuit 212b including a self-bias transistor M13 provides a first biased voltage Vb1 based on the second current In2 to control the level adjustment circuit 212a. In the embodiment of the present invention, the self-bias transistor M13 is coupled between the transistors M6 and M7, and thus the self-bias transistor M13 receives a first mirroring current Im1, mirrored from the second current In2, to generate the first biased voltage Vb1. The second output stage 213 includes transistors M11 and M12. The second output stage 213, controlled by the voltages at the nodes V1 and V2, outputs an output signal at a first output node Voutn. When the transistor M11 is turned on, the second output stage 213 would provide a first charge current. When the transistor M12 is turned on, the second output stage 213 would provide a first discharge current.
When the input voltage at the first input terminal Vin1− (i.e. the first input signal) is greater than the input voltage at the second input terminal Vin1+ (i.e. the second input signal), the output buffer 210 is under a discharge state to pull low the output voltage at the first output node Voutn. That is, the first current In1 flowing through the transistors M1 and M3 is greater than the second current In2 flowing through the transistors M2 and M4. Therefore, the first level current IL1 flowing through the transistor M5, mirrored from the first current In1, becomes larger to pull high the voltages at the first node V1 and the second node V2. As a result, the transistor M12 of the second output stage 213, controlled by the second level voltage at the second node V2, is turned on to provide the first discharge current and pull low the output voltage at the first output node Voutn.
When the input voltage at the first input terminal Vin1− (i.e. the first input signal) is less than the input voltage at the second input terminal Vin1+ (i.e. the second input signal), the output buffer 210 is under a charge state to pull high the output voltage at the first output node Voutn. That is, the second current In2 flowing through transistors M2 and M4 is greater than the first current In1 flowing through the transistors M1 and M3. Therefore, the first mirroring current Im1 flowing through the transistor M6, mirrored from the second current In2, becomes larger, such that the first level current IL1 flowing through the transistor M8, mirrored from the first mirroring current Im1, also becomes larger so as to pull low the voltages at the first node V1 and the second node V2. As a result, the transistor M11 of the second output stage 213, controlled by the first level voltage at the first node V1, is turned on to provide the first charge current and pull high the output voltage at the first output node Voutn.
In the embodiment of the present invention, the level adjustment circuit 212a is properly biased to adjust the first level voltage at the first node V1 and the second level voltage at the second node V2, which controls the second output stage 213. The transistor M9 of the level adjustment circuit 212a is biased by the first biased voltage Vb1 associated with the second current In2. The transistor M10 of the level adjustment circuit 212a is biased by a second biased voltage Vb2 associated with the negative polarity output buffer 220 (it will be described later). Therefore, the level adjustment circuit 212a dynamically adjusts level voltages of the first node V1 and the second node V2 responsive to the dynamic state of output buffer 210. In addition, the level adjustment circuit 212a keeps the gates of the transistors M11 and M12 having a small voltage offset for avoiding the transistors M11 and M12 to turn on simultaneously.
It is noted that under the static state of the output buffer 210, the source-gate voltage of the transistor M11 and the gate-source voltage of the transistor M12 in the second output stage 213 are small, and thus the power consumption mostly determined by the static current is small.
The negative polarity output buffer 220 is discussed in the following paragraphs. The negative polarity output buffer 220 includes a differential input stage 221, a first output stage 222 and a second output stage 223. The differential input stage 221 includes transistors T1 through T4, wherein the transistor T1 and T2 are P-type transistors composing a P-type differential pair. The differential input stage 221 respectively receives a third input signal and a fourth input signal via a third input terminal Vin2− and a fourth input terminal Vin2+. The differential input stage 221 further includes a current source implemented by a transistor T14 for providing a second bias current Ib2 to the differential input stage 221, so that a third current Ip1 and a fourth current Ip2 are induced in the differential input stage 221 according to the signals at the input terminals Vin2− and Vin2+.
The first output stage 222 includes transistors T5 through T10 and T13. The transistor T5 mirrors the third current Ip1 to generate a second level current IL2 flowing through the transistor T5. The transistor T6 mirrors the fourth current Ip2 to generate a second mirroring current Im2, and the transistors T7 and T8 cooperate to mirror the second mirroring current Im2 to generate the second level current IL2 flowing through the transistor T8. The transistors T9 and T10 of the first output stage 222 are used as a level adjustment circuit 222a for providing voltages at the third node V3 and the fourth node V4 based on the differential input stage 221 so as to drive the second output stage 223. The transistor T13 of the first output stage 222 is used as a self-bias transistor for providing the second bias voltage Vb2 to control the level adjustment circuits 212a of the positive polarity output buffer 210 and to control the level adjustment circuit 222a. Moreover, the level adjustment circuit 222a is also controlled by the first bias voltage Vb1. The second output stage 223 includes transistors T11 and T12.
When the input voltage at the fourth input terminal Vin2+ (i.e. the fourth input signal) is greater than the input voltage at the third input terminal Vin2− (i.e. the third input signal), the output buffer 220 is under a charge state to pull high the output voltage at the second output node Voutp. That is, the third current Ip1 flowing through the transistors T1 and T3 is greater than the fourth current Ip2 flowing through the transistor T2 and T4. Therefore, the second level current IL2 flowing through the transistor T5, mirrored from the first current Ip1, becomes larger to pull low the voltages at the third node V3 and the fourth node V4. As a result, the transistor T12 of the second output stage 223, controlled by the voltage at the third node V3, is turned on to pull high the output voltage at the second output node Voutp.
When the input voltage at the fourth input terminal Vin2+ (i.e. the fourth input signal) is less than the input voltage at the third input terminal Vin2− (i.e. the third input signal), the output buffer 220 is under a discharge state to pull low the output voltage at the second output node Voutp. That is, the fourth current Ip2 flowing through transistors T2 and T4 is greater than the third current Ip1 flowing through the transistors T1 and T3. Therefore, the second mirroring current Im2 flowing through the transistor T6, mirrored from the fourth current Ip2, becomes larger, such that the second level current IL2 flowing through the transistor T8, mirrored from the second mirroring current Im2, also becomes larger so as to pull high the voltages at the third node V3 and the fourth node V4. As a result, the transistor T11 of the second output stage 223, controlled by the voltage at the fourth node V4, is turned on to pull low the output voltage at the second output node Voutp.
In the embodiment of the present invention, the level adjustment circuit 222a is properly biased to adjust the voltages at the nodes V3 and V4, which controls the second output stage 223. In the level adjustment circuit 222a, the transistor T10 is biased by the first biased voltage Vb1 provided by the self-bias transistor M13 of the output buffer 210, and the transistor T9 is biased by the second biased voltage Vb2 provided by the self-bias transistor T13 of the output buffer 220. Therefore, the level adjustment circuit 222a dynamically adjusts levels of the nodes V3 and V4 responsive to the state of output buffer 220. In addition the level adjustment circuit 222a also keeps the gates of the transistors T11 and T12 having a small voltage offset for avoiding the transistors T11 and T12 to turn on simultaneously.
As the foregoing description of the output buffers 210 and 220, the first biased voltage Vb1 is equal to (VGS
In summary, each of the output buffers utilizes two output stages to enhance the driving ability of the source driving circuit. In each output buffer, the first of the output stages utilizes the level adjustment circuit to dynamically adjust the level voltage according to the signals received by the differential input stage so as to control the last one of the output stages. In addition, the first of the output stages includes the self-bias providing circuit to bias the level adjustment circuit according to one of the induced currents in the differential input stage. Therefore, the output buffer can provide high rate charge current and high rate discharge current under the dynamic state, and operate more efficiently.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing descriptions, it is intended that the present invention covers modifications and variations of this invention if they fall within the scope of the following claims and their equivalents.