SOYBEAN TRANSCRIPTION FACTORS AND OTHER GENES AND METHODS OF THEIR USE

Information

  • Patent Application
  • 20120198587
  • Publication Number
    20120198587
  • Date Filed
    June 30, 2010
    14 years ago
  • Date Published
    August 02, 2012
    12 years ago
Abstract
Gene expression is controlled at the transcriptional level by very diverse group of proteins called transcription factors (TFs). 5671 soybean (Glycine max) genes have been identified and disclosed as putative transcription factors through mining of soybean genome sequences. Distinct classes of the TFs are also disclosed which may be expressed and or function in a manner that is tissue specific, developmental stage specific, biotic and/or abiotic stress specific. Manipulation and/or genetic engineering of specific transcription factors may improve the agronomic performance or nutritional quality of plants. Transgenic plants expressing a select number of these TFs are disclosed. These transgenic plants show some promising traits, such as improving the capability of the plant to grow and reproduce under drought conditions.
Description
BACKGROUND

1. Field of the Invention


The present invention relates to methods and materials for identifying genes and the regulatory networks that control gene expression in an organism. More particularly, the present invention relates to soybean genes encoding transcription factors or other functional proteins that are expressed in a tissue specific, developmental stage specific, or biotic and abiotic stress specific manner.


2. Description of the Related Art


Gene expression is controlled at the transcriptional level by a very diverse group of proteins called transcription factors (TF or TFs). These proteins identify specific promoters of the genes regulated by them, and through protein-DNA and/or protein-protein interactions, these TFs help to assemble the basal transcription machinery in the cell. Transcription factors are master controllers in many living cells. They control or influence many biological processes, including cell cycle progression, metabolism, growth, development, reproduction, and responses to the environment. (Czechowski et al. 2004).


TFs play critical roles in all aspects of a higher plant's life cycle. Although several studies have analyzed the function of individual TFs, collectively these studies have provided information on only a few TFs. Therefore, it is important to identify and to understand the functions of more TFs in order to dissect their specific role in plant development, stress tolerance and plant-microbe interaction.c


Molecular tailoring of novel TFs, for example, has the potential to overcome a number of limitations in creating transgenic soybean plants with stress tolerance and better yield. A number of published reports show that genetic engineering of plants, both monocot and dicot, to modify gene expression can lead to enhanced stress tolerance. For example, over-expression of different types of TFs, such as DREB1A, ANAC, MYB, MYC and ZFHD in Arabidopsis strongly improved the drought and salt tolerance of transgenic plants (Liu et al. 1998; Abe et al. 2003; Tran et al. 2007).


Recently, introduction of SNAC 1 and ZmNF-YB2 TFs into rice and maize, respectively, enhanced the drought tolerance of transgenic plants, as demonstrated by field studies. Transgenic rice over-expressing the SNAC1 gene had 22-34% higher seed set than a negative control in the field under severe drought stress conditions at the reproductive stage, whereas transgenic maize over-expressing the ZmNF-YB2 gene (from Monsanto) produced a ˜50% increase in yield, relative to the controls, when water was withheld from the planted field area during the late vegetative stage (Hu et al. 2006; Nelson et al. 2007). The regulations forcing the listing or banning of trans-fats have spurred the development of low-linolenic soybeans. Recently, some modified zinc finger TFs (ZFP-TFs) that can specifically down-regulate the expression of the endogenous soybean FAD2-1 gene, which catalyzes the conversion of oleic acid to linoleic acid, were introduced into soybean. Seed-specific expression of these ZFP-TFs in transgenic soybean somatic embryos repressed FAD2-1 transcription and increased significantly the levels of oleic acid, indicating that engineering of TFs is capable of regulating fatty acid metabolism and modulating the expression of endogenous genes in plants (Wu et al. 2004).


Other studies have demonstrated the role of TFs during legume nodulation by characterizing mutant plant phenotypes. For example, The Medicago truncatula MtNSP1 and MtNSP2 genes encode two GRAS family TFs (Catoira et al., 2000; Oldroyd and Long, 2003; Kalo et al., 2005; Smit et al., 2005) that are essential for nodule development. MtERN, a member of the ETHYLENE RESPONSIVE FACTOR (ERF) family (Middleton et al., 2007), was shown to play a key role in the initiation and the maintenance of rhizobial infection. The Lotus japonicus NIN gene encodes a putative TF gene (Schauser et al., 1999). Mutants in the L. japonicus nm gene or the Pisum sativum ortholog (i.e. Sym35) failed to support rhizobial infection and did not show cortical cell division upon inoculation (Schauser et al., 1999; Borisov et al., 2003). In contrast, the L. japonicus astray mutant exhibited hypernodulation. The ASTRAY gene encodes for a bZIP TF (Nishimura et al., 2002).


DNA microarray analysis allows fast and simultaneous measurement of the expression levels of thousands of genes in a single experiment. However, current DNA microarray technology fails to accurately measure the expression levels of genes expressed at very low levels. For example, TFs are often missed in DNA microarray analysis due to the very low levels they are usually expressed in cells.


Drought is one of the major abiotic stress factors limiting crop productivity worldwide. Global climate changes may further exacerbate the drought situation in major crop-producing countries. Although irrigation may in theory solve the drought problem, it is usually not a viable option because of the cost associated with building and maintaining an effective irrigation system, as well as other non-economical issues, such as the general availability of water (Boyer, 1983). Thus, alternative means for alleviating plant water stress are needed.


In soybean, drought stress during flowering and early pod development significantly increases the rate of flower and pod abortion, thus decreasing final yield (Boyer 1983; Westgate and Peterson 1993). Soybean yield reduction of 40% because of drought is common experience among soybean producers in the United States (Muchow & Sinclair, 1986; Specht et al. 1999).


Mechanisms for selecting drought tolerant plants fall into three general categories. The first is called drought escape, in which selection is aimed at those developmental and maturation traits that match seasonal water availability with crop needs. The second is dehydration avoidance, in which selection is focused on traits that: lessen evaporatory water loss from plant surfaces or maintain water uptake during drought via a deeper and more extensive root system. The last mechanism is dehydration tolerance, in which selection is directed at maintaining cell turgor or enhancing cellular constituents that protect cytoplasmic proteins and membranes from drying.


The molecular mechanisms of abiotic stress responses and the genetic regulatory networks of drought stress tolerance have been reviewed recently (Wang et at 2003; Vinocur and Altman 2005; Chaves and Oliveira 2004; Shinozaki et al. 2003). Plant modification for enhanced drought tolerance is mostly based on the manipulation of either transcription and/or signaling factors or genes that directly protect plant cells against water deficit. Despite much progress in the field, understanding the basic biochemical and molecular mechanisms for drought stress perception, transduction, response and tolerance remains a major challenge in the field. Utilization of the knowledge on drought tolerance to generate plants that can tolerate extreme water deficit condition is even a bigger challenge.


Analysis of changes in gene expression within a target plant is important for revealing the transcriptional regulatory networks. Elucidation of these complex regulatory networks may contribute to our understanding of the responses mounted by a plant to various stresses and developmental changes, which may ultimately lead to crop improvement. DNA microarray assays (Schena et al 1995; Shalon et al. 1996) have provided an unprecedented opportunity for the generation of gene expression data on a whole-genome scale.


Gene expression profiling using cDNAs or oligonucleotides microarray technology has advanced our understanding of gene regulatory network when a plant is subject to various stresses (Bray 2004; Denby and Gehring 2005). For example, numerous genes that respond to dehydration stress have been identified in Arabidopsis and have been categorized as “rd” (responsive to dehydration) or “erd” (early response to dehydration) (Shinozaki and Yamaguchi-Shinozaki 1999).


There are at least four independent regulatory pathways for gene expression in response to water stress. Out of the four pathways, two are abscisic acid (ABA) dependent and the other two are ABA independent (Shinozaki and Yamaguchi-Shinozaki 2000). In the ABA independent regulatory pathways, a cis-acting element is involved and the Dehydration-responsive element/C-repeat (DRE/CRT) has been identified. DRE/CRT also functions in cold response and high-salt-responsive gene expression. When the DRE/CRT binding protein DREB1/ICBF is overexpressed in a transgenic Arabidopsis plant, changes in expression of more than 40 stress-inducible genes can be observed, which lead to enhanced tolerance to freeze, high salt, and drought (Seki et al, 2001; Fowler and Thomashow 2002; Murayama et al. 2004).


The production of microarrays and the global transcript profiling of plants have revolutionized the study of gene expression which provides a unique snapshot of how these plants are responding to a particular stress. However, no transcriptional profiling or transcriptome changes have been reported for soybean plants under various stress conditions, such as drought, flooding, disease infections, etc. There is also a lack of knowledge with respect to tissue specific expression of soybean genes and regulation of gene expression during different stage of soybean growth or reproduction. Moreover, no studies have systematically classified soybean TFs based on the structure of these proteins.


SUMMARY

The instrumentalities described herein overcome the problems outlined above and advance the art by providing genes and DNA regulatory elements which may play an important role in regulating the growth and reproduction of a plant under normal or distress such as drought conditions, among others. Methodology is also provided whereby these genes responsive to various distress conditions may be introduced into a host plant to enhance its capability to grow and reproduce under such conditions. The regulatory elements may also be employed to control expression of heterologous genes which may be beneficial for enhancing a plant's capability to grow under such conditions.


Expression of many plant proteins are regulated by a group of proteins termed transcription factors (TFs). The expression of TFs may themselves be regulated. TF genes are generally expressed at relatively low levels which makes the detection and quantitation of their expression difficult. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) is the most sensitive technology currently available to quantify gene expression. High-throughput qRT-PCR has been used in several other plant species (e.g. A. thaliana, O. sativa and M. truncatula) to quantitate the expression of TF genes. See Czechowski T, Bari R P, Stitt M, Scheible W R, Udvardi M K (2004) Plant J 38: 366-379; Caldana C, Scheible W R, Mueller-Roeber B, Ruzicic S (2007). Plant Methods 3: 7; and Kakar K, Wandrey M, Czechowski T, Gaertner T, Scheible W R, Stitt M, Torres-Jerez I, Xiao Y, Redman J C, Wu H C, Cheung F, Town C D, Udvardi M K (2008) Plant Methods 4: 18.


It is also disclosed here a library of primers specifically designed for transcription factors (TF) In one embodiment, qRT-PCR may be used to profile gene expression in various soybean tissues using the primers specific for these genes. In another embodiment, the same primers may be used to identified genes whose expression levels change during various developmental or reproductive stages, such as during nodulation by rhizobia in roots, under drought stress, under flooding, or in developing seeds. Among the variety of results obtained was the identification of a number of transcription factors that are specifically expressed in soybean tissues, such as leaves, seeds, roots, etc.


In addition to qRT-PCR, high-through-put sequencing technologies (Illumina-Solexa) may be used to profile gene expression. Compared to more conventional high-through-put technologies (e.g. DNA microarray hybridization), Illumina-Solexa sequencing is more sensitive and allows full coverage of all genes expressed. qRT-PCR and high-through-put sequencing may also be combined to quantify low expressed genes such as TF genes. Using the most sensitive technologies available (i.e. qRT-PCR and high-through-put sequencing technologies (Illumina-Solexa)), a large number of TF genes have been identified and disclosed herein which may prove important in response to various environmental stresses, or to control plant development.


In one embodiment, microarray experiments may be conducted to analyze the gene expression pattern in soybean root and leaf tissues in response to drought stress. Tissue specific transcriptomes may be compared to help elucidate the transcriptional regulatory network and facilitate the identification of stress specific genes and promoters.


In another embodiment, a number of soybean TFs are shown to be expressed only in certain soybean tissues but not in others. These TFs may play an important role in regulating gene expression within the specific tissues. The DNA elements, responsible for tissue specific expression of these genes may be used to control the expression of other genes. Such DNA elements may include but are not limited to a promoter, an enhancer, etc. For instance, sometimes it may be desirable to express a plant transgene only in certain tissues, but not in others. To accomplish this goal, a transgene from the same or different plant may be placed under control of a tissue-specific promoter in order to drive the expression of the gene only in the certain tissues.


In another embodiment, certain soybean TF genes are expressed during seeding, or only at specific stage during seeding (termed “TFIS” for “TF implicated in seeding”). These TFs may play a role in seed filling and may function to control seed compositions. In one aspect, manipulation of these TFs through gene overexpression, gene silencing, or transgenic expression may prove useful in controlling the number, size or composition of the seeds.


In one embodiment, a method is disclosed for generating a transgenic plant from a host plant to create a transgenic plant that is more tolerant to an adverse condition when compared to the host plant. The method may include a step of altering the expression levels of a transcription factor or fragment thereof, and the adverse condition may be selected from one or more of an environmental conditions, such as, by way of example, too high or too low of water, salt, acidity, temperature or combination thereof. Preferably, the transcription factor has been shown to be upregulated or downregulated in an organism in response to the adverse condition, more preferably, by at least two fold. In another aspect, the organism is a second plant that is different from the host plant.


In one aspect, the transcription factor may be endogenous or exogenous to the host plant. “Exogenous” means the transcription factor is from a plant that is genetically different from the host plant. “Endogenous” means that the transcription factor is from the host plant.


In one embodiment, the transcription factor is encoded by a coding sequence such as polynucleotide sequence of SEQ ID. No. 2299, SEQ ID. No. 2300, SEQ ID. No. 2301, SEQ ID. No. 2302, or other transcription factors that are inducible by the adverse condition or those that may regulate expression of proteins that play a role in plant response to the adverse condition.


In another embodiment, the regulatory sequence in the genes encoding the transcription factors of this disclosure may be operably linked to a coding sequence to promote the expression of such coding sequence. Preferably, such coding sequence encode a protein that play a role in plant response to the adverse condition.


In another embodiment, some plant TF genes are induced by drought (these genes are termed DRG or TFIRD) or flooding stress (termed TFIRF). These TFs may help mobilize or activate proteins in plants in response to the drought or flooding conditions.


For purpose of this disclosure, genes whose expression are either up- or down-regulated in response to drought condition are referred to as Drought Response Genes (or DRGs). A DRG that is a transcription factor is also termed “Transcription factors in response to drought” (“TFIRD”). For purpose of this disclosure, a “DRG protein” refers to a protein encoded by a DRG. Some DRGs may show tissue specific expression patterns in response to drought condition. A transcription factor that is induced by flooding is termed “TFIRF” for “Transcription factors in response to Flooding.”


It is to be recognized that although the present disclosure primarily uses drought as an example of environmental distress, the methodology disclosed herein to identify plant genes that are upregulated or downregulated in response to various environmental stimuli and the methodology to manipulate such genes to enhance a plant's capability to growth under stress are applicable to other situations such as flooding, infection, etc.


The microarray experiments described in this disclosure may not have uncovered all the DRGs in all plants, or even in soybean alone, due to the variations in experimental conditions, and more importantly, due to the different gene expressions among different plant species. It is also to be understood that certain DRGs or TFs disclosed here may have been identified and studied previously; however, regulation of their expression under drought condition or their role in drought response may not have been appreciated in previous studies. Alternatively, some DRGs or TFs may contain novel coding sequences. Thus, it is an object of the present disclosure to identify known or unknown genes whose expression levels are altered in response to drought condition.


In order to generate a transgenic plant that is more tolerant to drought condition when compared to a host plant, the expression levels of a protein encoded by an endogenous Drought Response Gene (DRG) or a fragment thereof may be altered to confer a drought resistant phenotype to the host plant. More particularly, the transcription, translation or protein stability of the protein encoded by the DRG or TF may be modified so that the levels of this protein are rendered significantly higher than the levels of this protein would otherwise be even under the same drought condition. To this end, either the coding or non-coding regions, or both, of the endogenous DRG or TF may be modified.


In another aspect, in order to generate a transgenic plant that is more tolerant to drought condition when compared to a host plant, the method may comprise the steps of: (a) introducing into a plant cell a construct comprising a Drought Response Gene (DRG) or a fragment thereof encoding a polypeptide; and (b) generating a transgenic plant expressing said polypeptide or a fragment thereof. In one embodiment, the Drought Response Gene or a fragment thereof is derived from a plant that is genetically different from the host plant. In another embodiment, the Drought Response Gene or a fragment thereof is derived from a plant that belongs to the same species as the host plant. For instance, a DRG identified in soybean may be introduced into soybean as a transgene to confer upon the host increased capability to grow and/or reproduced under mild to severe drought conditions.


The DRGs or TFs disclosed here include known genes as well as genes whose functions are not yet fully understood. Nevertheless, both known or unknown DRGs or TFs may be placed under control of a promoter and be transformed into a host plant in accodance with standard plant transformation protocols. The transgenic plants thus obtained may be tested for the expression of the DRGs or TFs and their capability to grow and/or reproduce under drought conditions as compared to the original host (or parental) plant.


Although the TFs or DRGs disclosed herein are identified in soybean, they may be introduced into other plants as transgenes. Examples of such other plants may include corn, wheat, rice, cotton, sugar cane, or Arabidopsis. In another aspect, homologs in other plant species may be identified by PCR, hybridization or by genome search which may share substantial sequence similarity with the DRGs or TFs disclosed herein. In a preferred embodiment, such a homolog shares at least 90%, more preferably 98%, or even more preferably 99% sequence identity with a protein encoded by a soybean DRG or TF.


In another embodiment, a portion of the DRGs disclosed herein are transcription factors, such as most of the DRGs or fragments thereof listed in Table 6. Conversely, a portion of the TFs disclosed herein are DRGs. It is desirable to introduce one or more of these DRGs or fragments thereof into a host plant so that the transcription factors may be expressed at a sufficiently high level to drive the expression of other downstream effector proteins that may result in increased drought resistance to the transgenic plant.


It is further an object to identify the non-coding sequences of the DRGs, termed Drought Response Regulatory Elements (DRREs) for purpose of this disclosure. These DRREs may be used to prepare DNA constructs for the expression of genes of interest in a host plant. The DREEs or the DRGs may also be used to screen for factors or chemicals that may affect the expression of certain DRGs by interacting with a DREE. Such factors or chemicals may be used to induce drought responses by activating expression of certain genes in a plant.


For purpose of this disclosure, the genes of interest may be genes from other plants or even non-plant organisms. The genes of interest may be those identified and listed in this disclosure, or they may be any other genes that have been found to enhance the capability of a host plant to grow under water deficit condition.


In a preferred embodiment, the genes of interest may be placed under control of the DRREs such that their expression may be upregulated under drought condition. This arrangement is particularly useful for those genes of interest that may not be desirable under normal conditions, because such genes may be placed under a tightly regulated DRRE which only drives the expression of the genes of interest when water deficit condition is sensed by the plant. Under control of such a DRRE, expression of the gene of interest may be only detected under drought condition.


It is an object of this disclosure to provide a system and a method for the genetic modification of a plant, to increase the resistance of the plant to adverse conditions such as drought and/or excessive temperatures, compared to an unmodified plant.


It is another object of the present invention to provide a transgenic plant that exhibits increased resistance to adverse conditions such as drought and/or excessive temperatures as compared to an unmodified plant.


It is another object of the present invention to provide a system and method of modifying a plant, to alter the metabolism or development of the plant.


In one embodiment, a gene of interest may be placed under control of a tissue specific promoter such that such gene of interest may be expressed in specific site, for example, the guard cells. The expression of the introduced genes may enhance the capacity of a plant to modulate guard cell activity in response to water stress. For instance, the transgene may help reduce stomatal water loss. In addition, other characteristics such as early maturation of plants may be introduced into plants to help cope with drought condition.


Preferably, the transgene is under control of a promoter, which may be a constitutive or inducible promoter. An inducible promoter is inactive under normal condition, and is activated under certain conditions to drive the expression of the gene under its control. Conditions that may activate a promoter include but are not limited to light, heat, certain nutrients or chemicals, and water conditions. A promoter that is activated under water deficit condition is preferred.


In another aspect, a tissue specific promoter, an organ specific promoter, or a cell-specific promoter may be employed to control the transgene. Despite their different names, these promoters are similar in that they are only activated in certain cell, tissue or organ types. It is to be understood that a gene under control of an inducible promoter, or a promoter specific for certain cells, tissues or organs may have low level of expression even under conditions that are not supposed to activate the promoter, a phenomenon known as “leaky expression” in the field. A promoter can be both inducible and tissue specific. By way of example, a transgene may be placed under control of a guard cell specific promoter such that the gene can be inducibly expressed in the guard cell of the transgenic plant.


In another aspect, the present disclosure provides a method of generating a transgenic plant having an altered stress response or an altered phenotype compared to an unmodified plant. The coding sequences of the genes that are disclosed to be upregulated may be placed under a promoter such that the genes can be expressed in the transgenic plant. The method may contain two steps: (a) introducing into a plant cell capable of being transformed and regenerated into a whole plant a construct comprising, in addition to the DNA sequences required for transformation and selection in plants, an expression construct including the coding sequence of a gene that a operatively linked to a promoter for expressing said DNA sequence; and (b) recovery of a plant which contains the expression construct.


The transgenic plant generated by the methods disclosed above may exhibit an altered trait or stress response. The altered traits may include increased tolerance to extreme temperature, such as heat or cold; or increased tolerance to extreme water condition such as drought or excessive water. The transgenic plant may exhibits one or more altered phenotype that may contribute to the resistance to drought condition. These phenotypes may include, by way of example, early maturation, increased growth rate, increased biomass, or increased lipid content.


In accordance with the disclosed methods, the coding sequence to be introduced in the transgenic plant preferably encodes a peptide having at least 70%, more preferably at least 90%, more preferably at least 98% identity, and even more preferably at least 99% identity to the polypeptide encoded by the DRGs disclosed in this application. In an alternative aspect, DNA sequence may be oriented in an antisense direction relative to said promoter within said construct.


In accordance with the methods of the present invention, the promoter is preferably selected from the group consisting of an constitutive promoter, an inducible promoter, a tissue specific promoter, and organ specific promoter, a cell-specific promoter. More preferably the promoter is an inducible promoter for expressing said DNA sequence under water deficit conditions.


In another aspect, the present invention provides a method of identifying whether a plant that has been successfully transformed with a construct, characterized in that the method comprises the steps of: (a) introducing into plant cells capable of being transformed and regenerated into whole plants a construct comprising, in addition to the DNA sequences required for transformation and selection in plants, an expression construct that includes a DNA sequence selected from at least one of the DRGs disclosed herein, said DNA sequence may be operatively linked to a promoter for expressing said DNA sequence; (b) regenerating the plant cells into whole plants; and (c) subjecting the plants to a screening process to differentiate between transformed plants and non-transformed plants.


The screening process may involve subjecting the plants to environmental conditions suitable to kill non-transformed plants, retain viability in transformed plants. For instance by growing the plants in a medium or soil that contains certain chemicals, such that only those plants expressing the transgenes can survive. In one particular embodiment, after obtaining a transgenic plant that appear to be expressing the transgene, a functional screening may be carried out by growing the plants under water deficit conditions to select for those that can tolerate such a condition.


In another aspect, the present disclosure provides a kit for generating a transgenic plant having an altered stress response or an altered phenotype compared to an unmodified plant, characterized in that the kit comprises: an expression construct including a DNA sequence selected from at least one of the DRGs disclosed herein, said DNA sequence may be operatively linked to an promoter suitable for expressing said DNA sequence in a plant cell.


Preferably the kit further includes targeting means for targeting the activity of the protein expressed from the construct to certain tissues or cells of the plant. Preferably the targeting means comprises an inducible, tissue-specific promoter for specific expression of the DNA sequence within certain tissues of the plant. Alternatively the targeting means may be a signal sequence encoded by said expression construct and may contain a series of amino acids covalently linked to the expressed protein.


In accordance with the kit of the present invention, the DNA sequence may encode a peptide having at least 70%, more preferably at least 90%, more preferably at least 98%, or even 99% identity to the peptide encoded by coding sequences selected from at least one of the DRGs disclosed herein. In one aspect, said DNA sequence may be oriented in an antisense direction relative to said promoter within said construct.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the classification of soybean transcription factor families and the number of putative members in each family.



FIG. 2 shows the number of TF genes included in the Soybean transcription factor primer library.



FIG. 3 illustrate the number of soybean tissue specific transcription factors identified through quantitative real time PCR.



FIG. 4 shows some examples of soybean tissue specific genes and their expression pattern across ten soybean tissues.



FIG. 5 shows expression of a bHLH TF gene in mature root cells in a reporter gene system using GUS (β-glucosidase) and GFP (green fluorescent protein) as reporter genes.



FIG. 6 shows gene expression patterns of selected transcription factors which are expressed at specific developmental stages during seed development.



FIG. 7 demonstrates different Soybean transcription factors showing significantly different expression patterns of selected transcription factors across two soybean genotypes, one being flooding resistant, the other being flooding sensitive.



FIG. 8 shows the expression patterns of soybean selected regulatory genes regulated during nodule development. The expression pattern through different stages of nodule development [0 (white bar), 4 (light grey bars), 8 (grey bars), 16 (dark grey bars), 24 (bars with horizontal stripes) and 32 days (black bars) after B. japonicum inoculation and in response to KNO3 treatment (bars with slanted stripes) were investigated for 16 different soybean regulatory genes



FIG. 9 shows the effects of silencing of 523065855 MYB transcription factor affects soybean nodule development. Standard error bars are shown. P-value <0.04. (A) Comparison of nodule number between RNAi-GUS (grey bar) and RNAi 523065855 soybean roots (white bar). (B) Comparison of nodule size between RNAi-GUS (left) and RNAi 523065855 (right) roots. (C) Gene expression analysis of S23065855 in RNAi-GUS (left) and RNAi S23065855 (right) nodules. (D) Confirmation of the specificity of RNAi construct in the silencing of S23065855.



FIG. 10 shows the expression pattern of a MYB transcription factor during nodulation using GFP (A, B) and GUS (C, D, E, F) as reporter genes.



FIG. 11 shows the expression pattern of selected transcription factors in soybean root nodules.



FIG. 12 summarizes the classification of drought responsive transcripts in soybean leaf tissues based on reported or predicted function of the corresponding proteins.



FIG. 13 summarizes the classification of drought responsive transcripts in soybean root tissues based on reported or predicted function of the corresponding proteins.



FIG. 14 shows the distribution of soybean transcription factor genes expressed specifically in one soybean tissue based on their family membership. Sub-pies highlight the distribution of specific transcription factor gene families in the different tissues based on the specificity of their expression.



FIG. 15 shows the genome database ID numbes of members of the ABI3-vpl family of soybean transcription factors.



FIG. 16 shows the genome database ID numbes of members of the Alfin family of soybean transcription factors.



FIG. 17 shows the genome database ID numbes of members of the AP2-EREBP family of soybean transcription factors.



FIG. 18 shows the genome database ID numbes of members of the ARF family of soybean transcription factors.



FIG. 19 shows the genome database ID numbes of members of the ARID family of soybean transcription factors.



FIG. 20 shows the genome database ID numbes of members of the AS2 family of soybean transcription factors.



FIG. 21 shows the genome database ID numbes of members of the AUX-IAA family of soybean transcription factors.



FIG. 22 shows the genome database ID numbes of members of the BBR-BPC family of soybean transcription factors.



FIG. 23 shows the genome database ID numbes of members of the BES1 family of soybean transcription factors.



FIG. 24 shows the genome database ID numbes of members of the bHLH family of soybean transcription factors.



FIG. 25 shows the genome database ID numbes of members of the bZIP family of soybean transcription factors.



FIG. 26 shows the genome database ID numbes of members of the C2C2-CO like family of soybean transcription factors.



FIG. 27 shows the genome database ID numbes of members of the C2C2-DOF family of soybean transcription factors.



FIG. 28 shows the genome database ID numbes of members of the C2C2-GATA family of soybean transcription factors.



FIG. 29 shows the genome database ID numbes of members of the C2C2-YABBY family of soybean transcription factors.



FIG. 30 shows the genome database ID numbes of members of the C2H2 family of soybean transcription factors.



FIG. 31 shows the genome database ID numbes of members of the C3H family of soybean transcription factors.



FIG. 32 shows the genome database ID numbes of members of the CAMTA family of soybean transcription factors.



FIG. 33 shows the genome database ID numbes of members of the CCAAT-DR1 family of soybean transcription factors.



FIG. 34 shows the genome database ID numbes of members of the CCAAT-HAP2 family of soybean transcription factors.



FIG. 35 shows the genome database ID numbes of members of the CCAAT-HAP3 family of soybean transcription factors.



FIG. 36 shows the genome database ID numbes of members of the CCAAT-HAP5 family of soybean transcription factors.



FIG. 37 shows the genome database ID numbes of members of the CPP family of soybean transcription factors.



FIG. 38 shows the genome database ID numbes of members of the E2F-DP family of soybean transcription factors.



FIG. 39 shows the genome database ID numbes of members of the EIL family of soybean transcription factors.



FIG. 40 shows the genome database ID numbes of members of the FHA family of soybean transcription factors.



FIG. 41 shows the genome database ID numbes of members of the GARP-ARR-B family of soybean transcription factors.



FIG. 42 shows the genome database ID numbes of members of the GARP-G2-like family of soybean transcription factors.



FIG. 43 shows the genome database ID numbes of members of the GeBP family of soybean transcription factors.



FIG. 44 shows the genome database ID numbes of members of the GIF family of soybean transcription factors.



FIG. 45 shows the genome database ID numbes of members of the GRAS family of soybean transcription factors.



FIG. 46 shows the genome database ID numbes of members of the GRF family of soybean transcription factors.



FIG. 47 shows the genome database ID numbes of members of the HB family of soybean transcription factors.



FIG. 48 shows the genome database ID numbes of members of the HMG family of soybean transcription factors.



FIG. 49 shows the genome database ID numbes of members of the HRT-like family of soybean transcription factors.



FIG. 50 shows the genome database ID numbes of members of the HSF family of soybean transcription factors.



FIG. 51 shows the genome database ID numbes of members of the JUMONJI family of soybean transcription factors.



FIG. 52 shows the genome database ID numbes of members of the LFY family of soybean transcription factors.



FIG. 53 shows the genome database ID numbes of members of the LIM family of soybean transcription factors.



FIG. 54 shows the genome database ID numbes of members of the LUG family of soybean transcription factors.



FIG. 55 shows the genome database ID numbes of members of the MADS family of soybean transcription factors.



FIG. 56 shows the genome database ID numbes of members of the MBF1 family of soybean transcription factors.



FIG. 57 shows the genome database ID numbes of members of the MYB family of soybean transcription factors.



FIG. 58 shows the genome database ID numbes of members of the MYB-related family of soybean transcription factors.



FIG. 59 shows the genome database ID numbes of members of the NAC family of soybean transcription factors.



FIG. 60 shows the genome database ID numbes of members of the NIN-like family of soybean transcription factors.



FIG. 61 shows the genome database ID numbes of members of the NZZ family of soybean transcription factors.



FIG. 62 shows the genome database ID numbes of members of the PcG family of soybean transcription factors.



FIG. 63 shows the genome database ID numbes of members of the PHD family of soybean transcription factors.



FIG. 64 shows the genome database ID numbes of members of the PLATZ family of soybean transcription factors.



FIG. 65 shows the genome database ID numbes of members of the S1Fa-like family of soybean transcription factors.



FIG. 66 shows the genome database ID numbes of members of the SAP family of soybean transcription factors.



FIG. 67 shows the genome database ID numbes of members of the SBP family of soybean transcription factors.



FIG. 68 shows the genome database ID numbes of members of the SRS family of soybean transcription factors.



FIG. 69 shows the genome database ID numbes of members of the TAZ family of soybean transcription factors.



FIG. 70 shows the genome database ID numbes of members of the TCP family of soybean transcription factors.



FIG. 71 shows the genome database ID numbes of members of the TLP family of soybean transcription factors.



FIG. 72 shows the genome database ID numbes of members of the Trihelix family of soybean transcription factors.



FIG. 73 shows the genome database ID numbes of members of the ULT family of soybean transcription factors.



FIG. 74 shows the genome database ID numbes of members of the VOZ family of soybean transcription factors.



FIG. 75 shows the genome database ID numbes of members of the Whirly family of soybean transcription factors.



FIG. 76 shows the genome database ID numbes of members of the WRKY family of soybean transcription factors.



FIG. 77 shows the genome database ID numbes of members of the ZD-HD family of soybean transcription factors.



FIG. 78 shows the genome database ID number of members of the ZIM family of soybean transcription factors.



FIG. 79 shows that expression of soybean homeologous genes during nodulation and in response to KNO3 and KCl treatments.



FIG. 80 shows gene expression patterns of arabidopsis genes involved in the formation and maintenance of the SAM and the determination of flower organs (A) and their putative orthologs in soybean (B). Genevestigator (Hruz et al., 2008) and the soybean gene atlas were mined to establish the expression pattern of the arabidopsis and soybean. genes, respectively.



FIG. 81 shows expression pattern of several related NAC transcription factors under abiotic stress (water, ABA, NaCl and cold stresses).



FIG. 82 shows drought responses of the dehydration inducible GmNAC genes.



FIG. 83 shows transgene expression levels in the independent Arabidopsis transgenic lines. (Q1 is the independent transgenic lines expressing GmNAC3 and Q2 is the independent transgenic lines expressing GmNAC4).



FIG. 84 shows preliminary phenotypic analysis of the transgenic Arabidopsis plants developed using soybean NAC transcription factors.



FIG. 85 shows transgenic Arabidopsis plants with vector control, GmC2H2 and GmDOF27 transcription factors.





DETAILED DESCRIPTION

The methods and materials described herein relate to gene expression profiling using microarrays, quantitative RT-PCR, or high throughput sequencing methods, and follow-up analysis to decode the regulatory network that controls a plant's response to stress. More particularly, drought response is analyzed at the molecular level to identify genes and/or promoters which may be activated under water deficit conditions. The coding sequences of such genes may be introduced into a host plant to obtain transgenic plants that are more tolerant to drought than unmodified plants.


It is to be understood that the materials and methods are taught by way of example, and not by limitation. The disclosed instrumentalities may be broader than the particular methods and materials described herein, which may vary within the skill of the art. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. Further, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the related art. The following terminology and grammatical variants are used in accordance with the definitions set out below.


The present disclosure provides genes whose expression levels are altered in response to stress conditions in soybean plants using genome-wide microarray (or gene chip) analysis of soybean plants grown under water deficit conditions. Those genes identified using microarray analysis may be subject to validation to confirm that their expression levels are altered under the stress conditions. Validation may be conducted using high throughput two-step qRT-PCR or by the delta delta CT method.


Sequences of those genes that have been validated may be subject to further sequence analysis by comparing their sequences to published sequences of various families of genes or proteins. For instance, some of these DRGs may encode proteins with substantial sequence similarity to known transcription factors. These transcription factors may play a role in the stress response by activating the transcription of other genes.


The present disclosure provides a system and a method for expressing a protein that may enhance a host's capability to grow or to survive in an adverse environment characterized by water deficit. Although plants are the most preferred host for purpose of this disclosure, the genetic constructs described herein may be introduced into other eukaryotic organisms, if the traits conferred upon these organisms by the constructs are desirable.


The term “transgenic plant” refers to a host plant into which a gene construct has been introduced. A gene construct, also referred to as a construct, an expression construct, or a DNA construct, generally contains as its components at least a coding sequence and a regulatory sequence. A gene construct typically contains at least on component that is foreign to the host plant. For purpose of this disclosure, all components of a gene construct may be from the host plant, but these components are not arranged in the host in the same manner as they are in the gene construct. A regulatory sequence is a non-coding sequence that typically contribute to the regulation of gene expression, at the transcription or translation levels. It is to be understood that certain segments in the coding sequence may be translated but may be later removed from the functional protein. An example of these segments is the so-called signal peptide, which may facilitate the maturation or localization of the translated protein, but is typically removed once the protein reaches its destination. Examples of a regulatory sequence include but are not limited to a promoter, an enhancer, and certain post-transcriptional regulatory elements.


After its introduction into a host plant, a gene construct may exist separately from the host chromosomes. Preferably, the entire gene construct, or at least part of it, is integrated onto a host chromosome. The integration may be mediated by a recombination event, which may be homologous, or non-homologous recombination. The term “express” or “expression” refers to production of RNAs using DNAs as template through transcription or translation of proteins from RNAs or the combination of both transcription and translation.


A “host cell,” as used herein, refers to a prokaryotic or eukaryotic cell that contains heterologous DNA which has been introduced into the cell by any means, e.g., electroporation, calcium phosphate precipitation, microinjection, transformation, viral infection, and/or the like. A “host plant” is a plant into which a transgene is to be introduced.


A “vector” is a composition for facilitating introduction, replication and/or expression of a selected nucleic acid in a cell. Vectors include, for example, plasmids, cosmids, viruses, yeast artificial chromosomes (YACs), etc. A “vector nucleic acid” is a nucleic acid vector into which heterologous nucleic acid is optionally inserted and which can then be introduced into an appropriate host cell. Vectors preferably have one or more origins of replication, and one or more sites into which the recombinant DNA can be inserted. Vectors often have convenient markers by which cells with vectors can be selected from those without. By way of example, a vector may encode a drug resistance gene to facilitate selection of cells that are transformed with the vector. Common vectors include plasmids, phages and other viruses, and “artificial chromosomes.” “Expression vectors” are vectors that comprise elements that provide for or facilitate transcription of nucleic acids which are cloned into the vectors. Such elements may include, for example, promoters and/or enhancers operably coupled to a nucleic acid of interest.


“Plasmids” generally are designated herein by a lower case “p” preceded and/or followed by capital letters and/or numbers, in accordance with standard nomenclatures that are familiar to those of skill in the art. Starting plasmids disclosed herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids by routine application of well known, published procedures. Many plasmids and other cloning and expression vectors are well known and readily available to those of skill in the art. Moreover, those of skill readily may construct any number of other plasmids suitable for use as described below. The properties, construction and use of such plasmids, as well as other vectors, is readily apparent to those of ordinary skill upon reading the present disclosure.


When a molecule is identified in or can be isolated from a organism, it can be said that such a molecule is derived from said organism. When two organisms have significant difference in the genetic materials in their respective genomes, these two organisms can be said to be genetically different. For purpose of this disclosure, the term “plant” means a whole plant, a seed, or any organ or tissue of a plant that may potentially deveolop into a whole plant.


The term “isolated” means that the material is removed from its original environment, such as the native or natural environment if the material is naturally occurring. For example, a naturally-occurring nucleic acid, polypeptide, or cell present in a living animal is not isolated, but the same polynucleotide, polypeptide, or cell separated from some or all of the coexisting materials in the natural system, is isolated, even if subsequently reintroduced into the natural system. Such nucleic acids can be part of a vector and/or such nucleic acids or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.


A “recombinant nucleic acid” is one that is made by recombining nucleic acids, e.g., during cloning, DNA evolution or other procedures. A “recombinant polypeptide” is a polypeptide which is produced by expression of a recombinant nucleic acid. An “amino acid sequence” is a polymer of amino acid residues (a protein, polypeptide, etc.) or a character string representing an amino acid polymer, depending on context. Either the given nucleic acid or the complementary nucleic acid can be determined from any specified polynucleotide sequence.


The terms “nucleic acid,” or “polynucleotide” refer to a deoxyribonucleotide, in the case of DNA, or ribonucleotide in the case of RNA polymer in either single- or double-stranded form, and unless otherwise specified, encompasses known analogues of natural nucleotides that can be incorporated into nucleic acids in a manner similar to naturally occurring nucleotides. A “polynucleotide sequence” is a nucleic acid which is a polymer of nucleotides (A,C,T,U,G, etc. or naturally occurring or artificial nucleotide analogues) or a character string representing a nucleic acid, depending on context. Either the given nucleic acid or the complementary nucleic acid can be determined from any specified polynucleotide sequence.


A “subsequence” or “fragment” is any portion of an entire sequence of a DNA, RNA or polypeptide molecule, up to and including the complete sequence. Typically a subsequence or fragment comprises less than the full-length sequence, and is sometimes referred to as the “truncated version.”


Nucleic acids and/or nucleic acid sequences are “homologous” when they are derived, naturally or artificially, from a common ancestral nucleic acid or nucleic acid sequence. Proteins and/or protein sequences are homologous when their encoding DNAs are derived, naturally or artificially, from a common ancestral nucleic acid or nucleic acid sequence. Similarly, nucleic acids and/or nucleic acid sequences are homologous when they are derived, naturally or artificially, from a common ancestral nucleic acid or nucleic acid sequence. The homologous molecules can be termed homologs. For example, any naturally occurring DRGs, as described herein, can be modified by any available mutagenesis method. When expressed, this mutagenized nucleic acid encodes a polypeptide that is homologous to the protein encoded by the original DRGs. Homology is generally inferred from sequence identity between two or more nucleic acids or proteins (or sequences thereof). The precise percentage of identity between sequences that is useful in establishing homology varies with the nucleic acid and protein at issue, but as little as 25% sequence identity is routinely used to establish homology. Higher levels of sequence identity, e.g., 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 99% or more can also be used to establish homology. Methods for determining sequence identity percentages (e.g., BLASTP and BLASTN using default parameters) are described herein and are generally available.


The terms “identical” or “sequence identity” in the context of two nucleic acid sequences or amino acid sequences of polypeptides refers to the residues in the two sequences which are the same when aligned for maximum correspondence over a specified comparison window. A “comparison window”, as used herein, refers to a segment of at least about 20 contiguous positions, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are aligned optimally. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482; by the alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443; by the search for similarity method of Pearson and Lipman (1988) Proc. Nat. Acad. Sci. U.S.A. 85:2444; by computerized implementations of these algorithms (including, but not limited to CLUSTAL in the PC/Gene program by Intelligentics, Mountain View Calif., GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis., U.S.A.); the CLUSTAL program is well described by Higgins and Sharp (1988) Gene 73:237-244 and Higgins and Sharp (1989) CABIOS 5:151-153; Corpet et al. (1988) Nucleic Acids Res. 16:10881-10890; Huang et al (1992) Computer Applications in the Biosciences 8:155-165; and Pearson et al. (1994) Methods in Molecular Biology 24:307-331. Alignment is also often performed by inspection and manual alignment.


In one class of embodiments, the polypeptides herein are at least 70%, generally at least 75%, optionally at least 80%, 85%, 90%, 98% or 99% or more identical to a reference polypeptide, e.g., those that are encoded by DNA sequences as set forth by any one of the DRGs disclosed herein or a fragment thereof, e.g., as measured by BLASTP (or CLUSTAL, or any other available alignment software) using default parameters. Similarly, nucleic acids can also be described with reference to a starting nucleic acid, e.g., they can be 50%, 60%, 70%, 75%, 80%, 85%, 90%, 98%, 99% or more identical to a reference nucleic acid, e.g., those that are set forth by any one of the DRGs disclosed herein or a fragment thereof, e.g., as measured by BLASTN (or CLUSTAL, or any other available alignment software) using default parameters. When one molecule is said to have certain percentage of sequence identity with a larger molecule, it means that when the two molecules are optimally aligned, said percentage of residues in the smaller molecule finds a match residue in the larger molecule in accordance with the order by which the two molecules are optimally aligned.


The term “substantially identical” as applied to nucleic acid or amino acid sequences means that a nucleic acid or amino acid sequence comprises a sequence that has at least 90% sequence identity or more, preferably at least 95%, more preferably at least 98% and most preferably at least 99%, compared to a reference sequence using the programs described above (preferably BLAST) using standard parameters. For example, the BLASTN program (for nucleotide sequences) uses as defaults a word length (W) of 11, an expectation (E) of 10, M=5, N=−4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a word length (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)). Percentage of sequence identity is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity. Preferably, the substantial identity exists over a region of the sequences that is at least about 50 residues in length, more preferably over a region of at least about 100 residues, and most preferably the sequences are substantially identical over at least about 150 residues. In a most preferred embodiment, the sequences are substantially identical over the entire length of the coding regions.


The term “polypeptide” is used interchangeably with the terms “polypeptides” and “protein(s)”, and refers to a polymer of amino acid residues. A ‘mature protein’ is a protein which is full-length and which, optionally, includes glycosylation or other modifications typical for the protein in a given cellular environment.


The term “variant” or “mutant” with respect to a polypeptide refers to an amino acid sequence that is altered by one or more amino acids with respect to a reference sequence. The variant may have “conservative” changes, wherein a substituted amino acid has similar structural or chemical properties, e.g., replacement of leucine with isoleucine. Alternatively, a variant may have “nonconservative” changes, e.g., replacement of a glycine with a tryptophan. Analogous minor variation can also include amino acid deletion or insertion, or both. Guidance in determining which amino acid residues can be substituted, inserted, or deleted without eliminating biological or immunological activity can be found using computer programs well known in the art, for example, DNASTAR software.


A variety of additional terms are defined or otherwise characterized herein. In practicing the instrumentalities described herein, many conventional techniques in molecular biology, microbiology, and recombinant DNA are optionally used. These techniques are well known to those of ordinary skill in the art. For example, one skilled in the art would be familiar with techniques for in vitro amplification methods, including the polymerase chain reaction (PCR), for the production of the homologous nucleic acids described herein.


In addition, commercially available kits may facilitate the purification of plasmids or other relevant nucleic acids from cells. See, for example, EasyPrep™ and FlexiPrep™ kits, both from Pharmacia Biotech; StrataClean™ from Stratagene; and, QIAprep™ from Qiagen. Any isolated and/or purified nucleic acid can be further manipulated to produce other nucleic acids, used to transfect cells, incorporated into related vectors to infect organisms, or the like. Typical cloning vectors contain transcription terminators, transcription initiation sequences, and promoters useful for regulation of the expression of the particular target nucleic acid. The vectors optionally comprise generic expression cassettes containing at least one independent terminator sequence, sequences permitting replication of the cassette in eukaryotes, or prokaryotes, or both, (e.g., shuttle vectors) and selection markers for both prokaryotic and eukaryotic systems. Vectors are suitable for replication and integration in prokaryotes, eukaryotes, or both.


Various types of mutagenesis are optionally used to modify DRGs and their encoded polypeptides, as described herein, to produce conservative or non-conservative variants. Any available mutagenesis procedure can be used. Such mutagenesis procedures optionally include selection of mutant nucleic acids and polypeptides for one or more activity of interest. Procedures that can be used include, but are not limited to: site-directed point mutagenesis, random point mutagenesis, in vitro or in vivo homologous recombination (DNA shuffling), mutagenesis using uracil-containing templates, oligonucleotide-directed mutagenesis, phosphorothioate-modified DNA mutagenesis, mutagenesis using gapped duplex DNA, point mismatch repair, mutagenesis using repair-deficient host strains, restriction-selection and restriction-purification, deletion mutagenesis, mutagenesis by total gene synthesis, double-strand break repair, mutagenesis by chimeric constructs, and many others known to persons of skill in the art.


In one embodiment, mutagenesis can be guided by known information about the naturally occurring molecule or altered or mutated naturally occurring molecule. By way of example, this known information may include sequence, sequence comparisons, physical properties, crystal structure and the like. In another class of mutagenesis, modification is essentially random, e.g., as in classical DNA shuffling.


Polypeptides may include variants, in which the amino acid sequence has at least 70% identity, preferably at least 80% identity, typically 90% identity, preferably at least 95% identity, more preferably at least 98% identity and most preferably at least 99% identity, to the amino acid sequences as encoded by the DNA sequences set forth in any one of the DRGs disclosed herein.


The aforementioned polypeptides may be obtained by any of a variety of methods. Smaller peptides (less than 50 amino acids long) are conveniently synthesized by standard chemical techniques and can be chemically or enzymatically ligated to form larger polypeptides. Polypeptides can be purified from biological sources by methods well known in the art, for example, as described in Protein Purification, Principles and Practice, Second Edition Scopes, Springer Verlag, N.Y. (1987) Polypeptides are optionally but preferably produced in their naturally occurring, truncated, or fusion protein forms by recombinant DNA technology using techniques well known in the art. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques and in vivo genetic recombination. See, for example, the techniques described in Sambrook et al. (2001) Molecular Cloning, A Laboratory Manual, Third Edition, Cold Spring Harbor Press, N.Y.; and Ausubel et al., eds. (1997) Current Protocols in Molecular Biology, Green Publishing Associates, Inc., and John Wiley & Sons, Inc., N.Y (supplemented through 2002). RNA encoding the proteins may also be chemically synthesized. See, for example, the techniques described in Oligonucleotide Synthesis, (1984) Gait ed., IRL Press, Oxford, which is incorporated by reference herein in its entirety.


The nucleic acid molecules described herein may be expressed in a suitable host cell or an organism to produce proteins. Expression may be achieved by placing a nucleotide sequence encoding these proteins into an appropriate expression vector and introducing the expression vector into a suitable host cell, culturing the transformed host cell under conditions suitable for expression of the proteins described or variants thereof, or a polypeptide that comprises one or more domains of such proteins. The recombinant proteins from the host cell may be purified to obtain purified and, preferably, active protein. Alternatively, the expressed protein may be allowed to function in the intact host cell or host organism.


Appropriate expression vectors are known in the art, and may be purchased or applied for use according to the manufacturer's instructions to incorporate suitable genetic modifications. For example, pET-14b, pcDNAlAmp, and pVL1392 are available from Novagen and Invitrogen, and are suitable vectors for expression in E. coli, mammalian cells and insect cells, respectively. These vectors are illustrative of those that are known in the art, and many other vectors can be used for the same purposes. Suitable host cells can be any cell capable of growth in a suitable media and allowing purification of the expressed protein. Examples of suitable host cells include bacterial cells, such as E. coli, Streptococci, Staphylococci, Streptomyces and Bacillus subtilis cells; fungal cells such as Saccharomyces and Aspergillus cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells, mammalian cells such as CHO, COS, HeLa, 293 cells; and plant cells.


Culturing and growth of the transformed host cells can occur under conditions that are known in the art. The conditions will generally depend upon the host cell and the type of vector used. Suitable culturing conditions may be used such as temperature and chemicals and will depend on the type of promoter utilized.


Purification of the proteins or domains of such proteins, if desired, may be accomplished using known techniques without performing undue experimentation. Generally, the transformed cells expressing one of these proteins are broken, crude purification occurs to remove debris and some contaminating proteins, followed by chromatography to further purify the protein to the desired level of purity. Host cells may be broken by known techniques such as homogenization, sonication, detergent lysis and freeze-thaw techniques. Crude purification can occur using ammonium sulfate precipitation, centrifugation or other known techniques. Suitable chromatography includes anion exchange, cation exchange, high performance liquid chromatography (HPLC), gel filtration, affinity chromatography, hydrophobic interaction chromatography, etc. Well known techniques for refolding proteins can be used to obtain the active conformation of the protein when the protein is denatured during intracellular synthesis, isolation or purification.


In general, DRG proteins or domains, or antibodies to such proteins can be purified, either partially (e.g., achieving a 5×, 10×, 100×, 500×, or 1000× or greater purification), or even substantially to homogeneity (e.g., where the protein is the main component of a solution, typically excluding the solvent (e.g., water or DMSO) and buffer components (e.g., salts and stabilizers) that the protein is suspended in, e.g., if the protein is in a liquid phase), according to standard procedures known to and used by those of skill in the art. Accordingly, the polypeptides can be recovered and purified by any of a number of methods well known in the art, including, e.g., ammonium sulfate or ethanol precipitation, acid or base extraction, column chromatography, affinity column chromatography, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, hydroxylapatite chromatography, lectin chromatography, gel electrophoresis and the like. Protein refolding steps can be used, as desired, in making correctly folded mature proteins. High performance liquid chromatography (HPLC), affinity chromatography or other suitable methods can be employed in final purification steps where high purity is desired. In one embodiment, antibodies made against the proteins described herein are used as purification reagents, e.g., for affinity-based purification of proteins comprising one or more DRG protein domains or antibodies thereto. Once purified, partially or to homogeneity, as desired, the polypeptides are optionally used e.g., as assay components, therapeutic reagents or as immunogens for antibody production.


In addition to other references noted herein, a variety of purification methods are well known in the art, including, for example, those set forth in R. Scopes, Protein Purification, Springer-Verlag, N.Y. (1982); Deutscher, Methods in Enzymology Vol. 182: Guide to Protein Purification, Academic Press, Inc. N.Y. (1990); Sandana, Bioseparation of Proteins, Academic Press, Inc. (1997); Bollag et al., Protein Methods, 2nd Edition Wiley-Liss, NY; Walker (1996) The Protein Protocols Handbook Humana Press, NJ; Harris and Angal Protein Purification Applications: A Practical Approach IRL Press at Oxford, Oxford, England (1990); Scopes, Protein Purification: Principles and Practice 3rd Edition Springer Verlag, NY (1993); Janson and Ryden, Protein Purification: Principles, High Resolution Methods and Applications, Second Edition Wiley-VCH, NY (1998); and Walker, Protein Protocols on CD-ROM Humana Press, NJ (1998); and the references cited therein.


After synthesis, expression and/or purification, proteins may possess a confoimation different from the desired conformations of the relevant polypeptides. For example, polypeptides produced by prokaryotic systems often are optimized by exposure to chaotropic agents to achieve proper folding. During purification from, e.g., lysates derived from E. coli, the expressed protein is optionally denatured and then renatured. This is accomplished, e.g., by solubilizing the proteins in a chaotropic agent such as guanidine HCl. In general, it is occasionally desirable to denature and reduce expressed polypeptides and then to cause the polypeptides to re-fold into the preferred conformation. For example, guanidine, urea, DTT, DTE, and/or a chaperonin can be added to a translation product of interest. Methods of reducing, denaturing and renaturing proteins are well known to those of skill in the art. Debinski, et al., for example, describe the denaturation and reduction of inclusion body proteins in guanidine-DTE. The proteins can be refolded in a redox buffer containing, e.g., oxidized glutathione and L-arginine. Refolding reagents can be flowed or otherwise moved into contact with the one or more polypeptide or other expression product, or vice-versa.


In another aspect, antibodies to the DRG proteins or fragments thereof may be generated using methods that are well known in the art. The antibodies may be utilized for detecting and/or purifying the DRG proteins, optionally discriminating the proteins from various homologues. As used herein, the term “antibody” includes, but is not limited to, polyclonal antibodies, monoclonal antibodies, humanized or chimeric antibodies and biologically functional antibody fragments, which are those fragments sufficient for binding of the antibody fragment to the protein.


General protocols that may be adapted for detecting and measuring the expression of the described DRG proteins using the above mentioned antibodies are known. Such methods include, but are not limited to, dot blotting, western blotting, competitive and noncompetitive protein binding assays, enzyme-linked immunosorbant assays (ELISA), immunohistochemistry, fluorescence-activated cell sorting (FACS), and other protocols that are commonly used and widely described in scientific and patent literature.


Sequence of the DRG genes may also be used in genetic mapping of plants or in plant breeding. Polynucleotides derived from the DRG gene sequences may be used in in situ hybridization to determine the chromosomal locus of the DRG genes on the chromosomes. These polynucleotides may also be used to detect segregation of different alleles at certain DRG loci.


Sequence information of the DRG genes may also be used to design oligonucleotides for detecting DRG mRNA levels in the cells or in plant tissues. For example, the oligonucleotides can be used in a Northern blot analysis to quantify the levels of DRG mRNA. Moreover, full-length or fragment of the DRG genes may be used in preparing microarrays (or gene chips). Full-length or fragment of the DRG genes may also be used in microarray experiments to study expression profile of the DRG genes. High-throughput screening can be conducted to measure expression levels of the DRG genes in different cells or tissues. Various compounds or other external factors may be screened for their effects expression of the DRG gene expression.


Sequences of the DRG genes and proteins may also provide a tool for identification of other proteins that may be involved in plant drought response. For example, chimeric DRG proteins can be used as a “bait” to identify other proteins that interact with DRG proteins in a yeast two-hybrid screening. Recombinant DRG proteins can also be used in pull-down experiment to identify their interacting proteins. These other proteins may be cofactors that enhance the function of the DRG proteins, or they may be DRG proteins themselves which have not been identified in the experiments disclosed herein.


The DRG polypeptides may possess structural features which can be recognized, for example, by using immunological assays. The generation of antisera which specifically bind the DRG polypeptides, as well as the polypeptides which are bound by such antisera, are a feature of the disclosed embodiments.


In order to produce antisera for use in an immunoassay, one or more of the immunogenic DRG polypeptides or fragments thereof are produced and purified as described herein. For example, recombinant protein may be produced in a host cell such as a bacterial or an insect cell. The resultant proteins can be used to immunize a host organism in combination with a standard adjuvant, such as Freund's adjuvant. Commonly used host organisms include rabbits, mice, rats, donkeys, chickens, goats, horses, etc. An inbred strain of mice may also be used to obtain more reproducible results due to the virtual genetic identity of the mice. The mice are immunized with the immunogenic DRG polypeptides in combination with a standard adjuvant, such as Freund's adjuvant, and a standard mouse immunization protocol. See, for example, Harlow and Lane, Antibodies, A Laboratory Manual, Cold Spring Harbor Publications, New York (1988), which provides comprehensive descriptions of antibody generation, immunoassay formats and conditions that can be used to determine specific immunoreactivity. Alternatively, one or more synthetic or recombinant DRG polypeptides or fragments thereof derived from the sequences disclosed herein is conjugated to a carrier protein and used as an immunogen.


Antisera that specifically bind the DRG proteins may be used in a range of applications, including but not limited to immunofluorescence staining of cells for the expression level and localization of the DRG proteins, cytological staining for the expression of DRG proteins in tissues, as well as in Western blot analysis.


Another aspect of the disclosure includes screening for potential or candidate modulators of DRG protein activity. For example, potential modulators may include small molecules, organic molecules, inorganic molecules, proteins, hormones, transcription factors, or the like, which can be contacted to a cell or certain tissues that express the DRG proteins to assess the effects, if any, of the candidate modulator upon DRG protein activity.


Alternatively, candidate modulators may be screened to modulate expression of DRG proteins. For example, potential modulators may include small molecules, organic molecules, inorganic molecules, proteins, hormones, transcription factors, or the like, which can be contacted to a cell or certain tissues that express the DRG proteins, to assess the effects, if any, of the candidate modulator upon DRG protein expression. Expression of a DRG gene described herein may be detected, for example, via Northern blot analysis or quantitative (optionally real time) RT-PCR, before and after application of potential expression modulators. Alternatively, promoter regions of the various DRG genes may be coupled to reporter constructs including, without limitation, CAT, beta-galactosidase, luciferase or any other available reporter, and may similarly be tested for expression activity modulation by the candidate modulator. Promoter regions of the various genes are generally sequences in the proximity upstream of the start site of transcription, typically within 1 Kb or less of the start site, such as within 500 bp, 250 by or 100 by of the start site. In certain cases, a promoter region may be located between 1 and 5 Kb from the start site.


In either case, whether the assay is to detect modulated activity or expression, a plurality of assays may be performed in a high-throughput fashion, for example, using automated fluid handling and/or detection systems in serial or parallel fashion. Similarly, candidate modulators can be tested by contacting a potential modulator to an appropriate cell using any of the activity detection methods herein, regardless of whether the activity that is detected is the result of activity modulation, expression modulation or both.


A method of modifying a plant may include introducing into a host plant one or more DRG genes described above. The DRG genes may be placed in an expression construct, which may be designed such that the DRG protein(s) are expressed constitutively, or inducibly. The construct may also be designed such that the DRG protein(s) are expressed in certain tissue(s), but not in other tissue(s). The DRG protein(s) may enhance the ability of the host plant in drought tolerance, such as by reducing water loss or by other mechanisms that help a plant cope with water deficit growth conditions. The host plant may include any plants whose growth and/or yield may be enhanced by a modified drought response. Methods for generating such transgenic plants is well known in the field. See e.g., Leandro Peña (Editor), Transgenic Plants: Methods and Protocols (Methods in Molecular Biology), Humana Press, 2004.


The use of gene inhibition technologies such as antisense RNA or co-suppression or double stranded RNA interference is also within the scope of the present disclosure. In these approaches, the isolated gene sequence is operably linked to a suitable regulatory element. In one embodiment of the disclosure, the construct contains a DNA expression cassette that contains, in addition to the DNA sequences required for transformation and selection in said cells, a DNA sequence that encodes a DRG proteins or a DRG modulator protein, with at least a portion of said DNA sequence in an antisense orientation relative to the normal presentation to the transcriptional regulatory region, operably linked to a suitable transcriptional regulatory region such that said recombinant DNA construct expresses an antisense RNA or portion thereof of an antisense RNA in the resultant transgenic plant.


It is apparent to one of skill in the art that the polynucleotide encoding the DRG proteins or a DRG modulator proteins can be in the antisense (for inhibition by antisense RNA) or sense (for inhibition by co-suppression) orientation, relative to the transcriptional regulatory region. Alternatively a combination of sense and antisense RNA expression can be utilized to induce double stranded RNA interference. See, e.g., Chuang and Meyerowitz, PNAS 97: 4985-4990, 2000; also Smith et al., Nature 407: 319-320, 2000.


These methods for generation of transgenic plants generally entail the use of transformation techniques to introduce the gene or construct encoding the DRG proteins or a DRG modulator proteins, or a part or a homolog thereof, into plant cells. Transfoimation of a plant cell can be accomplished by a variety of different methodology. Methods that have general utility include, for example, Agrobacterium based systems, using either binary and/or cointegrate plasmids of both A. tumifaciens and A. rhyzogenies, (See e.g., U.S. Pat. No. 4,940,838, U.S. Pat. No. 5,464,763), the biolistic approach (See e.g, U.S. Pat. No. 4,945,050, U.S. Pat. No. 5,015,580, U.S. Pat. No. 5,149,655), microinjection, (See e.g., U.S. Pat. No. 4,743,548), direct DNA uptake by protoplasts, (See e.g., U.S. Pat. No. 5,231,019, U.S. Pat. No. 5,453,367) or needle-like whiskers (See e.g., U.S. Pat. No. 5,302,523). Any method for the introduction of foreign DNA into a plant cell and for expression therein may be used within the context of the present disclosure.


Plants that are capable of being transformed encompass a wide range of species, including but not limited to soybean, corn, potato, rice, wheat and many other crops, fruit plants, vegetables and tobacco. See generally, Vain, P., Thirty years of plant transformation technology development, Plant Biotechnol J. 2007 March; 5(2):221-9. Any plants that are capable of taking in foreign DNA and transcribing the DNA into RNA and/or further translating the RNA into a protein may be a suitable host.


The modulators described above that may alter the expression levels or the activity of the DRG proteins (collectively called DRG modulators) may also be introduced into a host plant in the same or similar manner as described above.


The DRG proteins or the DRG modulators may be used to modify a target plant by causing them to be assimilated by the plant. Alternatively, the DRG proteins or the DRG modulators may be applied to a target plant by causing them to be in contact with the plant, or with a specific organ or tissue of the plant. In one embodiment, organic or inorganic molecules that can function as DRG modulators may be caused to be in contact with a plant such that these chemicals may enhance the drought response of the target plant.


In addition to the DRG modulators, DRG polypeptides or DRG nucleic acids, a composition containing other ingredients may be introduced, administered or delivered to the plant to be modified. In one aspect, a composition containing an agriculturally acceptable ingredient may be used in conjunction with the DRG modulators to be administered or delivered to the plant.


Bioinformatic systems are widely used in the art, and can be utilized to identify homology or similarity between different character strings, or can be used to perform other desirable functions such as to control output files, provide the basis for making presentations of information including the sequences and the like. Examples include BLAST, discussed supra. For example, commercially available databases, computers, computer readable media and systems may contain character strings corresponding to the sequence information herein for the DRG polypeptides and nucleic acids described herein. These sequences may include specifically the DRG sequences listed herein and the various silent substitutions and conservative substitutions thereof.


The bioinformatic systems contain a wide variety of information that includes, for example, a complete sequence listings for the entire genome of an individual organism representing a species. Thus, for example, using the DRG sequences as a basis for comparison, the bioinformatic systems may be used to compare different types of homology and similarity of various stringency and length on the basis of reported data. These comparisons are useful to identify homologs or orthologs where, for example, the basic DRG gene ortholog is shown to be conserved across different organisms. Thus, the bioinformatic systems may be used to detect or recognize the homologs or orthologs, and to predict the function of recognized homologs or orthologs. By way of example, many homology determination methods have been designed for comparative analysis of sequences of biopolymers including nucleic acids, proteins, etc. With an understanding of hydrogen bonding between the principal bases in natural polynucleotides, models that simulate annealing of complementary homologous polynucleotide strings can also be used as a foundation of sequence alignment or other operations typically performed on the character strings corresponding to the sequences herein. One example of a software package for calculating sequence similarity is BLAST, which can be adapted to the present invention by inputting character strings corresponding to the sequences herein.


The software can also include output elements for controlling nucleic acid synthesis (e.g., based upon a sequence or an alignment of a sequences herein) or other operations which occur downstream from an alignment or other operation performed using a character string corresponding to a sequence herein.


In an additional aspect, kits may embody any of the methods, compositions, systems or apparatus described above. Kits may optionally comprise one or more of the following: (1) a composition, system, or system component as described herein; (2) instructions for practicing the methods described herein, and/or for using the compositions or operating the system or system components herein; (3) a container for holding components or compositions, and, (4) packaging materials.


EXAMPLES

The nonlimiting examples that follow report general procedures, reagents and characterization methods that teach by way of example, and should not be construed in a narrowing manner that limits the disclosure to what is specifically disclosed. Those skilled in the art will understand that numerous modifications may be made and still the result will fall within the spirit and scope of the present invention.


Example 1
Classification of Regulatory Genes in the Soybean Genome

The soybean genome has been sequenced by the Department of Energy-Joint Genome Institute (DOE-JGI) and is publicly available. Mining of this sequence identified 5671 soybean genes as putative regulatory genes, including transcription factors. These genes were comprehensively annotated based on their domain structures. (FIG. 1).


To provide easy access to all soybean TF genes, SoyDB—a central knowledge database has been developed for all the transcription factors in the soybean genome. The database contains protein sequences, predicted tertiary structures, DNA binding sites, domains, homologous templates in the Protein Data Bank (Berman 2000) (PDB), protein family classifications, multiple sequence alignments, consensus DNA binding motifs, web logo of each family, and web links to general protein databases including SwissProt (Boeckmann et al. 2003), Gene Ontology (Ashburner et al 2000), KEGG (Kanehisa et al. 2008), EMBL (Angiuoli et al. 2008), TAIR (Rhee et al. 2003), InterPro (Mulder et al. 2002), SMART (Letunic et al. 2006), PROSITE (Hulo et al. 2006), NCBI, and Pfam (Bateman et al. 2004). The database can be accessed through an interactive and convenient web server, which supports full-text search, PSI-BLAST sequence search, database browsing by protein family, and automatic classification of a new protein sequence into one of 64 annotated transcription factor families by hidden Markov model. Major groups of these families are shown in FIG. 1.


The database schema were implemented in MySQL, together with web-based database access scripts. The scripts automatically execute bioinformatics tools, parse results, create a MySQL database, generated PHP web scripts, and search other protein databases. The fully automated approach can be easily used to create protein annotation databases for any species.


Several bioinformatics tools were used to generate annotations of the soybean transcription factors. An accurate protein structure prediction tool MULTICOM (Cheng 2008) was also used to predict the tertiary structure of each transcription factor when homologous template structures could be found in the PDB. According to the official evaluations during the 8th community-wide Critical Assessment of Techniques for Protein Structure Prediction (CASP8) (http://predictioncenter.org/casp8/), MULTICOM was able to predict with high accuracy three dimensional structures with an average GDT-TS score 0.87 if suitable templates can be found. GDT-TS score ranges from 0 to 1 measuring the similarities of the predicted and real structures, while 1 indicates completely the same and 0 completely different. In SoyDB, the predicted tertiary structure is visualized by Jmol Zemla 2003). Users can view the structures from various perspectives in a three dimensional way.


The predicted structure was parsed into domains by Protein Domain Parser (PDP) (Hughes and Krough 1995). Since a few transcription factors did not have homologous templates in the PDB, DOMAC (Cheng 2007), an accurate ab initio domain prediction tool, was also used to predict the domains for each protein. During the structure prediction process, MULTICOM also generates the sequence alignments between the transcription factor and its homologous templates using PSI-BLAST.


The protein sequences in the same family were aligned into a multiple sequence alignment by MUSCLE (Edgar 2004). A consensus sequence was derived from the multiple sequence alignment. The multiple alignments were also used to identify the conserved signatures (DNA binding sites) for each family. The conserved binding sites were visualized by WebLogo (Crooks et al. 2004).


In order to annotate the functions of soybean transcription factors, each protein sequence was searched against other protein databases by PSI-BLAST periodically. The other databases include Swiss-port, TAIR, RefSeq, SMART, Pfam, KEGG, SPRINTS, EMBL, InterPro, PROSITE, and Gene Ontology. Web links to other databases were created at SoyDB when the same transcription factor or its homologous protein was found in other databases. For almost every transcription factor, several links to the outsides databases were created, which greatly expanded the annotations. For example, the expanded annotations include: protein features in Swiss-Prot, protein function in Gene Ontology, pathways in KEGG, function sites in PROSITE, and so on.


The comprehensive collection and analyses in SoyDB allows us to perform comparison of TF family distribution across the plant kingdom. The large number of soybean TF genes (5671) described in this study is likely due to the two soybean whole genome duplication events that are known to have occurred, one estimated at 40-50 million years ago (mya) and the most recent approximately 10-15 million years ago (Schlueter, J., et al., Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC genomics, 2007. 8(1): p. 330; and Schlueter, J., et al., Mining EST databases to resolve evolutionary events in major crop species. Genome, 2004. 47(5): p. 868-876.) By comparing the total number of genes in different organisms, it was found that the increase of plant gene number is related to multicellularity and ploidy. For example, compared to the unicellular eukaryote Chlamydomonas reinhardtii where 15,143 genes are predicted (Merchant, S., et al., The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007. 318(5848): p. 245), larger numbers of protein-encoding genes are reported in multicellular plant organisms [e.g. Physcomitrella patens (35,938; See Rensing, S., et al., The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science, 2008. 319(5859): p. 64), Arabidopsis thaliana (32,944; TAIR, http://www.arabidopsis.org/)] and the tetraploid Glycine max [(66,153, Phytozome, http://www.phytozome.net/soybean).


It is hypothesized that TF gene number also follows the same trend as land plants, which have a larger number of TF genes compared to algae. To perform the most complete and current comparisons of plant TF genes and their distributions across TF gene families, we mined the last updated DBD database [9] in eleven plant species (C. reinhardtii, P. patens, Oryza sativa, Zea mays, Sorghum bicolor, Lotus japonicum, Medicago truncatula, A. thaliana, Vinis vinifera, Ricinus communis, and Populus trichocarpa). These species were then compared with the soybean TF genes stored in our SoyDB database.


Our analysis shows that the unicellular C. reinhardtii has the lowest number of TF genes when compared to multicellular land plants (the exceptions are L. japonicus and M. truncatula where only a partial genome sequence is available). This trend also reflects the differences of total gene number in the organisms. For example, it is interesting to note that homeobox, MYB, NAC, and WRKY TF genes in C. reinhardtii lack or have very low representations compared to the eleven other plant models. Previous studies defined a role for homeobox and WRKY genes in plant organ and plant cell development. Therefore, the occurrence of these genes only in multicellular plants may reflect their special roles in development. In addition, a close relationship between TF gene number and total gene number is observed when comparing the TF gene numbers of G. max and A. thaliana with their total gene numbers (i.e. G. max encodes 66,153 protein-coding genes including 5,683 TF genes; A. thaliana encodes 32,944 protein-coding genes and 1,738 TF genes). Thus, the family distribution of soybean TF genes is similar to other land plant species, except for P. patens (e.g. AP2 represents 7% of total TF genes in soybean vs. 8-12% for other land plants; bZIP: 3% vs. 3-7%; bHLH: 7% vs. 8-11%; homeobox: 6% vs. 4-7%; MYB: 14% vs. 7-14%; NAC: 4% vs. 4-9%; WRKY: 3% vs. 4-7%; ZF-C2H2: 7% vs. 5-9%).


Example 2
A Primer Library for PCR Amplification of Genes Encoding Soybean Transcription Factors

In order to quantitate the expression of TF genes in soybean, a library containing 1149 sets (or pairs) of PCR primer was designed and synthesized. The sequences of these primers and the Identifier of the corresponding gene are listed in Table 1. These primers allowed for sensitive measurement of the expression levels of 1034 different soybean transcription factors (20% of total TF soybean genes). The number and classification of these TF genes are shown in FIG. 2.









TABLE 1







List of primers and sequences in the primer library










Forward primer
Reverse primer
ID number
Soybean gene ID





CTGCTGCTGATGATGTTCGT (SEQ ID = 1)
ACCACGAACTGCGAGATACC (SEQ ID = 2)
S4898534
Glyma17g34990





TTTGCAACTGGAGAACGATG (SEQ ID = 3)
ATGAGTATTGGGCCTGACGA (SEQ ID = 4)
S4915781
Glyma14g29160





TCACACACTCACATTCCGGT (SEQ ID = 5)
GGTCCTTAAGTCATCAGCGG (SEQ ID = 6)
S4901877
Glyma19g37780





CAGCAGTCAGCAGCAGAATC (SEQ ID = 7)
GGAATTCCACAAGGGATTGA (SEQ ID = 8)
S5096279
Glyma01g02760





TCACCCTCTTCCTCATCGTC (SEQ ID = 9)
TTGTTGTTGTCTCTCGCTCG (SEQ ID = 10)
TC211213
Glyma01g35010





CCCCTATTTGTTTTGTGAGCA (SEQ ID = 11)
CAGTTATGTATGGGCTTTTCCT (SEQ ID = 12)
S4911482
Glyma01g39520





GAGAGAAACAACAGCAGCGA (SEQ ID = 13)
ACTTGCCCCACTTCCTCATC (SEQ ID = 14)
S4969502
Glyma01g39540





AACATCACTTGGCCTCAACC (SEQ ID = 15)
GTTCGGACTGTGAGTGGGAT (SEQ ID = 16)
CD404474
Glyma01g39540





CCATTCTGATTGGCTTCTGC (SEQ ID = 17)
GCGGAAAAGAGAGATGGATG (SEQ ID = 18)
S5142323
Glyma01g40380





TCAATCTAGTCGAAAGCCGTC (SEQ ID = 19)
TTCCGCGTTTGGATTACTCT (SEQ ID = 20)
BE023264
Glyma01g41530





CACTTTCCACGACCACAATG (SEQ ID = 21)
GAAGCACGAGTAGTGTTCTCTCT (SEQ ID = 22)
AI443715
Glyma01g41550





CGTACGCGTCAAATTGAGAA (SEQ ID = 23)
AGCCTTTGATGTCTCCTCCA (SEQ ID = 24)
S4991587
Glyma01g42500





CCCCTAGGTCTTCCAACACA (SEQ ID = 25)
CTCCTTAGGACGCAAAATGG (SEQ ID = 26)
S21567471
Glyma02g00870





CCAACACCATCTCAAAATCG (SEQ ID = 27)
AAGTGCTTATTTGGCCATGTG (SEQ ID = 28)
CF808401
Glyma02g07310





GAGACTCATCTTCAGCGACAG (SEQ ID = 29)
GGTGGGGTTTCAGTAACCGT (SEQ ID = 30)
S19677224
Glyma02g08840





CAGAGGTGCATTAGCCCTTC (SEQ ID = 31)
CATCACAATTGATGGATGGC (SEQ ID = 32)
BI468684
Glyma02g09600





GATCAACACCACCACCACAA (SEQ ID = 33)
GAAGGGACTCACCGTTGCTA (SEQ ID = 34)
S4892093
Glyma02g46340





AGGCATCCTCCTTCACCTTT (SEQ ID = 35)
GAAGTCCTAGAAGCGCCAAG (SEQ ID = 36)
BG043825
Glyma03g26780





TCTCTGCCTCTTCTTGCACTC (SEQ ID = 37)
ATGCACCAAAGAACACACCA (SEQ ID = 38)
S23071305
Glyma03g27050





TCCAGTTGTATTGGTAGCGTTG (SEQ ID = 39)
ATGGTGGTGGTGGTCGTACT (SEQ ID = 40)
BQ080756
Glyma03g31940





TTATGTGTATGCTGGAGCGG (SEQ ID = 41)
ACAACACACAACCGACCTGA (SEQ ID = 42)
S5100664
Glyma04g04350





TGCTTTCCAAAGAAGGAAGC (SEQ ID = 43)
CTCCCTCTCCTCCTTGGTCT (SEQ ID = 44)
S15854043
Glyma04g08900





TCAACCCCTTCTCCTTCAAA (SEQ ID = 45)
TTTTGGGTGGTGTTGGGTAT (SEQ ID = 46)
TC225042
Glyma04g11290





CTGTAACATGGTTTTGGGAGT (SEQ ID = 47)
TGCTGTAACCCATGATCAGC (SEQ ID = 48)
S21539774
Glyma05g18170





CAGCGGTTTCAAATGTTCCT (SEQ ID = 49)
GAGGAGTGAGACAGAGGCCA (SEQ ID = 50)
S5100428
Glyma05g32040





TTTGGGTTTTACGAGTTGGC (SEQ ID = 51)
TGGTGCCTGTCTCAATCAAA (SEQ ID = 52)
BU965378
Glyma05g37120





CTTTGTGGTGACTCCGTTGA (SEQ ID = 53)
CTCCAACTGGGTCATGAGGT (SEQ ID = 54)
S5090687
Glyma06g07240





TTAAGCCTTGTCGATTTCCG (SEQ ID = 55)
GCCACGAATGCGTTTTATCT (SEQ ID = 56)
TC208898
Glyma06g08990





CACGTCAGCAAACGTCAGAT (SEQ ID = 57)
GGTTGTTTCCGACAAGGAGA (SEQ ID = 58)
S23065007;
Glyma06g11010




TC225047






GGTTGTCTGAACCGGTCAAT (SEQ ID = 59)
GCAACGATGACCAAACTACAA (SEQ ID = 60)
S4875747
Glyma06g35710





AGCTCTCTTTTGGGCTGACA (SEQ ID = 61)
CCCACTTCATGACCCAGTCT (SEQ ID = 62)
BM527363
Glyma06g44430





GCAGCCCAAAGAGACTCAAT (SEQ ID = 63)
TCCTTCCTTCTGCTTCCTTTT (SEQ ID = 64)
S4882660
Glyma06g44430





CATGCTCTCATGACTTGG (SEQ ID = 65)
TGTGAAGAGACACAAAGAGAGT (SEQ ID = 66)
S4877810
Glyma07g06080





TCCAGCAAAATCCATCATCA (SEQ ID = 67)
GATTCATTCGGGAACAAGGA (SEQ ID = 68)
S4874772
Glyma07g33510





TTGTCGTACACAATGGCAGC (SEQ ID = 69)
GCGGAGATAAGAGACCCGT (SEQ ID = 70)
S21539521
Glyma08g02460





TGGAGTCACGGCATTTATGA (SEQ ID = 71)
ACCCTCGAAGCCACAAAGTA (SEQ ID = 72)
S5078767
Glyma08g03910





CCATTCCCTACAGTTACGAGC (SEQ ID = 73)
AGCTTCACCTGCTGCTTCTG (SEQ ID = 74)
S15851345
Glyma08g38190





CACGAGAATGGCGTTTTCTTA (SEQ ID = 75)
CCAAAGCCAGAGAAGAGACAA (SEQ ID = 76)
S4943022
Glyma09g04630





TTGGACGGTTGAATGATTTC (SEQ ID = 77)
CGCCCTAACTTAATCACCCT (SEQ ID = 78)
TC225578
Glyma09g04630





GGAAGAAGAGCAGGTGTTGG (SEQ ID = 79)
ATCTTGGGCATCCAAGTCAG (SEQ ID = 80)
S22668583
Glyma09g27180





AGTAATAATATCACCACCGCACC (SEQ ID = 81)
TACTAGTCTCTGGAGAGGCGTT (SEQ ID = 82)
TC234528
Glyma09g33240





TGTATCTGAGCAATGGAGCG (SEQ ID = 83)
AAGACCAACCGAGTGAAACG (SEQ ID = 84)
BI321654
Glyma10g33770





TCCAATTTGCCAGAAGAACC (SEQ ID = 85)
CCTCACACCTCTGTAACGCC (SEQ ID = 86)
TC206902
Glyma10g33810





AACCAAACCAAACCAAACCA (SEQ ID = 87)
GACACAGCCTCCATCCATTT (SEQ ID = 88)
S26574424
Glyma10g34760





TCTCCTCTGTTTGGCGTTG (SEQ ID = 89)
GCCACTTTCATTCCCTTGTG (SEQ ID = 90)
CF806953
Glyma10g36760





ATCCAGTCGTACTCGCAAGC (SEQ ID = 91)
ATGCCAATTTTAGAAGAGCGTC (SEQ ID = 92)
S4910467
Glyma11g01680





AGCTGTGGAAAACCCAACG (SEQ ID = 93)
GAATAATCCTTTAACGCCGTC (SEQ ID = 94)
S22952295
Glyma11g03900





GGAGAGTGGATCTTGGGTGA (SEQ ID = 95)
CCCATTTATTCCACCCCTTT (SEQ ID = 96)
TC232915
Glyma11g03910





TCCATGGGAAGTGGTAAGGA (SEQ ID = 97)
GCCCGAATGTATCCAATGTT (SEQ ID = 98)
TC205929
Glyma11g14040





TTGCAAAGTTAGCAGAGGTTGA (SEQ ID = 99)
TTCCAATATGGAACCACAAGC (SEQ ID = 100)
S5141801
Glyma11g14040





CGTCGCCAAAGTACTGGTTT (SEQ ID = 101)
TTTTGCCAAGAAATTGTCCC (SEQ ID = 102)
CB063558
Glyma11g15650





TGCATGAAAGCAAGTGACAA (SEQ ID = 103)
TACCCCTGGAATAACCACCC (SEQ ID = 104)
S15849732
Glyma11g31400





TTTTTCATCTCCCACTTCCG (SEQ ID = 105)
GTCAAACTAAACGGCGCATC (SEQ ID = 106)
BE609353
Glyma11g31400





TCCATGTCATCATCCTCTGC (SEQ ID = 107)
CAGCTGCTAGTCAATCCGGT (SEQ ID = 108)
S23062106
Glyma12g11150





AATGCAGTGTCTGCAACGAG (SEQ ID = 109)
CCTCCCCATTTTCATGCTTA (SEQ ID = 110)
S4861946
Glyma12g32400





GAAATCCGTCTTCCACGAAA (SEQ ID = 111)
TCTCCTCGTAGCTTGAAGGC (SEQ ID = 112)
TC220118
Glyma12g33020





CCCAAACCATTTCCTGAGAA (SEQ ID = 113)
CGTGACGTCCCCATAGAAGA (SEQ ID = 114)
S21565746
Glyma12g33020





CGCTTCCTACTCCTCCCTTT (SEQ ID = 115)
CCATTGTTGGTGCGAGTTTT (SEQ ID = 116)
S6673193
Glyma12g35550





GCAACAACCAAGTTCCCTTC (SEQ ID = 117)
AGAGAGCGAGTTCTGGGCTT (SEQ ID = 118)
TC215663
Glyma13g01930





TACAAAACCTGATTTGCCGC (SEQ ID = 119)
TTCCTCGCCTCTAGACCTCA (SEQ ID = 120)
S15927008
Glyma13g30990





GCACTACTACTACGCATTTTCCG (SEQ ID = 121)
GGTCACAATCCAGACCTCGT (SEQ ID = 122)
S4870460
Glyma13g34920





GAGATCCGTGGAAGAAGCAG (SEQ ID = 123)
AAATTGGTCTTGGCCTTGG (SEQ ID = 124)
CF807860
Glyma14g05470





ACAGGTTTTCCACGGATGAG (SEQ ID = 125)
CTTTGCATCAACGCAGACTC (SEQ ID = 126)
S5049738
Glyma14g06080





AGCTGAAAAGGGGACAACAA (SEQ ID = 127)
AGAAGGCGACGTGCATAAGT (SEQ ID = 128)
S5141710
Glyma14g06080





AGAGTCGACGCTCTCCAAAC (SEQ ID = 129)
GAAGCTTCTCGAGTTTTGGACT (SEQ ID = 130)
S4867812
Glyma14g09320





CTCTACCTTGGTCAGCTGGG (SEQ ID = 131)
TGGGATGACCATCAAGCAAT (SEQ ID = 132)
S4898590
Glyma14g34590





TCGAGATAACGGAAACCGTC (SEQ ID = 133)
TCGTACTCGGACCTAGTGGC (SEQ ID = 134)
BE821939
Glyma14g38610





CGTTGGATATCGTATGGCG (SEQ ID = 135)
AAAACCAAGAAACACAGCGG (SEQ ID = 136)
S4871445
Glyma15g16260





CATTCGAGCAACTCGTTTGA (SEQ ID = 137)
AAGGAGCAGCAGAAAGCAAG (SEQ ID = 138)
S16535713
Glyma16g01500





GAGCCATAGGGAAACGATCA (SEQ ID = 139)
TTGCAGGGAGGAGTTTGAGT (SEQ ID = 140)
BI971027
Glyma16g04410





CGCAGCTTCTTTGGAGTAGG (SEQ ID = 141)
GCCTCATTGTGATGATGGTG (SEQ ID = 142)
BF598552
Glyma16g05190





ACGTCAGCATTGGAGCTTCT (SEQ ID = 143)
AATGTGCACTGTGGCAACTC (SEQ ID = 144)
S4984668
Glyma17g07860





TTGACTCCCCACGTGGCTCT (SEQ ID = 145)
GTCGTCGCCGGAAAGTATG (SEQ ID = 146)
CD392418
Glyma17g15480





TGGGACAGGGATTAGGAGTG (SEQ ID = 147)
CCCCTTTTCCCCAATAAAAA (SEQ ID = 148)
CA803122
Glyma17g18580





GACATCTGGGTTGGTTGCTT (SEQ ID = 149)
ACACCCTTCTTCGGATTCCT (SEQ ID = 150)
BE191084
Glyma17g18640





CCATACGAAGAACCCAGGAA (SEQ ID = 151)
CATTTTAATCCCACCAACGG (SEQ ID = 152)
S21537044
Glyma18g29400





CTTCCTGAGGATGAAAAGCG (SEQ ID = 153)
CCGGGACTAAGCCTTCTCTT (SEQ ID = 154)
BF426105
Glyma18g33460





AAAGAGGAGGAAGAGCCTGG (SEQ ID = 155)
AGCCACTTCAACATTCCACC (SEQ ID = 156)
S5146194
Glyma18g48730





TGGGAACTACCAATCGGAAC (SEQ ID = 157)
AGGTTGATCTTTGACCACGG (SEQ ID = 158)
TC222644
Glyma18g51680





GCTGGCCTTTCTCATACAGC (SEQ ID = 159)
CCAACCATTCATTCCTCTGG (SEQ ID = 160)
BF423665
Glyma19g31960





ACGATGTGACAGAAATCAGAGA (SEQ ID = 161)
AGGAGCTTATGGCGTACGAG (SEQ ID = 162)
S5119153
Glyma19g40070





ATTCCGGAAAACGTCGTTAG (SEQ ID = 163)
AGAGAACCGATGGCACAGAC (SEQ ID = 164)
S5035194
Glyma19g40070





TCCTTCCATGTCTAGCGGAG (SEQ ID = 165)
TGAACCCAGAAGGAAAATGA (SEQ ID = 166)
TC225489
Glyma19g45200





AGGCCTATGATTGTGCTGCT (SEQ ID = 167)
TCTCCTTTTCCTGCCACAAC (SEQ ID = 168)
S4912458
Glyma20g16920





TTCGTAACATGCTTTTCGCA (SEQ ID = 169)
GGTTGCTTTGCCTTTTAGTTTG (SEQ ID = 170)
S15924601
Glyma20g16920





GACGGAGCGTGAAGAAGAAC (SEQ ID = 171)
AATTCCACGTCAGCACTTCC (SEQ ID = 172)
AI988637
Glyma20g29410





TTTTCTTCCAGCCAGCAAAT (SEQ ID = 173)
CTGACCCACTACCACCGTCT (SEQ ID = 174)
S4908467
Glyma20g30840





TCATCCATAAGGGTTGGAGC (SEQ ID = 175)
GTCCATGTCTAAGGAGGGCA (SEQ ID = 176)
TC211971
Glyma20g33890





GGAAGCTGCTTTGGTCTACG (SEQ ID = 177)
GTTCAACAGAGGCGTGATGA (SEQ ID = 178)
BE556009
Glyma20g35820





ACCACTCCCTGATCAGATGC (SEQ ID = 179)
TACCCAGCCCATAGTGGTTC (SEQ ID = 180)
S23061605
Glyma09g11720





CCTGTCTCAGCACCTCCTTC (SEQ ID = 181)
TCTTGATAAGTGTGCCGCTG (SEQ ID = 182)
TC207359
Glyma02g40650





CGTAGGGAGCAGAAGACCAG (SEQ ID = 183)
AAAAGATACCGCAATGGTGC (SEQ ID = 184)
S21568762
Glyma02g40650





CATGGGACTGGGAGAGTGTC (SEQ ID = 185)
TCTACTCCTGTCAACTCCTGTGA (SEQ ID = 186)
S4935262
Glyma02g45100





TTCCCTCTAATGAAGGCGTG (SEQ ID = 187)
CGCGAGGAACATAAACGAAT (SEQ ID = 188)
BU763867
Glyma03g36710





AGGCAAAGGGTTTTGGAGAT (SEQ ID = 189)
CTAGCGGCTGTTAGCCTGTT (SEQ ID = 190)
S5043967
Glyma03g41920





CGGATACTCTTTCGTGCCAT (SEQ ID = 191)
TTGAAGACGAAATCGAGGCT (SEQ ID = 192)
S23070360
Glyma04g37760





AACCAACAATGGCACAGTCA (SEQ ID = 193)
GGATCTAAACCAACTCCGCA (SEQ ID = 194)
S23069218
Glyma04g43350





GCAAAGTGGTTGGAGTGGTT (SEQ ID = 195)
TCGAAGTTCCCCATTCTCAC (SEQ ID = 196)
BF598372
Glyma05g38540





GTGCCATCTAGCCTGCACTT (SEQ ID = 197)
TCCATGAGCATGGGTCTACA (SEQ ID = 198)
S4862027
Glyma05g38540





ATCCGTGCCACCAGATTTAG (SEQ ID = 199)
GTCTCTTCTAATGGCTGCCG (SEQ ID = 200)
S5127363
Glyma06g39690





AGTATTGCCACCGTCAGAGC (SEQ ID = 201)
TCCTCAAGAAGTGCAGCAGA (SEQ ID = 202)
S23068348
Glyma07g15640





ACCAAGACAACCTGGAATGC (SEQ ID = 203)
ATATCATCACCAAGCCAGGG (SEQ ID = 204)
BM891891
Glyma07g15640





TCAAGATGGGGAAGTTCAGG (SEQ ID = 205)
CTGGATTCAGTGGCATTCCT (SEQ ID = 206)
S5133827
Glyma07g15640





TCTGGTGCCGGAATCTAATC (SEQ ID = 207)
AGTGAACTCTTGGCCTTGGA (SEQ ID = 208)
BG790017
Glyma07g16170





ACCATCCTCAATTTTGCGTC (SEQ ID = 209)
TCTTGTTTCTTTGGGTTGGC (SEQ ID = 210)
AI440841
Glyma07g40270





GGGTGGAGAAGTAGGAGCAA (SEQ ID = 211)
TGGGATAACAACTGTGGGGT (SEQ ID = 212)
AI438005;
Glyma08g10550




S4866372






CAGCAACAACCACAACAACC (SEQ ID = 213)
TGAGCTGCTGAACCAAACTG (SEQ ID = 214)
BE440918
Glyma08g10550





ATGACATGACTCCACGATACG (SEQ ID = 215)
CACCTATGCTGAATCTATCCACG (SEQ ID = 216)
S4981647
Glyma08g10550





CCAAGATCCGGCTCCTTTAC (SEQ ID = 217)
TGGCTGTACGTGCAAAAAGA (SEQ ID = 218)
S4891658
Glyma09g08350





GTCTTGCCCATCTTAATCGC (SEQ ID = 219)
TAAGGTTGGGAAATTGTGGC (SEQ ID = 220)
S4939214
Glyma09g20030





GCCCAACCTTAGTGAGAACG (SEQ ID = 221)
CGAAGGTGTCTTCCCAACAT (SEQ ID = 222)
S6670416
Glyma10g06080





GGGTAGGGTAGTAACCAAACAGC (SEQ ID = 223)
AAAGGTTTTCAGGGTTGTCTGA (SEQ ID = 224)
BE823048
Glyma11g15910





AATTTCCCATGGTCAGCAAG (SEQ ID = 225)
GTTGCTTCCGACTAACGTCC (SEQ ID = 226)
S23068849
Glyma12g29720





ATGCTTTTCAAGCAGTTGGC (SEQ ID = 227)
AACCAAACAGGCTTGGACC (SEQ ID = 228)
S4862156
Glyma13g17270





CGCCTTATTCAACGCAATTT (SEQ ID = 229)
TTTGCTTCAGCAGTGTTTGG (SEQ ID = 230)
BG238597
Glyma13g20370





GAATGAGGTTCAGGATGCGT (SEQ ID = 231)
CATTTTGATCCGAGCCATCT (SEQ ID = 232)
TC211634
Glyma13g30750





GGGTTCCAAGAGATGGGAAT (SEQ ID = 233)
GCGGCATAACACTTCTCTCC (SEQ ID = 234)
S4877094
Glyma13g35740





AGCAATGGCTTCTTCTGCAT (SEQ ID = 235)
CTCAGAAGCATGAGCACTGG (SEQ ID = 236)
AW761516
Glyma14g03650





GGGATCGGTGCACTACTAGG (SEQ ID = 237)
TACAAGAATGCTGGGCCAAT (SEQ ID = 238)
S4871774
Glyma14g03650





CCAGCTGACCTATATGGCTGT (SEQ ID = 239)
TGCTTTTCTTGTGGCTGCTA (SEQ ID = 240)
S22951343
Glyma15g19980





CGAAGAGAGTGCTGGTTGTG (SEQ ID = 241)
CAGCACTAAAGACTGTTGCGA (SEQ ID = 242)
S4897074
Glyma17g05220





CGCTCGCAACAGTATCAAAA (SEQ ID = 243)
GCGCCATTGGTAGTAGGAAA (SEQ ID = 244)
S4989599
Glyma02g44260





TGTCCCTCACTTACCCCATC (SEQ ID = 245)
TGAAACTGCAGGGAGCTTTT (SEQ ID = 246)
S21565486
Glyma06923920





GTTGTATCCACAACCGTCCC (SEQ ID = 247)
GGTGAGGTTAATGTTCCCCA (SEQ ID = 248)
S23062053
Glyma13g26240





GGAACCAGAGACGTCGGATA (SEQ ID = 249)
ATGGTCTCACAGCAGCATTG (SEQ ID = 250)
S4876974
Glyma16g34300





TTTTGAACGAGTCCTCCACC (SEQ ID = 251)
AATTTTCCCATCAAACGCCT (SEQ ID = 252)
S23063969
Glyma06g01640





CATGCAGAATAGTGGTCGCT (SEQ ID = 253)
ACATGATTTCCGGGTCAACT (SEQ ID = 254)
S4976159
Glyma11g09370





CGCCATGCTACCAAAACTAA (SEQ ID = 255)
TGCCAGCTAAATTACCCTCA (SEQ ID = 256)
S4938841
Glyma16g21840





TCTCTGTTGTTTCGCAGGG (SEQ ID = 257)
GAAGTGAACTCCTTCGTGCC (SEQ ID = 258)
S4876683
Glyma13g19380





ACGCCAACACCAACCATAAT (SEQ ID = 259)
CTTCTTCTTCGACGATTCCG (SEQ ID = 260)
BE473509
Glyma01g40690





ATGGAGAGGATATCGAAGCG (SEQ ID = 261)
AACGTCACTCTCCGTCAACC (SEQ ID = 262)
S21566169
Glyma02g37680





TTGTCGATGACACCGTAGGA (SEQ ID = 263)
CAGCCAAGGAATCAGATGCT (SEQ ID = 264)
AI966815
Glyma09g40520





AGAAAACTGGCCACCACAAC (SEQ ID = 265)
CTTTGGCTGTTCCAGATGGT (SEQ ID = 266)
S23063344
Glyma10g32150





TCGAGAATGGTTTCCAGAGG (SEQ ID = 267)
AAAGCATCACGGAATTTTGC (SEQ ID = 268)
S5139707
Glyma13g34680





GAACCAGAAGAAGCAGTGGC (SEQ ID = 269)
TCAGACAGCTTGGGTGTGAG (SEQ ID = 270)
S5115432
Glyma18g07510





GGCTTCTAAGGCACAGGTTG (SEQ ID = 271)
TGGTTTCCCATCCACTTCAT (SEQ ID = 272)
S5146625
Glyma01g02350





GTCACCCAAGTAACCCACCA (SEQ ID = 273)
AGGGCATTTTCTCATGCCTA (SEQ ID = 274)
S22951976
Glyma01g24100





CGCCATGACAACATAAAACG (SEQ ID = 275)
GAAGCGAGAACTGAAGGCAT (SEQ ID = 276)
S23061455
Glyma04g09550





CCCGAGTTAATGTTATGGTTGA (SEQ ID = 277)
CTGTGAATGCTGCGACTACG (SEQ ID = 278)
S35599000
Glyma04g09550





AGAGAACCAGTCGGTGATGG (SEQ ID = 279)
TAGGCGTCAAGGCCATTTTA (SEQ ID = 280)
S5101674
Glyma06g17320





GGCATTCTCGGAAATTGATG (SEQ ID = 281)
CACCCCACCACTTGACTCTT (SEQ ID = 282)
S5146871
Glyma08g22190





AAGCTTCCTTGGGAGAGAGG (SEQ ID = 283)
GCTGCGGAATTAGGAGTGAG (SEQ ID = 284)
S23064650
Glyma10g03720





GCAGCATCACCTTCCTCTTC (SEQ ID = 285)
ATTGGCAACAAGAGAATCGG (SEQ ID = 286)
BM732148
Glyma10g04610





GATACCCATAATTCGCACGC (SEQ ID = 287)
TCATCTCCTCGTGCTTGTTTT (SEQ ID = 288)
CF806335
Glyma10g30440





TATGCTCAGAGGGCCTGTTT (SEQ ID = 289)
ACGAGCTTTCCTCCCAAATC (SEQ ID = 290)
S15931785
Glyma11g20490





TGTTCACCTGCTGAAACTCG (SEQ ID = 291)
CGCACCTAGCTTCATTCCAT (SEQ ID = 292)
S4875111
Glyma13g43050





CGTCACACGTGTACCTGCTT (SEQ ID = 293)
GGTGAACGGTTTAGCGTGTT (SEQ ID = 294)
S5080036
Glyma14g09390





CCTTGCAAAGCTCCACTGTT (SEQ ID = 295)
CTGTGTCCGCTGCATAAGAA (SEQ ID = 296)
BE823122
Glyma17g37580





GTTAAGGCTTGGACTGCCTG (SEQ ID = 297)
GCATCAAATCCACAGTGGTG (SEQ ID = 298)
S5146870
Glyma19g34380





GTGAGCACCCAAATCAACCT (SEQ ID = 299)
GGAAACCTCAGGACTTCCCT (SEQ ID = 300)
S5139519
Glyma19g35180





TTTTCTGATCAGCGACCTCA (SEQ ID = 301)
TGACACTGCCTCTTCCTTCA (SEQ ID = 302)
S5129544
Glyma19g40970





TGGGTGCTAAGCTGTGTGAG (SEQ ID = 303)
CAAAGCTCGGTCTCCTTGAG (SEQ ID = 304)
S4878791
Glyma20g35270





CTATCTTCGTCCATGACCCC (SEQ ID = 305)
AGTTGCATGACCTCCCAAAG (SEQ ID = 306)
S23068785
Glyma02g18250





TCCCAAAACTCCACACATGA (SEQ ID = 307)
TGGTGAGGGTTTGAAGAAGG (SEQ ID = 308)
S5142874
Glyma19g38340





GGCCAAGAAGAACCCATGT (SEQ ID = 309)
GGGGTCCACCGAGTTAATTT (SEQ ID = 310)
S5126647
Glyma01g02250





ATGGGAAGACAAAGTCACCG (SEQ ID = 311)
GACTTCAAATTCGAGGCCG (SEQ ID = 312)
BF325042
Glyma01g02250





CTTTGTTTCCTCGTTTCCCA (SEQ ID = 313)
AGCGCTACAAAGTGCTGGTT (SEQ ID = 314)
AW310700
Glyma01g09010





CTGAGTGATGCCATGGAGAC (SEQ ID = 315)
CTGAACCCAACCATTCGTTT (SEQ ID = 316)
S4891278
Glyma01g09010





ACCGTAGACGACCACGATTC (SEQ ID = 317)
GTGGACACCGATGATTTTCC (SEQ ID = 318)
S5028099
Glyma01g15930





TGCATCAATTATCACGCACA (SEQ ID = 319)
TGGTGCAATACGTAGCCTTT (SEQ ID = 320)
S4930680
Glyma02g37310





ACGACCGTGATTCCATTAGC (SEQ ID = 321)
TGATTCTTTTGTTGGACCCAG (SEQ ID = 322)
S18957200
Glyma03g04000





TGTACTTAAGCTACTGGCCAAGC (SEQ ID = 323)
GGTGTGCACCTACCATAGCA (SEQ ID = 324)
TC229276;
Glyma03g25280




S7107502






ATTCGTTAGCGTGGCTCATT (SEQ ID = 325)
GATGGACCATGAATTCAGCA (SEQ ID = 326)
AW309251
Glyma03g25280





GAAAGGTCCTCTGCACCATC (SEQ ID = 327)
GTCATTAACCTTCTTGCGGC (SEQ ID = 328)
BQ611037
Glyma03g28630





TGATTGGCTCTTTACGAGGA (SEQ ID = 329)
TGCTTTGTGATTTGAATGGG (SEQ ID = 330)
BE473577
Glyma03g29710





TGACGTCATCGTCAAATCGT (SEQ ID = 331)
TTCGGAGACAGTAAGGAGCG (SEQ ID = 332)
S5014134
Glyma03g32740





AAAGTATCATCCGGTGCAGG (SEQ ID = 333)
TAATTAAGGTGGGAAGGGGG (SEQ ID = 334)
CA785248
Glyma03g41900





AGTTGGAGGAAAGGAGAGCC (SEQ ID = 335)
ACTCATGAAGCCCATCCAAG (SEQ ID = 336)
S4885609
Glyma05g37770





GCTTACCTCCTCAACATGGG (SEQ ID = 337)
AGGGAAAAGATGTAGCCGGT (SEQ ID = 338)
S5015816
Glyma06g01430





TAGCATCAAGATTCGGTTCG (SEQ ID = 339)
TCACATGAATTTTACCCCCTG (SEQ ID = 340)
S21565817
Glyma06g17330





CCCTCAAGGAAGCATTACCA (SEQ ID = 341)
CCTGTGCCATCTTCACCTTT (SEQ ID = 342)
BM732581
Glyma06g44660





ACGATGAAGACACCACCTCC (SEQ ID = 343)
CTCAATGAGCACCTCCTTCC (SEQ ID = 344)
S4904362
Glyma07g03060





GCAGATTGACTGCTCATGATGT (SEQ ID = 345)
GGGGCTTTCGTTAGGAGTTT (SEQ ID = 346)
BI970205
Glyma07g09180





CCTCGCATCGGAGTTATTGT (SEQ ID = 347)
GAGTTTCAACCAGCAAAGCC (SEQ ID = 348)
S23071477
Glyma08g04110





CTACTGCCAAAGGCCTGAAG (SEQ ID = 349)
TTCATTGAGTCGATCCCTCC (SEQ ID = 350)
BU965443
Glyma08g15740





AATGGTGGATCTTCCAGTGC (SEQ ID = 351)
TGGAGCAATTCCTGATACCC (SEQ ID = 352)
TC217902
Glyma08g16190





AAGATTCCGTTCCTTGCAGA (SEQ ID = 353)
CACTGATACGAGTCCTGCGA (SEQ ID = 354)
S5093793
Glyma08g26110





GAACGTGCTATTGCTGGGTT (SEQ ID = 355)
AATTGATGTGGGGAGACGAG (SEQ ID = 356)
S5142763
Glyma08g28010





TGAAGGATGGAATCAGGAGC (SEQ ID = 357)
CACTGAAGTTGCCACAATGC (SEQ ID = 358)
AW507968
Glyma08g28010





GCCGAGAGACAGAGGAGAGA (SEQ ID = 359)
ATGTACAATATGGCGTCCCC (SEQ ID = 360)
S4865763
Glyma08g36720





CACCCAGAAAACATCAATGG (SEQ ID = 361)
CAGTGACAGCTCCATGCCTA (SEQ ID = 362)
S4877270
Glyma08g40540





TGCTGTTGCTGGGTGTAATC (SEQ ID = 363)
AAAATGCCTCTCAGCCAATG (SEQ ID = 364)
CD398155
Glyma08g41620





ACCCTCTTGGCAATCATCAC (SEQ ID = 365)
CATGTGGGGGTGTTGTTGTA (SEQ ID = 366)
S5025226
Glyma08g46040





GATGAACAAGGGAAGGGCTC (SEQ ID = 367)
ACTTGGGATCGTTAACCAAA (SEQ ID = 368)
TC223273
Glyma09g33730





GGATCTAAAGCTTGCCGTGA (SEQ ID = 369)
GTTCTCACAGGTCTCCCTGG (SEQ ID = 370)
CF805700
Glyma10g01010





AACCAACAAAGAACAGGTTAGC (SEQ ID = 371)
TGCACTAATGACTCAGTTGAAGG (SEQ ID = 372)
S23069022
Glyma10g01780





TTTTGGGAATTTTGGCTCAG (SEQ ID = 373)
TCACCCACCATCTTTCTTCC (SEQ ID = 374)
S5143908
Glyma10g03950





CGAGTTCCTCTTCCCACATC (SEQ ID = 375)
TGCAACGAAGTTTTCTCCCT (SEQ ID = 376)
S21566702
Glyma10g04890





TAGGGGGCAGAACATGAATC (SEQ ID = 377)
GTTGGCAGGTGCAGTTCTTT (SEQ ID = 378)
BU550119
Glyma10g04890





ATCCAGGGCCATATTGTTGA (SEQ ID = 379)
CTTCTTCGCTCGGAATGTGT (SEQ ID = 380)
S23062909
Glyma10g12150





ACCAAGGTTCAGAAGAGCCA (SEQ ID = 381)
GCACCAGCTGATTCTTCCTC (SEQ ID = 382)
S4974129
Glyma10g28290





CCCATCATTGCATCAGTGTC (SEQ ID = 383)
CCATAAGACGCATCCTGGTT (SEQ ID = 384)
AW760679
Glyma10g28290





GGGCTCCTCCGATTTTACTT (SEQ ID = 385)
ATCTAGTCGGTGCAGCTGGT (SEQ ID = 386)
S21538929
Glyma10g30430





CATCCTTGTCCAGGAGGTGT (SEQ ID = 387)
CCACATCAAGCCCTTCCTTA (SEQ ID = 388)
BE020687
Glyma10g38620





AATTCACTGCCTCGCTCATT (SEQ ID = 389)
AAAGGCAAAGGAGGCAAGA (SEQ ID = 390)
BI968952
Glyma10g38630





TGAATGTGAAACCAAACCCA (SEQ ID = 391)
GGTGAGGTGGAAAATGGAAA (SEQ ID = 392)
S23065851
Glyma11g13960





ACAGCATGGGAATAAGCCCT (SEQ ID = 393)
CAAGAAAAGTTTCGGGCAAA (SEQ ID = 394)
S5011517
Glyma12g04670





CTACTCGTATGCCACGCTCA (SEQ ID = 395)
GCCATTGGTGTTGATGGTAA (SEQ ID = 396)
S4898095
Glyma12g09990





TGATCGACGATATTCCCGTT (SEQ ID = 397)
AACACCGACATTGGAAGGAG (SEQ ID = 398)
S4897794
Glyma12g16560





GATACCAGTAACCGGAAGGC (SEQ ID = 399)
ATGTCAGTCATTCAAGCGCA (SEQ ID = 400)
S4861813
Glyma12g31460





TGTCGTGAGAAATTGCGAAG (SEQ ID = 401)
AGCCGCATCGCTTAATAATG (SEQ ID = 402)
S6671401
Glyma12g32280





TTAATTCCTCGCACGAGCTT (SEQ ID = 403)
TCGTTTGGGAAAAACAGGTC (SEQ ID = 404)
S4874826
Glyma13g00480





CCAATGGGACTTTAGGTGTCA (SEQ ID = 405)
ATCTAGACAAGGAACCCCGC (SEQ ID = 406)
S5093492
Glyma13g18130





AACAGGCAAAACGACGAGAT (SEQ ID = 407)
TTCTGAAGGGTCGTTGGTTC (SEQ ID = 408)
AW734878
Glyma13g19250





AAAACCTCTCTTGGCACGAA (SEQ ID = 409)
TTTGAGTCTGCCTGGCTCTT (SEQ ID = 410)
S5129107
Glyma13g27460





CAATGCCAAGCTATGCACAC (SEQ ID = 411)
TCCCAGCACTCTTCTTTGCT (SEQ ID = 412)
TC209223
Glyma13g27460





ATTAGCCACTGGGAATGTGC (SEQ ID = 413)
GACTCAGAAGGGGCAAAACA (SEQ ID = 414)
BU547516
Glyma13g32320





CTCCCGGATAGCTGATGAAA (SEQ ID = 415)
TCAATGAATGCTCAACCTGC (SEQ ID = 416)
S23061550
Glyma13g36260





GATTCGCTCCATCATCACAA (SEQ ID = 417)
GTGTTCCTCGTTGACGCTCT (SEQ ID = 418)
TC216048
Glyma13g41670





CCACTATAGGATTCCATGACTGA (SEQ ID = 419)
AATCGACAGCGTACTTCAACTG (SEQ ID = 420)
BU546499
Glyma14g06830





GTGCAATTGCCTCATCTTCA (SEQ ID = 421)
TTCACGGAGGGTACACCAAT (SEQ ID = 422)
BG352463
Glyma14g09230





AACGGGACAGACTCATGCTC (SEQ ID = 423)
TGCACGACCAGAATCTGAAA (SEQ ID = 424)
S5055402
Glyma15g03740





GGAACAACCAAGCAAGCTCT (SEQ ID = 425)
AGTCCAGGAACACGGTCATC (SEQ ID = 426)
S5025536
Glyma15g18580





CACGTGACCGTGAGCTTTTA (SEQ ID = 427)
TGCCCACTTTCTCAGATTCC (SEQ ID = 428)
S21700422
Glyma15g33020





GACTCCTCCCCCTCTTTCAG (SEQ ID = 429)
CTGGCCTCCACTTCATGTTT (SEQ ID = 430)
TC217569
Glyma16g05390





GCTAATTCCTCCCAATGCAG (SEQ ID = 431)
TGCTATCCCAATAGACGCAC (SEQ ID = 432)
S22951832
Glyma16g26290





ACGTGTTCTGCGAGGACTTT (SEQ ID = 433)
GGCTTCCACCAGAAACAAAA (SEQ ID = 434)
S23066270
Glyma17g07640





TCAGCAACTACCCCCAAGAC (SEQ ID = 435)
CCACCTGGACCACCTATTTG (SEQ ID = 436)
BM885371
Glyma17g08980





TCAGCATCAATGCTCTCGTC (SEQ ID = 437)
AGCAAGAAAACAAGGGCAGA (SEQ ID = 438)
S23070422
Glyma17g16720





GGGGTACGGCATAGTCAAAC (SEQ ID = 439)
ATTTTGCCACTCACAGCCTC (SEQ ID = 440)
S4937428
Glyma18g14530





ATGAAAATGCCCTACCTGCC (SEQ ID = 441)
TCATTCTAGGTGTGCTGAGAGC (SEQ ID = 442)
S15849327
Glyma18g49320





GGTGGGTGTTTAAGGCTGAC (SEQ ID = 443)
ACGCGCATATATGATCACCA (SEQ ID = 444)
S4932282
Glyma19g27480





GTGTTCTTTGTCAGCAGCGA (SEQ ID = 445)
CTCATCCCCGACCTCATAGA (SEQ ID = 446)
S4936213
Glyma19g30910





TTCCCCACACACATTCTTCA (SEQ ID = 447)
TGAACCGTACACACCTCGAA (SEQ ID = 448)
BG362671
Glyma19g32570





TTAAAAGCTGGCATTCTGCAT (SEQ ID = 449)
CCAAACATGAATAGGACCCG (SEQ ID = 450)
S21565183
Glyma19g32600





TTGTGTGGCAGAATTTCCAA (SEQ ID = 451)
TTGGTTCCCCAAACCAAATA (SEQ ID = 452)
S4994398
Glyma19g40980





TGGAGGAGCTTGGAGGAGTA (SEQ ID = 453)
TTCCGTTAACAATAAGCGCC (SEQ ID = 454)
S23064706
Glyma19g41580





GCTCCAAAACCAACACCAAT (SEQ ID = 455)
GCAATAGCTTGTCCACGGTT (SEQ ID = 456)
S4911216
Glyma20g39220





CCGTCGTCTTCCTCTACTGG (SEQ ID = 457)
GGGGGAAATGTTGGAGAAAT (SEQ ID = 458)
TC205627
Glyma02g01600





TAGAGGCTTTGGAGCAGGAA (SEQ ID = 459)
ACCAATAGCACCCAAACGAG (SEQ ID = 460)
S34818003
Glyma02g09140





AGGCTCCGACAAAGACAAGA (SEQ ID = 461)
CTCTCCCTTGACCTCACAGC (SEQ ID = 462)
S34818022
Glyma02g19870





TCCAACATGAAGGCTGAAGA (SEQ ID = 463)
TAGTACACGGGCACAAATCG (SEQ ID = 464)
S5104924
Glyma02g39780





TTTAGAAGCTGGGCTTGACC (SEQ ID = 465)
AACAACGCATGACAAGGGAT (SEQ ID = 466)
TC206111
Glyma03g27860





TCTGGCATGTGCACTGAGTT (SEQ ID = 467)
GTTTCGGTGAAACATTGGCT (SEQ ID = 468)
S4865864
Glyma03g27860





GCTATTGCTGGGTCTCAAGC (SEQ ID = 469)
CTCTCCCCAGTTCTCACGAC (SEQ ID = 470)
S34818015
Glyma03g28320





TATGACTCGGGGATCTTTGG (SEQ ID = 471)
GGTAGCATGCGATCCAACTT (SEQ ID = 472)
S34818013
Glyma03g40730





GATTTCTGGCTCACATCCGT (SEQ ID = 473)
CAGCGCTCAAGAAGGAGAAG (SEQ ID = 474)
S4864503
Glyma03g40730





TGGGTACAGAATGAGCGTGA (SEQ ID = 475)
TTGTCGTGCCAGTTCTTCAG (SEQ ID = 476)
S4881352
Glyma03g41590





TGGGTACAGAATGAGCGTGA (SEQ ID = 477)
TCAGTTTCAGCCTGCTTCCT (SEQ ID = 478)
S34818019
Glyma03g41590





TTCTAGCTCTGGACCGAACC (SEQ ID = 479)
CCTCCGGCTCTAAGAAAACC (SEQ ID = 480)
S15937626
Glyma04g02420





AACCAACCCGTTTTTCAGTG (SEQ ID = 481)
GAGAAGATTCACCCAGACGC (SEQ ID = 482)
TC209970
Glyma04g03200





TCTTGCCACCCATTGGTTA (SEQ ID = 483)
TTGGACACAATCTCACCGAA (SEQ ID = 484)
TC229348
Glyma04g04170





TCAAGTGGCCAAATAGTCCC (SEQ ID = 485)
TCAGCACTTGGAAACTTGGA (SEQ ID = 486)
S23070844
Glyma04g08290





GCTAATGGTAAGGCCCATGA (SEQ ID = 487)
TTCAACACCCCAAAAGGAAG (SEQ ID = 488)
S4866994
Glyma04g08290





GAACCTGCTACGCCAAAAAG (SEQ ID = 489)
TGTTGTTGTTGGTGCATGTG (SEQ ID = 490)
S5132128
Glyma05g22860





TCTTCTCCAGTGATCTCCGA (SEQ ID = 491)
ATTGCACCAAGTGTGTCCTG (SEQ ID = 492)
TC216155
Glyma05g28960





AGGGCTCATCAGGTTTCAGA (SEQ ID = 493)
TGGGAAACACTAGGAAACGG (SEQ ID = 494)
S34818035
Glyma05g30170





CCAAATCTTGAGCAGGCTTC (SEQ ID = 495)
AGGCCCTCCAACCTGTTAAT (SEQ ID = 496)
S34818007
Glyma06g01240





GCACAGTTAATGAAGTTACCCG (SEQ ID = 497)
ACCAGGTAAAAAGCCCATCC (SEQ ID = 498)
BU761457
Glyma07g06620





CTTGGGAATTGTTTCCTCCA (SEQ ID = 499)
AAAGATGGACAGGTTCCGTG (SEQ ID = 500)
S4864656
Glyma07g33600





CTTCCACAAGCAGTGGATCA (SEQ ID = 501)
CATTGCAGGTTCTCGGAGTT (SEQ ID = 502)
S5140472
Glyma08g08220





GGTATGGGGTGAGGTACACG (SEQ ID = 503)
TGTATCCACCGAGTCATACAACA (SEQ ID = 504)
S4974571
Glyma08g08220





TTCACCCAAATCAAGCAGAA (SEQ ID = 505)
TGTGAGCTTTGTGAACCAGG (SEQ ID = 506)
S21567935
Glyma08g14840





TCAATCAGCTCATGGAGTGC (SEQ ID = 507)
GGGATGAATTCACTCTCCGA (SEQ ID = 508)
BM524950
Glyma08g19590





TTTCTTCCAGGAGTCTGCGT (SEQ ID = 509)
TACAGCCATTACACATGGGG (SEQ ID = 510)
S4989510
Glyma08g24340





TGGTGGTGGTGGAGACAGTA (SEQ ID = 511)
CAAATCGCCCAATTGATTCT (SEQ ID = 512)
S4957187
Glyma08g24340





CCTAACCAAGTAGCAACAGCAA (SEQ ID = 513)
CATGACAAATTAGGAATGAGGG (SEQ ID = 514)
TC218693
Glyma08g34280





TAGACTGCTTCCGCCTTTGT (SEQ ID = 515)
AGTTGCTGGAGGGATGATTG (SEQ ID = 516)
S23064509
Glyma08g34280





TATGAGCCAGTCTTGTCCCC (SEQ ID = 517)
AGCATCGGTCATCATATCAATC (SEQ ID = 518)
S5146449
Glyma08g41450





TGTGCTCTGAGGATCATTCG (SEQ ID = 519)
GATGAAGAAGCCGAAGTTGC (SEQ ID = 520)
S15850391
Glyma08g45670





TCCAGCTTTGGAAGATCCAC (SEQ ID = 521)
ATCCATCTCACTGCTTCCCA (SEQ ID = 522)
TC220458
Glyma09g34170





CTCGAGTTGGACCTCGAAAC (SEQ ID = 523)
AGAGACTCTTTGGACCGCC (SEQ ID = 524)
S34818018
Glyma09g37800





CATAATGGGACGTGAAGTCG (SEQ ID = 525)
GCTTGCGTAGTCTTGATCTCC (SEQ ID = 526)
S5146765
Glyma11g06960





TGGTAATGTAGAGGGGTCCG (SEQ ID = 527)
TCGGTTCCAGAAGAGTTCAAA (SEQ ID = 528)
S34817997
Glyma11g11790





TTGCGTTTCAACCTCTTCCT (SEQ ID = 529)
GGGATGGGAGGAGATTTGTT (SEQ ID = 530)
S4891443
Glyma11g12250





CGTCTTGCACAAAATCGAGA (SEQ ID = 531)
TGCACGTTCAAGTTCTTGCT (SEQ ID = 532)
S34818027
Glyma11g36010





AGATGCGGTACATTTCGGAG (SEQ ID = 533)
GGTTAGTGAGTCCAGCCGAA (SEQ ID = 534)
TC216103
Glyma12g04050





CTCGTTTTTCTCGCTCGACT (SEQ ID = 535)
GATCTTCCATGGACACGTCA (SEQ ID = 536)
TC232817
Glyma12g04050





GTGGGAAAGGAAGGATCACA (SEQ ID = 537)
CTGACAACTGCTCAAGCTGC (SEQ ID = 538)
BE821907
Glyma13g02360





CTCCGGGTTCTGTTCACATT (SEQ ID = 539)
ATCGCAACCTATGCAGCTCT (SEQ ID = 540)
S34818014
Glyma13g26280





GATGTTTTGGGTGGGTTTTG (SEQ ID = 541)
AGCATCAACCCAAACTGTCC (SEQ ID = 542)
S16523242
Glyma13g42030





AGGAAAAGGGGGTTGGTATG (SEQ ID = 543)
AAAACCCACCCAAAACATCA (SEQ ID = 544)
TC208796
Glyma13g42030





CATGAATGATTCCACCGTGA (SEQ ID = 545)
TCTTAACCAACCAATTGTGGC (SEQ ID = 546)
S5139088
Glyma14g07800





CATGGAGCAACAAGCACAAC (SEQ ID = 547)
GGAATCAGTGTGGCTCATCA (SEQ ID = 548)
TC221650
Glyma14g38460





TAGGGTGCTGCTGTTCCTTT (SEQ ID = 549)
ACGGTCAGAACTTGGTGGAG (SEQ ID = 550)
S23063669
Glyma14g40580





TTCAGGACTCATCCCCAATC (SEQ ID = 551)
GCTGGGTTGCGCTTATTTTA (SEQ ID = 552)
S4993988
Glyma15g01790





TGCTGGCGAGAAGTAGAAGG (SEQ ID = 553)
ACATGCTCCATCATTGCTGA (SEQ ID = 554)
BQ786172
Glyma15g27040





GATTGATGGACGCGCTAAAT (SEQ ID = 555)
GTGATGCAGAGAGGACAGCA (SEQ ID = 556)
S4911209
Glyma15g37220





CTTGTCGGCCGCTGTATAAT (SEQ ID = 557)
CCCAAAGTCAGAATGCCTTG (SEQ ID = 558)
S5146764
Glyma16g03190





CGAGGCCAAAAACTGATGAT (SEQ ID = 559)
TTTGACGCACCCTCTAGCTT (SEQ ID = 560)
S34818001
Glyma16g13570





CCTGATTGGTCAAGCTCCAT (SEQ ID = 561)
AAATAGGGATGGGGAGTTGG (SEQ ID = 562)
S5019309
Glyma16g25600





GCCACTGCAGACAACAACAT (SEQ ID = 563)
ATTCCACCGTGACGAAACTC (SEQ ID = 564)
S4890532
Glyma17g37180





CTTGTCCCCAGTGCAAGACT (SEQ ID = 565)
TCAGCATCGTCTTCGTCATC (SEQ ID = 566)
S34818031;
Glyma18g14750




S5146448






CACCTGAGCCTAAGCCAAAG (SEQ ID = 567)
GCATGGGCAAGAATTAGGAA (SEQ ID = 568)
S5076266
Glyma19g20090





TTGAGGACTCTTGCAGCTTG (SEQ ID = 569)
AGTCAAAGCCGGTTGAAGAA (SEQ ID = 570)
BU545299
Glyma19g37910





TCAGATCCTCTCCTCAAGCC (SEQ ID = 571)
CCCAAACGAAGAAAGAGCAA (SEQ ID = 572)
S4865594
Glyma19g40390





CGCCATGACTAGGGGATCT (SEQ ID = 573)
GAGAAGGATTAGTCGGCTGTG (SEQ ID = 574)
S34818017
Glyma20g36750





CCAGCAGCACAACAGGAGTA (SEQ ID = 575)
CCAGCACTGGTTGCATATTG (SEQ ID = 576)
S23066857
Glyma11g13690





CTCTGTGCCAAAGGATTGGT (SEQ ID = 577)
GGAGGGAGCACATAGGTTGA (SEQ ID = 578)
AI440589
Glyma07g39930





TCATTATCGGTATTCGGCGT (SEQ ID = 579)
GTCTCGAATTTGTGCGGAAT (SEQ ID = 580)
CF808139
Glyma02g16840





GTTGATGTCCTGGAGAGGGA (SEQ ID = 581)
TGTGCAAATCATTGGCTGTT (SEQ ID = 582)
BM528163
Glyma02g45260





ACACATTCGGGTATTTCCCA (SEQ ID = 583)
AGCTTCAATGCATGCCTCTT (SEQ ID = 584)
TC212833
Glyma02g47680





CAAGATCACTGCCAAGGACA (SEQ ID = 585)
CGCCAAAATGAATTGGGATA (SEQ ID = 586)
S21567300
Glyma04g42350





CCATGAGTTAACCTATACCGGG (SEQ ID = 587)
TTCCAGCATGCAGATAAGGA (SEQ ID = 588)
S5127388
Glyma06g12140





ACAGCACATCATGGTACGGA (SEQ ID = 589)
CATCACCAAGTCTGACGCAT (SEQ ID = 590)
BI786004
Glyma06g12440





TCTTTGCCCAAGCTATGCTC (SEQ ID = 591)
CACAACTCATTCCTGTGCTG (SEQ ID = 592)
TC208469
Glyma06g45770





TCAAGAAACCAAAACTCCCC (SEQ ID = 593)
CTTCCCTTTTCCTCGACAGA (SEQ ID = 594)
S5055004
Glyma12g30500





TGCTCTTCTTCACTGCCCTT (SEQ ID = 595)
TGAGAATGGTAGGCGCTTCT (SEQ ID = 596)
S4993306
Glyma14g03510





ATATACGATGTGGCATCGGG (SEQ ID = 597)
CGAGAAGCTACATGCAAAGC (SEQ ID = 598)
S5022954
Glyma14g05000





ATACTGCATTCCTTGGTCGC (SEQ ID = 599)
GGCCATACAGATCTGGTTTCA (SEQ ID = 600)
S4980150
Glyma14g23960





GCCTTGTGGACGTCATCTTT (SEQ ID = 601)
GGAGGATGACTTGCCTGACT (SEQ ID = 602)
S4934562
Glyma15g13320





GAAATAGGGTGCCATGCAGT (SEQ ID = 603)
CTTTTGCTGCCTTCTGTTCC (SEQ ID = 604)
CA802838
Glyma18g00840





CCATGCAAGAATGTGTGTCC (SEQ ID = 605)
AGCAAATATCGTCGCCATTC (SEQ ID = 606)
S4863935
Glyma02g17310





AAGGTTGGAGCAGTGACCTG (SEQ ID = 607)
CTTGGATCTTCCGTCCACTC (SEQ ID = 608)
S4925563
Glyma02g35190





ATGGAGGGAGAGAAGACCGT (SEQ ID = 609)
GCACTTGATGATGGTAGGCA (SEQ ID = 610)
S4912143
Glyma02g46970





CCGAGAGATGGAGGGTGATA (SEQ ID = 611)
GCTGAGCATTAGGACTTGGC (SEQ ID = 612)
S4904793
Glyma03g33490





ACTGGCGTGGAAAACATACG (SEQ ID = 613)
GGGTACCTGATCCTTAAATTGG (SEQ ID = 614)
S15847588
Glyma03g33490





GAAACATGTATGAGCATCTGCC (SEQ ID = 615)
CCCTCCCTCTACCTCACCTT (SEQ ID = 616)
S4900633
Glyma06g17780





GCAGCATCTCTTACTCTTCCC (SEQ ID = 617)
AATGGGCGAGTACATTCACG (SEQ ID = 618)
S4891274
Glyma06g23240





AGTGGAGCTACCAGCCTGTC (SEQ ID = 619)
ACCATAACCAACTTGGGTGG (SEQ ID = 620)
BU760757
Glyma06g23240





AACTGCACAACTGAAGCCCT (SEQ ID = 621)
TGCAGTGATGAGTTTTTGGG (SEQ ID = 622)
CD411387
Glyma07g37830





CTGTAGCTGTTCCTTCCCCA (SEQ ID = 623)
CTGCTGTTGTTGGTGTTGCT (SEQ ID = 624)
S4996612
Glyma08g17630





TGCAGGCTACTTTCCAACCT (SEQ ID = 625)
CATACACAACCCCTGCAACA (SEQ ID = 626)
CK605647
Glyma08g17630





CACTCTTCAATTTCAAACGCAC (SEQ ID = 627)
ACTGAGAAAGCGAGGTTTGC (SEQ ID = 628)
BE659926
Glyma08g17630





CTAGGTTCAAAGGCCAACCA (SEQ ID = 629)
AGGGAAACTTGACACCATTTG (SEQ ID = 630)
TC209551
Glyma08g44140





ACCAGAATGTGCACCAGTGA (SEQ ID = 631)
TGCTTTGAATAGGGTTAGGGG (SEQ ID = 632)
S4994511
Glyma09g07960





CTGGATTTCTGACTTTGTGTGG (SEQ ID = 633)
TGGAGGGTAAGTCCAGATCG (SEQ ID = 634)
S5108906
Glyma10g10240





CCATGGCCCATAGTAAATCG (SEQ ID = 635)
AGACACAATGCAAGAATGCG (SEQ ID = 636)
S23064915
Glyma10g33550





TGAGCCGAGAAAGAAAAGGA (SEQ ID = 637)
TCACCTTAATCACTCTCACCGTT (SEQ ID = 638)
S4909265
Glyma11g18960





CCAAGGCTTGTGACCTCTTC (SEQ ID = 639)
GTGCAAAGTCCTCCTTTTGC (SEQ ID = 640)
AW831868
Glyma12g34510





GCTGAACTGTGGCTTGTGAA (SEQ ID = 641)
GGCAACAATACTCGTGCAAA (SEQ ID = 642)
S4935933
Glyma12g36540





TTTAGAAACACACCCGCTCC (SEQ ID = 643)
TGTCACATCACCATCCACAA (SEQ ID = 644)
TC211034
Glyma15g12570





TAAGCCAAGGATGATTTGCC (SEQ ID = 645)
ACTCACCTTTGGTGGTGGAG (SEQ ID = 646)
S5141662
Glyma13g16770





CCCTAGCTGGTTTTGTTAGCTT (SEQ ID = 647)
CAAATAGCTGCAGCAAAGCA (SEQ ID = 648)
CA800598
Glyma04g06620





GAACGCATCCCTCAACTTTC (SEQ ID = 649)
GTTGAACAAGCTTGCGGAGT (SEQ ID = 650)
S6672372
Glyma06g06700





GCTGATTCGTCAAGTCATCG (SEQ ID = 651)
GGTAGGGTTTTGTGGGGTCT (SEQ ID = 652)
S6681156
Glyma12g31300





GCTGAAGCCCTGACTTGTTC (SEQ ID = 653)
TTGACACTGACTGGAACCCA (SEQ ID = 654)
S23070450
Glyma07g38180





GGAATTATGGTCCCTGCTCA (SEQ ID = 655)
GCAAAGGGAGCATTAAACCA (SEQ ID = 656)
AW164518
Glyma11g00640





TCCTGATGGGAAAAGACCAC (SEQ ID = 657)
CTTGTCAAAGCTTTCGAGGG (SEQ ID = 658)
S15930971
Glyma11g10310





AACCCTTCTGATCCCGATTC (SEQ ID = 659)
ATTTGTGTTACAAAGGCGGG (SEQ ID = 660)
S5931556
Glyma13g17760





GCTGATGCTGGAACTGTGAA (SEQ ID = 661)
AACGCTTGACAAGGAGAGGA (SEQ ID = 662)
TC228853
Glyma15g07590





CTTCCAAAAGCCGTGCTAGT (SEQ ID = 663)
ATACGACACCTCGGATCTGC (SEQ ID = 664)
S4878382
Glyma15g10370





AGGCTGATCCATTTGGTTTG (SEQ ID = 665)
CATCGATGATCCAGCACTTG (SEQ ID = 666)
S4884795
Glyma16g08450





CCGTTCCTGATCTCGTTGAT (SEQ ID = 667)
GTTGAAGCACATCCACATGC (SEQ ID = 668)
AW471580
Glyma04g00340





CGTGAAAATGCAAGACTCCA (SEQ ID = 669)
CACTGCATTCCCAACTTGAA (SEQ ID = 670)
BQ610340
Glyma01g01120





AGGTGAGTCTGAGCCAGGAA (SEQ ID = 671)
GAAACCCAGTAGCCATCTCG (SEQ ID = 672)
BM887031
Glyma07g04780





GCTTCACTGTTTCTTTGTCACAC (SEQ ID = 673)
CCGTGCACATGGAACATAA (SEQ ID = 674)
CA938763
Glyma14g37230





TTCTGCATCCTCTGATGGAA (SEQ ID = 675)
TCAGGATTCAGGTTCATTGGA (SEQ ID = 676)
BG881491
Glyma14g37230





GCTGCGCAGGTAATCATTCT (SEQ ID = 677)
CTAGGCCATTGCTTGCTCA (SEQ ID = 678)
S21566814
Glyma06g08610





AAAACCGCCATTTTGTGTTT (SEQ ID = 679)
CGAAGGAGAGAGACAGAACGA (SEQ ID = 680)
S5014530
Glyma01g29420





TGAGGGCCGTTTTGAGATAC (SEQ ID = 681)
AGACCGACATTCCACCAGTC (SEQ ID = 682)
S4895927
Glyma01g34410





AAAGATCAATTCTGCGGGG (SEQ ID = 683)
ATTGTCGTACAACTGCGTCG (SEQ ID = 684)
S5076242
Glyma03g07420





CGCATGTCATTTCTGTTGCT (SEQ ID = 685)
GATGGAACCAGATGCAGACA (SEQ ID = 686)
BG316001
Glyma03g41230





CACTGATGAGGTCTTTGTGGC (SEQ ID = 687)
AAATAAACGTGGCCAACTGC (SEQ ID = 688)
TC214989
Glyma05g01640





AAGACCATCGAAATGGTTGTG (SEQ ID = 689)
TTTCCCTAGGAGCAACGCTA (SEQ ID = 690)
CD393873
Glyma05g28090





TAGCCTCATCCATTTTTGGC (SEQ ID = 691)
ATTGCAGAAGGGTGGTTGTC (SEQ ID = 692)
S15937116
Glyma06g10400





GGATCTCGCGAAACCGTTA (SEQ ID = 693)
AGCCTAAGCCTCTCCACCTC (SEQ ID = 694)
S4932942
Glyma06g39800





GTTGCTGCTGCCTATGACTG (SEQ ID = 695)
AACCGTTGTGTCCGGATTAG (SEQ ID = 696)
S4950242
Glyma07g18500





CTGAGGAGGTGGCTCAGAAC (SEQ ID = 697)
GCAGGTGATGTTGTGCAGTT (SEQ ID = 698)
S4932151;
Glyma08g01720




S4932199






AATGACATTTTGCTCTGGGC (SEQ ID = 699)
AGTACGTTTGTCCTCGCTGC (SEQ ID = 700)
S5128657
Glyma09g08690





TAAAGCCAATCATGACACCG (SEQ ID = 701)
TTTCAGGGAAAGGAGCTGAA (SEQ ID = 702)
S5933258
Glyma09g28080





ACTTTTGTTATGGCCAACCG (SEQ ID = 703)
CGTCACCGTACTCTCGTTCA (SEQ ID = 704)
CF807678
Glyma10g31020





AGAAAGGCCCGTTGGACTAT (SEQ ID = 705)
AAGTAGCCAAACGGCAAAGA (SEQ ID = 706)
S4912433
Glyma13g40560





TGTCTTCTCTTCCACCACCC (SEQ ID = 707)
CCATCCTGCCGAAGTAAGAA (SEQ ID = 708)
S4912357
Glyma17g11420





GCCGATCCAAATCGTCTTTA (SEQ ID = 709)
GCAAAAGGGATTCTCAAAGC (SEQ ID = 710)
S4883295
Glyma17g36490





GTTGGCTACAATGCCACTCC (SEQ ID = 711)
AAGCCACGTCCTGGAAATC (SEQ ID = 712)
S21567638
Glyma18g04060





AATGGCTGCAAAATACCGAG (SEQ ID = 713)
ACTCAGACCCCAAATGCAAA (SEQ ID = 714)
S4863794
Glyma18g46470





ATTTCAACATCCTTCAGCCG (SEQ ID = 715)
AGTGCAAAGTGGGGTGATT (SEQ ID = 716)
S4995230
Glyma19g32390





CTTTTCCCCCAAATTTCGTT (SEQ ID = 717)
AATCATGAACCCCTGCAAAG (SEQ ID = 718)
CA785033
Glyma08g32320





GCAACTCTTCCAAGGCATTC (SEQ ID = 719)
TCCTCTGCCTATGGACAAGC (SEQ ID = 720)
CD418002
Glyma09g36500





TAAAAGAAGACACGGCACCC (SEQ ID = 721)
GGAGTTTGTGCAATGTGTGG (SEQ ID = 722)
S15851442
Glyma20g27960





GCCCTACAATCGAAGGGAAT (SEQ ID = 723)
TGATGGCCTTGTAGCCTAATG (SEQ ID = 724)
BI969358
Glyma05g26040





CAATATCTGCCAGGGCTTGT (SEQ ID = 725)
AAGAGTGCCTTTGAGGCAGA (SEQ ID = 726)
S22951692
Glyma12g01050





TCAAGATTTGTTCGGCCAGT (SEQ ID = 727)
CCGCCATCAGGACATCTAAT (SEQ ID = 728)
AI736779
Glyma17g23500





CTCTCCCTCCAGATGTCAGC (SEQ ID = 729)
TGGCTTAACCTTCGTTCCAC (SEQ ID = 730)
BE612133
Glyma18g42790





TCCAAACATCCTTTTCCGTG (SEQ ID = 731)
GTGTGAGGGGAAAAACATGG (SEQ ID = 732)
S4992234
Glyma06g19840





TTTGGTCAAACATGCAGAGG (SEQ ID = 733)
GAGACCAATGCCTTCCAAAA (SEQ ID = 734)
BI700659
Glyma10g09410





TTCGATCGAGGAACTGAGTG (SEQ ID = 735)
AGATGGTTCAGCAAAGCAGC (SEQ ID = 736)
TC230461
Glyma12g09860





TATCACTTCCAAACGCCCTT (SEQ ID = 737)
TTCTGAAGGGAAGACATGGG (SEQ ID = 738)
S23069339
Glyma17g10130





CGGGCTTCTATCGTGTCATT (SEQ ID = 739)
CTGATTACATGGGAGCACGA (SEQ ID = 740)
S4901375
Glyma02g44220





GAGGCCACAGAAGACAGTCC (SEQ ID = 741)
GATCCTGCCGAATGAAGTGT (SEQ ID = 742)
S4910851
Glyma13g03660





AAGACTGCCAGTTCACAGCC (SEQ ID = 743)
CAAGAGATCTTCTTCTGCGAATG (SEQ ID = 744)
S5035170
Glyma13g03700





GAAGCACAAATGGGTGGAGT (SEQ ID = 745)
TCAGGTGCTGGTAGTTGTGC (SEQ ID = 746)
CA819903
Glyma13g41750





TATTGGAGCTTGAGCCGCTA (SEQ ID = 747)
TCCATCCGAGACAATGATGA (SEQ ID = 748)
S4966677
Glyma13g41750





ACCTTCTCAGCAGCTTCGC (SEQ ID = 749)
GCTCCCTGCAAATTGTCATT (SEQ ID = 750)
S4876928
Glyma20g12250





AATGCAAAAGAGTCCTTCGG (SEQ ID = 751)
GCTTGACTTTGTTGTACCATTCC (SEQ ID = 752)
BG239314
Glyma04g40150





ACCACTTCCTCAGGACAACG (SEQ ID = 753)
TACACTTACACCCCACCCGT (SEQ ID = 754)
S21537202;
Glyma02g43240




TC219068






TGGGCTAAGATCCCTTCCTT (SEQ ID = 755)
ATCCAAAGGAGCAGAAAGCA (SEQ ID = 756)
TC225486
Glyma03g42450





AGGTGTCCTTTGCCTTGTCA (SEQ ID = 757)
CAGCAGCCAAGATTGTTTCA (SEQ ID = 758)
S4882789
Glyma03g42450





CGGAGTTGATCACTGGGATT (SEQ ID = 759)
TCCAGAAAACAAGCCGAGAT (SEQ ID = 760)
BI468894
Glyma03g42450





GCTCTGGACAATGGACATCA (SEQ ID = 761)
TAAACAAATCCCGAATGCAC (SEQ ID = 762)
S4882586
Glyma07g03250





CCGAAATCGGTTTGACGTAT (SEQ ID = 763)
GAACGTGACAAAGGGGAAGA (SEQ ID = 764)
S18957277
Glyma17g36500





GATGGTTGTGATGGGGAAAC (SEQ ID = 765)
TTATGCAATGAGCAATCCCA (SEQ ID = 766)
BM731530
Glyma11g07840





AGGGCTTAAGCTTTTCGCAC (SEQ ID = 767)
TTGCGTGGATCATATCCTTTC (SEQ ID = 768)
TC212659
Glyma11g08780





GACTTGCTGGTGGTGGAAAT (SEQ ID = 769)
TCATCATTTCTCTGGGAGGG (SEQ ID = 770)
BE330095
Glyma18g05080





GTTTTGCCACGTGAAATCCT (SEQ ID = 771)
CGGTGCAGTTAAGCCAGTTT (SEQ ID = 772)
BU544833
Glyma01g38360





GCTGCAGCATGAAAATCAAA (SEQ ID = 773)
GGCGGACTACACATAGTGGG (SEQ ID = 774)
S23062201
Glyma02g47640





AGGCTGCATTCTTGGCTAAA (SEQ ID = 775)
ATTATGCCTTTCCCCATTCC (SEQ ID = 776)
CD405336
Glyma03g03760





TACCCTTACCAACCCCATCA (SEQ ID = 777)
GTGGGGGAGAAGGAGTAGGA (SEQ ID = 778)
BU926447
Glyma05g22460





GCTTCTTGTCATCTCTGGGG (SEQ ID = 779)
ACGTCCCCATTCTTTCACAG (SEQ ID = 780)
S5145856
Glyma07g39650





CGTTCACGTGATTGATTTCG (SEQ ID = 781)
AGTCGGAAAACCGGAGGAC (SEQ ID = 782)
CF808358
Glyma08g10140





CCGAGTCGCGGTTAAAGTAG (SEQ ID = 783)
TAACACAAGCAGATGCGACG (SEQ ID = 784)
S4911235
Glyma10g37640





TCCACATTTGAAAATCACCG (SEQ ID = 785)
CCAACTTTTCTGCCTCCTCA (SEQ ID = 786)
BU764181
Glyma11g01850





TCATCAAATCTGACGGTTGC (SEQ ID = 787)
TGGTCGAAGAGAATGGTTCC (SEQ ID = 788)
BU547766
Glyma11g10220





CTTCCCTTCGAGTTCTTCCC (SEQ ID = 789)
GATTGCCTCGTTAGGTCGAA (SEQ ID = 790)
S5137708
Glyma11g10220





AATGCTCCTTTCTTTGCCAC (SEQ ID = 791)
AACCTCCATTCGTTTTCACG (SEQ ID = 792)
S5087855
Glyma11g14740





ATTCCTGGCATAGCAGCCTA (SEQ ID = 793)
GGCGCTTGTTGATGTTGTTA (SEQ ID = 794)
S4996626
Glyma11g33720





TCCCAAGGTACAACTCGGAC (SEQ ID = 795)
TCCAGTCTTTTCGACTCGCT (SEQ ID = 796)
S23071313
Glyma11g33720





GCAGGCATCAGAGCAACATA (SEQ ID = 797)
ATTTCGACTCCGATACTGCG (SEQ ID = 798)
S19676947
Glyma14g01020





TTCTCAAAGAATTGCGGCTT (SEQ ID = 799)
GGAGGTTCCTTGCATCTCAA (SEQ ID = 800)
BU761164
Glyma14g27290





AGCCAAAGCTCCACATCATC (SEQ ID = 801)
TGAGGTGTCTCATCGTTTCG (SEQ ID = 802)
S21568820
Glyma15g03290





TCTCTTAGCCACCAATTCCG (SEQ ID = 803)
AAGATTGATGTGTGGAGGGC (SEQ ID = 804)
BU547981
Glyma15g15110





GCGTGGTGGATTTTGAGATT (SEQ ID = 805)
TCCTTTTTCTGCTACGGCTG (SEQ ID = 806)
BU763373
Glyma16g29900





TGGCTCTGGCTCAATTCTCT (SEQ ID = 807)
GGGAATTGGAGGAGGATGAT (SEQ ID = 808)
S15849261
Glyma17g14030





TTTATCCTCTTGCTGCCTCG (SEQ ID = 809)
GGTTGAACTTGTTCGAGTGGA (SEQ ID = 810)
BI944140
Glyma18g04500





AAAAACCCCAACCAAAGTCA (SEQ ID = 811)
ACACGGGAAGAGTGGTGAAT (SEQ ID = 812)
S23068790
Glyma20934260





TTTGTGAGGGCATCTGTGAG (SEQ ID = 813)
CATCTTGGGGCTCAGAACAT (SEQ ID = 814)
BU549908
Glyma05938580





CTTCTGGGGGATGGATTTTT (SEQ ID = 815)
GCCCTTTCAGTGACATCTCC (SEQ ID = 816)
BI945044
Glyma20g30650





CCATTTTCCATTGGTTGGAC (SEQ ID = 817)
GCCAATCCTATTTGGGATGA (SEQ ID = 818)
S21538571
Glyma01901990





CTCGCCTCAAGGAGTCAAAG (SEQ ID = 819)
AAAGATTACGTGGCGAGGTG (SEQ ID = 820)
S5146776
Glyma01g39260





CTAATACGGTGACGGTGGCT (SEQ ID = 821)
CCAGCAATCGGAGATGAGTT (SEQ ID = 822)
S5146735
Glyma01g42640





AAATGAGGCTGCAAAAGCAT (SEQ ID = 823)
GATGCAATGGCAGAAGGAAT (SEQ ID = 824)
BM271159
Glyma01944330





AACCCAACACGACTCCACA (SEQ ID = 825)
GCACGAGGCTAGGAAGAGAG (SEQ ID = 826)
CD403874
Glyma03929190





TCTCTTGGTCATCATGGAACAT (SEQ ID = 827)
TTTACGAAGTCCCTTGCACC (SEQ ID = 828)
TC210199
Glyma05920460





AAATAATTGGCGTTTGGCTG (SEQ ID = 829)
ATCCCATCAGAAGCAACTGG (SEQ ID = 830)
TC208761
Glyma05934450





CTGCGTTTACACGGATGAAA (SEQ ID = 831)
CTGGCTCCTCCTAAGTGCAT (SEQ ID = 832)
S4861816
Glyma06904390





GCGGTGCAGTCTGATTACAA (SEQ ID = 833)
TCTCCACCCTTGAGAAAACG (SEQ ID = 834)
BGT54271
Glyma08906130





CAACTACCGAGCAAACCCAT (SEQ ID = 835)
CATGCCCAACTCAAAGTGTG (SEQ ID = 836)
TC219635
Glyma08911460





TGGTGTTCCAGACGATGAAG (SEQ ID = 837)
TCTCACCAAACCCTTCCAAC (SEQ ID = 838)
S23072015
Glyma10g38240





CATTGAACTAGCTGGGTGACAG (SEQ ID = 839)
TTGGGCCAAGAAATTGAGTC (SEQ ID = 840)
BI699405
Glyma10938930





ATTCCGCTTCATTGTATGGC (SEQ ID = 841)
AAGTTGACGGACGAAACTGG (SEQ ID = 842)
S5146771
Glyma11902800





GATTGGCCAACACATTGACA (SEQ ID = 843)
GTGAGGGTTTTGAGGGTGAA (SEQ ID = 844)
S4980779
Glyma11g13600





TTGGCTTAGGAAGTTTGGGA (SEQ ID = 845)
GGTTGACCAGCTTGACCATT (SEQ ID = 846)
TC212225
Glyma13g21490





GAAGCTTGTGTTCGTGCGT (SEQ ID = 847)
GCGGACATATGGATAGGAAAA (SEQ ID = 848)
TC221978
Glyma14g09190





GAAGCAGTGACATGTGGTGG (SEQ ID = 849)
ATCTTGCTCAGAAACGGAGG (SEQ ID = 850)
S5146772
Glyma14911030





TCAAAGGGTGTGCAACTGAC (SEQ ID = 851)
TTTCGGATTCCCTACAGCAC (SEQ ID = 852)
TC206227
Glyma16g32070





TCACTATAGGGAATTTGGCCC (SEQ ID = 853)
TTCAACACTACCCTCAATGGC (SEQ ID = 854)
S4937910
Glyma16932070





GCTTTCACTCATCTCAGCCC (SEQ ID = 855)
AAGGCCAATGTTGTTTGGAG (SEQ ID = 856)
S21566681
Glyma19g31940





CCCCATGTCTGACCAAGACT (SEQ ID = 857)
GTGGATCCCAAACCACAAAG (SEQ ID = 858)
BE348040
Glyma19g34210





TCGGTGTACTAATCAGATGCAGA (SEQ ID = 859)
TCCATTTCCGAGGGCTACTA (SEQ ID = 860)
TC216962
Glyma04g10340





TTTCTTGATCACAGACCCTCT (SEQ ID = 861)
TCCCTGAAGAATAGCACCCA (SEQ ID = 862)
S4876002
Glyma04g16180





GCAGGGCAGTATTTACGCAT (SEQ ID = 863)
TTTGTGGTAACTGCGCTTTG (SEQ ID = 864)
CD395272
Glyma03g34850





TGGGCATTCTCCCACTTATC (SEQ ID = 865)
TGGCTGCATGGCATATAGAA (SEQ ID = 866)
S7107295
Glyma05g32600





TTGCATGCACACTTGCAATA (SEQ ID = 867)
GCAGCTCACTTCCAAGTTCC (SEQ ID = 868)
CD408414
Glyma05g32600





TGCAGAAGGAGCAGAAGGAT (SEQ ID = 869)
GTAACTGAAACGGCTCCCAA (SEQ ID = 870)
AW509447
Glyma17g13000





GATCGTGAGAAGGAAGCCTG (SEQ ID = 871)
CTTCAATGAGCGGGGTTCTA (SEQ ID = 872)
BE191307
Glyma13g04790





GTGTTGGTTTCTCAGGCGTT (SEQ ID = 873)
CAACACTCTCTGGAGCATCG (SEQ ID = 874)
AW132814
Glyma02g41830





CCACTCATCAGCTACCCCAT (SEQ ID = 875)
TAATTTGATGTTCCCTCGCC (SEQ ID = 876)
S23068139
Glyma07g19420





ATGGTTGCATCTCAGCCTCT (SEQ ID = 877)
GAGACTGTCTGACCAAGGGC (SEQ ID = 878)
BU764116
Glyma08g09700





CTCAATGCCTTCGGCATAAT (SEQ ID = 879)
GGAAGGCAATCGTGGTTAAA (SEQ ID = 880)
S5059806
Glyma08g09700





ACAAGGGAAGATGGTGATCG (SEQ ID = 881)
ATTGCCATCGTTGTGTTCAA (SEQ ID = 882)
AW703667
Glyma13g25640





ATCATTGTAGGTTGGCTGGAG (SEQ ID = 883)
ATGGAAAAACTGGCGCGAA (SEQ ID = 884)
S4901892
Glyma07g04200





GATGACCGAAAGGTTGGAAA (SEQ ID = 885)
TGGGTGGTCTTTTAGGCTTG (SEQ ID = 886)
CF808586
Glyma03g08270





TTTTGTGCTGGTGAAAGGAA (SEQ ID = 887)
TTAAGGGTCCATGCCAAAAG (SEQ ID = 888)
S4862200
Glyma03g08270





TAACCGCTCCTGTTCGACTT (SEQ ID = 889)
GCCGAAGGCACATCTAGTTC (SEQ ID = 890)
S23070980
Glyma06g48010





GCAGGAAGCGACACGTTAAT (SEQ ID = 891)
TCTACCCTTGATCCAGTGCC (SEQ ID = 892)
S4993820
Glyma17g14520





TCAGCAATTTCAGCTCATGG (SEQ ID = 893)
TTCCGTCGGTTCCATATTTC (SEQ ID = 894)
S5006690
Glyma18g46540





AGTCAATTCCCGAACCACAG (SEQ ID = 895)
ACTGAGGGAGTCAAGAGCGA (SEQ ID = 896)
S15853197
Glyma01g01850





CTGGGCCATTGTTGATTTTC (SEQ ID = 897)
GAATAACGCAGCCAGAGGAC (SEQ ID = 898)
BM893519
Glyma01g01850





TGGTTCTGAGCTTGAAGTGC (SEQ ID = 899)
CAGGTGGAAGACCAAGCAGT (SEQ ID = 900)
S23068795
Glyma02g02290





TGTTGTAGTCACCTGCTGGC (SEQ ID = 901)
GCTTTTGATGGGCTGCTATC (SEQ ID = 902)
CF807495
Glyma02g10410





CAGGTCTAATGGTGGGTGCT (SEQ ID = 903)
TGCAAGTGAATGTCGGGATA (SEQ ID = 904)
S5142660
Glyma02g42200





GCAACTGAACTTCCAAAGGG (SEQ ID = 905)
ATTCATTGGTGGGAATTGGA (SEQ ID = 906)
BM308002
Glyma03g01000





GTTGTCCAAGGAACAGGCAT (SEQ ID = 907)
CCAAAGCTTGCTTTTGCTTC (SEQ ID = 908)
AI795005
Glyma03g26700





CCAACAATTGGGAATGATCC (SEQ ID = 909)
AGGAAGTGTTCGAAGAGCCA (SEQ ID = 910)
BU765815
Glyma03g36070





TCATTCAATAATCAGCTGCG (SEQ ID = 911)
GATGAAGGGGTTTGAGTTTGA (SEQ ID = 912)
S4936521
Glyma04g04310





TTGACTTTTCATTGACCCGA (SEQ ID = 913)
TCACTCGATTCGACTAGCCA (SEQ ID = 914)
S4865673
Glyma04g04310





AAGGAAAGGGAGGGAACAGA (SEQ ID = 915)
AGGGATACTGAAAACCGCCT (SEQ ID = 916)
S22953100
Glyma04g06810





CCTTCTGGTTTTCGCATCAT (SEQ ID = 917)
CAAGTGCAGAAGCCAAATCA (SEQ ID = 918)
TC206511
Glyma04g09000





TCCTCCGAGAGAAGGAACAA (SEQ ID = 919)
CGAGTTTCTTGGCTAGGCTG (SEQ ID = 920)
BM887093
Glyma04g40960





ATCTTTCCCGTTTTCTGGGT (SEQ ID = 921)
CCCTCGTTCTCTGTGTGGTT (SEQ ID = 922)
S4979247
Glyma05g01060





TGAACCTGTGGTTTCGATGA (SEQ ID = 923)
ACGCAGGGTTTTTCATTCAG (SEQ ID = 924)
S4872528
Glyma05g01400





GAAACACGGTCGTTCCTGC (SEQ ID = 925)
TCGTTTTCCGCTCACGCAC (SEQ ID = 926)
CA783321;
Glyma05g04990




S6669218






CGTCAGGTTTCGAATTGGTT (SEQ ID = 927)
CGTCGTTTTCTTGCTCCTTC (SEQ ID = 928)
S4981726
Glyma05g37550





ATTTTGTGTCAGGGCTGAGG (SEQ ID = 929)
TGCCTCGCAGTTATCTTGTG (SEQ ID = 930)
CA799411
Glyma06g01940





CCGAGAGGAAGATTTGGCTA (SEQ ID = 931)
TTCCATCTGCTTGGTCTTCC (SEQ ID = 932)
S4896994
Glyma06g20230





TTCCCCTAGAAGCTCTGCAA (SEQ ID = 933)
AGGTCTTCGCTTGATGAGGA (SEQ ID = 934)
AW395625
Glyma06g44290





TCATCAACGGTACTGGCTCA (SEQ ID = 935)
CCAGTGACGTTGGACTGAGA (SEQ ID = 936)
CF808925
Glyma07g01950





CGAACGTTCTGGATGGACTT (SEQ ID = 937)
CGACGAAGCATGTGAAAATC (SEQ ID = 938)
BG041551
Glyma07g02220





ATTGCCATTTTCAAGCCATC (SEQ ID = 939)
TGGAGCAACAGTACGCCATA (SEQ ID = 940)
S21539727
Glyma07g06460





ATCCCTGTGCAGTTGATTCC (SEQ ID = 941)
CACTGATTGAATGGGGTGTG (SEQ ID = 942)
TC233702
Glyma08g03160





GCAATGCTAATCTAATGGCACA (SEQ ID = 943)
TTGTCACACCAACAACGAATG (SEQ ID = 944)
S22951609
Glyma08g13110





TTATCGGGAAGATGGTCCAC (SEQ ID = 945)
AAGAGCAGGATTTGCAGCAT (SEQ ID = 946)
BM528044
Glyma08g41330





ATGCAGTTTGTGGTGATGGA (SEQ ID = 947)
TAGAGCATGGGATGGGAAAG (SEQ ID = 948)
S5146881
Glyma09g01000





TGAACCATATCTAGAGACTACTACT (SEQ ID = 949)
AGCATACTTCATACATAGGGCA (SEQ ID = 950)
S5075763
Glyma09g02750





TCTGCTTTAATTGCAGCCCT (SEQ ID = 951)
GCGACACCACTTCCCTTTTA (SEQ ID = 952)
S4867945
Glyma09g12820





TAATGAACCCCGGGTATGTC (SEQ ID = 953)
GGGGAGACTTTGTAGGGAGG (SEQ ID = 954)
BI469367
Glyma10g10040





CACACATCACACGAGCAGAA (SEQ ID = 955)
GGTGTAAGTGGCAGTGGCTT (SEQ ID = 956)
S21567823
Glyma10g28820





CACACATCACACGAGCAGAA (SEQ ID = 957)
GGTGTAAGTGGCAGTGGCTT (SEQ ID = 958)
BU548090
Glyma10g28820





AAGTCTCTGTGCTCTTGTTGGA (SEQ ID = 959)
TGATGATAGGATGGGCACTA (SEQ ID = 960)
S4883516
Glyma10g38280





CAGCTGAAGGCGGAGATAAC (SEQ ID = 961)
TGAGCATCGATGAGTGGAAG (SEQ.ID = 962)
TC217986
Glyma11g02960





ATCGTTGTCTTCTTCGCTGG (SEQ ID = 963)
TCCACCTCCACCTTGTTGAT (SEQ ID = 964)
AW757139
Glyma11g06640





GCACCGACCCTTATATTGGA (SEQ ID = 965)
ATCTTGGGTGTCCAAAGGTG (SEQ ID = 966)
S4916693
Glyma12g33430





ACTTCAACATCCCTCAACGC (SEQ ID = 967)
GGAAAACGACATTGAACGCT (SEQ ID = 968)
S5115730
Glyma13g05270





CTGAACTTGCTTTTCGAGGG (SEQ ID = 969)
TCATACAGTTCGTCCGGTCA (SEQ ID = 970)
BG239618
Glyma13g23890





TTGGCCCAAATCTCCATAAG (SEQ ID = 971)
CTGGCCGGGTTAAAAAGAAT (SEQ ID = 972)
S23067438
Glyma13g44930





TTTCTCCACCTCATCATCCTG (SEQ ID = 973)
CGGAGGATCCAATTCCAAGT (SEQ ID = 974)
BQ253856
Glyma14g09310





GAGAGTTGCACTCTGCGGAT (SEQ ID = 975)
CATAAACCAGAGGAAGAGGCA (SEQ ID = 976)
BE658510
Glyma14g10430





CCGCCATCTTTAACTGGAAA (SEQ ID = 977)
TGTTGGTCCATGTCTGGAAA (SEQ ID = 978)
S5146505
Glyma15g04700





GGCCACAAATTCTACATCCA (SEQ ID = 979)
TGGAGGGTGAGTCATTGTTGT (SEQ ID = 980)
S5874971
Glyma15g42380





AGGCTCAAGCCTTGTCTCTG (SEQ ID = 981)
ACCACCCCATCAAGATCAAA (SEQ ID = 982)
S23069184
Glyma16g02390





TCCCTTTTTCATCCAGAATCC (SEQ ID = 983)
CCCTTTTAATGCATGCTCGT (SEQ ID = 984)
S4934495
Glyma17g11330





GTTTCACGGAGGAGCAAGAG (SEQ ID = 985)
CGGTGTCGAGGAAATTCTGT (SEQ ID = 986)
S5055444
Glyma17g11330





GGGGTTACACACCTACACGG (SEQ ID = 987)
CCACCACTGATCTTGAGGGT (SEQ ID = 988)
S23064210
Glyma17g15380





CAAAAACCAAAGAAGAGTTGCC (SEQ ID = 989)
CACTAGCTATGTAGTTCATAAGACG (SEQ ID = 990)
S4898544
Glyma17g16930





GCCGCCAGAAAGAAACTTAG (SEQ ID = 991)
GCTTCGCCAAAGCTTGAATA (SEQ ID = 992)
TC205125
Glyma17g16930





TCTTCGTCGCCAAATTCTTT (SEQ ID = 993)
CAGCGACTGAAACAGAGCAG (SEQ ID = 994)
S4904898
Glyma17g17540





TGGCTCTTTGAGCACTTCCT (SEQ ID = 995)
CAATTTGCCACCTGGTTTTT (SEQ ID = 996)
BM568090
Glyma17g37260





GAGTCTGCAGGCCTCGTTAT (SEQ ID = 997)
AACGAAGCCTTACGAAAGCA (SEQ ID = 998)
S23062061
Glyma18g01830





CGGAACCAGAAACTACAGGC (SEQ ID = 999)
ATTGCTCCATGAACCCTCAG (SEQ ID = 1000)
BE211253
Glyma18g49290





GAAGCGGTCCATGTCGTTAT (SEQ ID = 1001)
GAAGACCCCATCATCGGATA (SEQ ID = 1002)
S5118421
Glyma18g49290





TTCTTCAGATCCACCCGTTC (SEQ ID = 1003)
CACACGTTCCATACCCAGTG (SEQ ID = 1004)
BM954422
Glyma19g33100





GAGACTGGCTCTCTGGGTTG (SEQ ID = 1005)
AAGACAGGGGAATACAGGGG (SEQ ID = 1006)
BE347092
Glyma20g26700





TGCACCCAGTTGTCATCAAT (SEQ ID = 1007)
TTGAGCAGCATCCAATCAAG (SEQ ID = 1008)
S15850208
Glyma05g29040





GGTTTTGGCCAGTGGAATTA (SEQ ID = 1009)
CATCAGGGACTCCTTTTCCA (SEQ ID = 1010)
S5050877
Glyma06g10660





GTTGCAGATTGTGCCGTATG (SEQ ID = 1011)
CCCAGACTCACTTCTCTGGC (SEQ ID = 1012)
BI974743
Glyma08g06460





CGCCATTTTCTTTACCTCCA (SEQ ID = 1013)
GGAATTTGTGTCCCCTGAAA (SEQ ID = 1014)
BE820243
Glyma08g06460





GATGACTCCCCTGCTGAAAA (SEQ ID = 1015)
GCTTGCTACAGGGAAACACC (SEQ ID = 1016)
AW734397
Glyma10g35350





GTGGTTCCACCATTGCTTCT (SEQ ID = 1017)
AAAACTTGGGCATGTTCAGC (SEQ ID = 1018)
BI967222
Glyma09g30330





CCTGCGACTGCATTGAACTA (SEQ ID = 1019)
GAGAGTATCCGGCGTCACAT (SEQ ID = 1020)
S4916861
Glyma04g04880





TGAAAAGGGAGACGAATGCT (SEQ ID = 1021)
TGATTCTTGTACGGTGGCTG (SEQ ID = 1022)
S4994481
Glyma04g05500





AAGCGAAGGACTCAGACTCG (SEQ ID = 1023)
CGACGAGTAGAACGCAGTGA (SEQ ID = 1024)
S4913107
Glyma04g05500





GGAAACTGGTCATGGTAAGTAGAA (SEQ ID =
CCACCAGCTTGAGTCATGG (SEQ ID = 1026)
S15922397
Glyma14g06800


1025)








TCCTTGCCTTACGCTAGTCTTT (SEQ ID = 1027)
TGACAACAAGCTTCAAAGGAGA (SEQ ID = 1028)
TC208095
Glyma14g12350





GAAGGAATGTATCTGATGGGG (SEQ ID = 1029)
TTGTGTTTCAGAATATGGCCTG (SEQ ID = 1030)
S21568145
Glyma14g12350





AGGTTGCTTTAGTCTCCGCA (SEQ ID = 1031)
CCAAGGGAAAGAACAGGACA (SEQ ID = 1032)
TC204441
Glyma17g35290





AGTCGCCACGGAGATATGAT (SEQ ID = 1033)
TATGTGGTAGTGCGTGGGAG (SEQ ID = 1034)
S4877587
Glyma17g35290





TCACAAGCCTTGCACTTTTG (SEQ ID = 1035)
TTGGAATGGGTGGTGAATTT (SEQ ID = 1036)
S23064130
Glyma18g03490





CACGGGACATTCAACATCTG (SEQ ID = 1037)
TGCCATTGTTTATGCTCCAA (SEQ ID = 1038)
BM526782
Glyma04g07460





TCTCCACAAGTTCAAGCACG (SEQ ID = 1039)
ACCAGCAGCTCTGGGATTTA (SEQ ID = 1040)
AW508563
Glyma04g07460





TCTTTGGGTGGAAATCAAGG (SEQ ID = 1041)
CGTTTGATACAACTGTGCGG (SEQ ID = 1042)
S23061430
Glyma10g18620





CCTCTTTTGCCATTTGGGTA (SEQ ID = 1043)
TGAAACAGGATACAACAGGGG (SEQ ID = 1044)
S5084249
Glyma17g30910





GCATCACATGTCCCTCACAC (SEQ ID = 1045)
TTAAGGCTGAGCCGTTGACT (SEQ ID = 1046)
S5058162
Glyma02g04710





GCAAGCTCACTCGCTTTCTT (SEQ ID = 1047)
TAAGAAGACCAAAGGTCGGC (SEQ ID = 1048)
S5108603
Glyma02g30990





CCACGGAGAAGATTCGTGAG (SEQ ID = 1049)
TGCTTAAGCTCTCTCCATCAGA (SEQ ID = 1050)
BU549106
Glyma04g02980





AGAAGGTGTGGGAAACATGC (SEQ ID = 1051)
GCTGTTTTAGGCTAGCTGCG (SEQ ID = 1052)
BE058034
Glyma04g42420





ATTTGACTTCTGGGGAGCCT (SEQ ID = 1053)
GACCCCACAAGAGCAAGAAG (SEQ ID = 1054)
S21538617
Glyma05g07380





GACCCCACAAGAGCAAGAAG (SEQ ID = 1055)
ATTTGACTTCTGGGGAGCCT (SEQ ID = 1056)
TC208789
Glyma05g07380





GCATAAGATCCACTGCACCA (SEQ ID = 1057)
ACACGGCAGACACTTACAGC (SEQ ID = 1058)
S4889056
Glyma05g28140





TGGAGGGGAGTACGAGTCTG (SEQ ID = 1059)
TAGGATGGCTTGGCTGTAGG (SEQ ID = 1060)
S22336596
Glyma06g02990





GACGAAGAGGATTACGACGG (SEQ ID = 1061)
AGGCCGGACATTCAACTCTA (SEQ ID = 1062)
S4876998
Glyma06g09870





CGTGGTGATGAAATGGATCTT (SEQ ID = 1063)
GGAGTTGGGGTTCCTTCATT (SEQ ID = 1064)
S5062283
Glyma06g22660





GATACTCCAGAACGGGACGA (SEQ ID = 1065)
GCTATGCTGATGCTCAGTCG (SEQ ID = 1066)
S4891674
Glyma06g48270





ATGCTTTGGCCAATGTGAAT (SEQ ID = 1067)
TCTTCGTTGGCATGGTCATA (SEQ ID = 1068)
S5103646
Glyma08g02930





GAATGGATTCCGATGATTGC (SEQ ID = 1069)
TATGCAAGAGATCAGCACGC (SEQ ID = 1070)
S15850478
Glyma08g07260





TCAAGGGTTGAGTGTGCAAG (SEQ ID = 1071)
CGTGGTGACACGGTCTATTG (SEQ ID = 1072)
S21540484
Glyma08g11110





ATTCCTGCATTAGGGAACCA (SEQ ID = 1073)
AAGCAAGTTCCCCAGGCTAC (SEQ ID = 1074)
S5049230
Glyma08g11110





TTGTTGTGGTTTTGCAGCTC (SEQ ID = 1075)
CGAGGGTAGATTGGAGAAAGG (SEQ ID = 1076)
S4993992
Glyma08g42300





GTGCTGATGACAGAACGCAT (SEQ ID = 1077)
TGCGATCCATCCACAATTTA (SEQ ID = 1078)
S4992495
Glyma11g07820





AGTACGAGTTTTGCAGCGGT (SEQ ID = 1079)
GCTTCCTTTGTTGCCACATT (SEQ ID = 1080)
S23162106
Glyma11g36890





GTCTGTCAAGGCGAGAAAGC (SEQ ID = 1081)
CCGAAGCTCCTCAATCTGTC (SEQ ID = 1082)
S21691323
Glyma12g17720





CCTTGTGTGGAGTTGAAGCA (SEQ ID = 1083)
GGAGTGTGCCAATACAGGGT (SEQ ID = 1084)
BE610209
Glyma13g07720





CTACCAATCGCCAAGTCACA (SEQ ID = 1085)
CGTCCACGGCTAGAGAAAAC (SEQ ID = 1086)
S29966237
Glyma13g29510





AACCCTATTGAACACCCTTGA (SEQ ID = 1087)
TTCTGCATACACTCATGCAACA (SEQ ID = 1088)
S4884815
Glyma13g33020





TATTTCCTTTCGCAGGATGC (SEQ ID = 1089)
GCATTCAGGGATTCAAGGAT (SEQ ID = 1090)
S15853888
Glyma13g33040





GCTGAACACGAGAAAGCACA (SEQ ID = 1091)
TAACAGGGAAGAAATTGCGG (SEQ ID = 1092)
AW433203;
Glyma14g03100




S4907367






CGGGTACGAATTTGCTTGAG (SEQ ID = 1093)
TTGCAGAGAAACCATAGGCA (SEQ ID = 1094)
S15940131
Glyma16g13070





TTGGAAAATTGGGAGTGAGG (SEQ ID = 1095)
ACCGGCATAAGATCCACAAC (SEQ ID = 1096)
TC231648
Glyma02g38800





TTCTTTGGGGGTTGAAGTTG (SEQ ID = 1097)
CCGCTCCAAGAAAAATTCTG (SEQ ID = 1098)
TC229785
Glyma05g15170





AGAGCTTGTGGAATTCCCTG (SEQ ID = 1099)
AGCATCCAATTCAAGGAACA (SEQ ID = 1100)
TC211088
Glyma08g05110





TTGGATTTGTGATGCCGTTA (SEQ ID = 1101)
CATCATAGGAAGGGAGGCAA (SEQ ID = 1102)
S4967171
Glyma01g00600





TTCTTTTCAAGCAACGCTGA (SEQ ID = 1103)
AGTAGTGGGCACTCGTCACC (SEQ ID = 1104)
S23062403
Glyma01g04530





ATCAGCAGTCAAGAGCACCA (SEQ ID = 1105)
CAAATTGCAGACACGATGCT (SEQ ID = 1106)
AI900277
Glyma01g05190





GGTTCTTGGACTGTTGACCG (SEQ ID = 1107)
GAAATGCAAGTAATTTCCCCC (SEQ ID = 1108)
TC224483
Glyma01g26650





ACACCTTTGTCCACCGATTC (SEQ ID = 1109)
TCCGTCCACCAAGAAAAATC (SEQ ID = 1110)
BU578344
Glyma01g40220





TGCCGAATTCAATGATACCC (SEQ ID = 1111)
TGGCATGCATTTCTGGTATG (SEQ ID = 1112)
S5143215
Glyma02g00820





CTGTCAACGGAAAGTGCAGA (SEQ ID = 1113)
CTGCATCACCAAAACCATTG (SEQ ID = 1114)
S34273499
Glyma02g01300





GCCACTCCTTTCAGGAAGTT (SEQ ID = 1115)
CCCAAGTTCTTATGTGAATACCC (SEQ ID = 1116)
S23063261
Glyma02g39000





TGCATTTACTAGATCACGGGG (SEQ ID = 1117)
TGGAATATCTGCAACAGGATG (SEQ ID = 1118)
TC227422
Glyma02g40800





GCATCGAGAAGGAAAACGAA (SEQ ID = 1119)
TTCCTCTGATTTTTCCCCAG (SEQ ID = 1120)
TC221184
Glyma02g43280





CGTTGTTCCTTTGGCAATTT (SEQ ID = 1121)
CTTCCATGCAGATGATGCAC (SEQ ID = 1122)
S5001333
Glyma02g43280





TAGGCACAGTTTCACATGGC (SEQ ID = 1123)
ATCCACCATCCCAGAATCAA (SEQ ID = 1124)
S23068701;
Glyma03g14440




TC228909






GTTTGGCGTCTTGGTTTGAT (SEQ ID = 1125)
AAGAAGAGGCTGCCACAAAA (SEQ ID = 1126)
S23065855
Glyma03g31980





CTTGGAGGGTTATGTTCCCA (SEQ ID = 1127)
GTCTAAAACGAACGGGCAAA (SEQ ID = 1128)
S23068160
Glyma03g38040





GTTACTGGGAAGCAAGTGCC (SEQ ID = 1129)
TCAATTCCCAAGAAGAGAGCA (SEQ ID = 1130)
S4896043
Glyma03g38410





AGCAGTGGCAACAACAACAG (SEQ ID = 1131)
AGTTGAGGTGCTGGAAAGGA (SEQ ID = 1132)
TC211951
Glyma03g38660





CTTTTGCAGTAGCATCACCG (SEQ ID = 1133)
TGTGACATGGAACACACCAA (SEQ ID = 1134)
S34273417
Glyma03g42260





GCCATATGCAAATGCAGAAA (SEQ ID = 1135)
AGCAGCTGCAATAGCTGTCA (SEQ ID = 1136)
S34273457
Glyma03g42260





GCCGTTAAGAACCACTGGAA (SEQ ID = 1137)
GGAGGAGCAAGAGTCAATGC (SEQ ID = 1138)
S4873244
Glyma04g03910





TTCCCCTCTAATTCAACCCC (SEQ ID = 1139)
TCTCCTGTGAGGCAACTCCT (SEQ ID = 1140)
S4975581
Glyma04g32690





AAGCACTTACCCATGCGAAC (SEQ ID = 1141)
CTTGAGGGATCCACAGCATT (SEQ ID = 1142)
BI785347
Glyma04g33210





TCCTTTCTCTTTTGGTGGGA (SEQ ID = 1143)
GGGTCCGTACAAGGAACAGA (SEQ ID = 1144)
S4870629
Glyma04g34720





AGGACCTTTTCATTGGCCTT (SEQ ID = 1145)
ATCATCATGCTCTTCCGGTC (SEQ ID = 1146)
S4982467
Glyma04g38240





TTCTCCAGTGTTCCCGTTTC (SEQ ID = 1147)
TGCAGTTGGTTTCAGCACTT (SEQ ID = 1148)
S4910460
Glyma05g04950





TTTCATCAGGCAAAGCAATG (SEQ ID = 1149)
GCAGTGTCAGCTGCTTCATC (SEQ ID = 1150)
TC215913
Glyma05g04950





TAAATGAAGAGGGCCCATGA (SEQ ID = 1151)
CGTCGTGAATGGATAAGCAA (SEQ ID = 1152)
S34273496
Glyma05g35050





TGCAGTCTGGTTGCATAATAGC (SEQ ID = 1153)
CGTCGTTTTTCAGGCAAGAT (SEQ ID = 1154)
S4875209
Glyma06g00630





CACGAAATTTGGTCCCTCAT (SEQ ID = 1155)
GGGTAAGCTGATTGCACCAT (SEQ ID = 1156)
S4928297
Glyma06g04010





CCTGGAAGAACCGATAACGA (SEQ ID = 1157)
TGAGTTTGAGGGTCGATTCC (SEQ ID = 1158)
BM308450
Glyma06g16820





CAATGAGAACACCCCTTTTGA (SEQ ID = 1159)
CTCCAGAATGTGGTGGGAAT (SEQ ID = 1160)
TC233743
Glyma06g45520





CAGAATACAGCTCGTGCCAA (SEQ ID = 1161)
TGACCAAGTTTGGACCCCTA (SEQ ID = 1162)
BU549656
Glyma06g47000





GCCCCAAAGAGATCAACAAA (SEQ ID = 1163)
CCGCATCTCTTTAAACCTGC (SEQ ID = 1164)
S4891301
Glyma07g04210





TCAGCTGATAAGAATCAGACTTGT (SEQ ID = 1165)
TTTCCAAGCTGATAGAACGCT (SEQ ID = 1166)
S19677672
Glyma07g05960





AGTGGCAGTGCAATTCACAA (SEQ ID = 1167)
TGTCCAACCACCCTTAGCAC (SEQ ID = 1168)
TC231964
Glyma07g15820





TGAAGTGCATCATGCTTTGG (SEQ ID = 1169)
TCCTCCATCTTCTCCCTCCT (SEQ ID = 1170)
S25049562
Glyma07g15850





AATAGCTGGGAGATTGCCTG (SEQ ID = 1171)
GGGTCAATGCCTTTGCTAAT (SEQ ID = 1172)
S34273436
Glyma07g33960





AACCACATGATTGATTGCCA (SEQ ID = 1173)
TCTGGTTACTCGTAGCATCGC (SEQ ID = 1174)
S5011023
Glyma08g04670





TTACCACCTCAAGAGCCACC (SEQ ID = 1175)
AGCCGAAGCTCTCATACCAA (SEQ ID = 1176)
TC219749
Glyma08g17400





TGGTGCTCCAGCAACAACT (SEQ ID = 1177)
ACCCCAGTGATGAACCTTCC (SEQ ID = 1178)
S5144915
Glyma08g40020





GCTTTTGCTTTGCTTTGCTT (SEQ ID = 1179)
AGGGACACAGATCCGAGATG (SEQ ID = 1180)
BF598100
Glyma09g02030





TGTGTACCAAACGAATCCGA (SEQ ID = 1181)
TGGGAACATGATGGTGAGAA (SEQ ID = 1182)
S21538601
Glyma09g03690





CTTGGCATCTTTGTGTCCCT (SEQ ID = 1183)
CATTCTGGTGCTTTGTCCAC (SEQ ID = 1184)
S4898539
Glyma09929800





CTGCATCACCAAAACCATTG (SEQ ID = 1185)
TTCATCATCGGAAAGTGCAG (SEQ ID = 1186)
S5146038
Glyma10g01340





TGTCAAACCGCTTAACACCA (SEQ ID = 1187)
GTGCAAGATATTCCCCATGC (SEQ ID = 1188)
S4870840
Glyma10g05560





CAAGCTCGTCATTTTGCTCA (SEQ ID = 1189)
TCAAGCTACCGAACTCCCAT (SEQ ID = 1190)
S4995311
Glyma10g06560





AATCCCTTGAATTGGAACCC (SEQ ID = 1191)
TTCCAAGGACATCCAGAAGC (SEQ ID = 1192)
S23069233
Glyma10g27940





TGTGGTGATTCTCGTCCATC (SEQ ID = 1193)
GCTGCTGGAAACCTTTCTGA (SEQ ID = 1194)
BM893228
Glyma10g27940





AAAGATGTTGCTGCCGACTT (SEQ ID = 1195)
AGCACACACCTGTGGTCAGA (SEQ ID = 1196)
S5870749
Glyma10g28250





CATCCTCTTCTTTGATCCGC (SEQ ID = 1197)
GTGCTCCACTGAAAGTTGCC (SEQ ID = 1198)
CD396488
Glyma10g34050





CACCCCAAAAGTCCTTCAAA (SEQ ID = 1199)
AAGCGGATCCATGTTTATGC (SEQ ID = 1200)
BE058570
Glyma10g41930





TCAGACTTGGGTTCCTCCTC (SEQ ID = 1201)
ACCCAAACGTACCCATTTGA (SEQ ID = 1202)
S5146207
Glyma10g42450





AGATGGGTCACCATTCTTGC (SEQ ID = 1203)
CATAGCCGTGAGTGGTGATG (SEQ ID = 1204)
BE611938
Glyma11g02400





AGAAGCTCCTTGGCAAACAA (SEQ ID = 1205)
TGACATCTTGCTTCTGCTGG (SEQ ID = 1206)
BQ473403
Glyma11g04880





CCTGTTGCATACTCTTCGCA (SEQ ID = 1207)
AGGGTCATTGGAGGACGAC (SEQ ID = 1208)
S4897857
Glyma11g05550





CCAAAAGTTCTTGGGGAACA (SEQ ID = 1209)
TGGCGTGATGTTAAGCTTTG (SEQ ID = 1210)
S21538769
Glyma11g14760





TCCAAATGGGGAAATAGGTT (SEQ ID = 1211)
TGAGTGATGATGATTGGAAGG (SEQ ID = 1212)
TC209021
Glyma11g15180





ACCAAATGGAAGTTTGTCGC (SEQ ID = 1213)
CCCAGCTTCTTCCTCAGATG (SEQ ID = 1214)
S4973270
Glyma11g33180





TCAGCTCAGAATCAGCCAAA (SEQ ID = 1215)
ATCAATGCTTCCTCCATCCA (SEQ ID = 1216)
S15177336
Glyma12g01960





ATTTGTTGAGGCAGGAGCTG (SEQ ID = 1217)
AGGAAACCTGGTGCACAATC (SEQ ID = 1218)
S5126262
Glyma12g29030





TCCTTTTCTCTTCGCTTGGT (SEQ ID = 1219)
ATAACGGTGGCCTTCAGAAC (SEQ ID = 1220)
S4877491
Glyma12g29030





CTCCTGTGGTTTGCTTGTGA (SEQ ID = 1221)
TTTCTCTTGATGAAAGGGCA (SEQ ID = 1222)
TC232993
Glyma12g36630





TGTGAGGCACATTTAGGCAG (SEQ ID = 1223)
GCTTTTATGGTGATGGGGAA (SEQ ID = 1224)
TC225081
Glyma13g05550





TGGACTTGGTGAGTTTGGTG (SEQ ID = 1225)
TGTTGAATAGATCAAGGGCAGA (SEQ ID = 1226)
TC222536
Glyma13g09980





CCCATTCATATGGCCACTTC (SEQ ID = 1227)
GGGGGTGGGTTTAGGAATAA (SEQ ID = 1228)
BM092559
Glyma13g16890





TTGGATTTCCGGTACAGAGG (SEQ ID = 1229)
TTTGAAAATCCATTCCAGCC (SEQ ID = 1230)
S5141204
Glyma13g25720





ATCTCTTACGCTTTGCAGCC (SEQ ID = 1231)
GGCATCTGCAACAACTCTGA (SEQ ID = 1232)
S15850286
Glyma13g26790





TGGCTTTTTATCTTGCGTCTG (SEQ ID = 1233)
ACAAAGCAACCCAGGAAAT (SEQ ID = 1234)
S4892930
Glyma13g38340





CCCCTAGCTAGTGTGACCCA (SEQ ID = 1235)
CTCGCTATCCTATTGGATGTTT (SEQ ID = 1236)
S34273475
Glyma13g40830





GCTGTCTTCACCGGACCTTA (SEQ ID = 1237)
GCTCCAGTTGGTACTTCGGA (SEQ ID = 1238)
S21566837;
Glyma13g43120




S34273505






TCCGGTGGTGTAATCAGCTT (SEQ ID = 1239)
TGCATGGGCTGAAACTATGA (SEQ ID = 1240)
CA785073
Glyma14g06870





TGAACTTGCAGACTTTGGGA (SEQ ID = 1241)
AAGCAATCCAAAGGGCTAGG (SEQ ID = 1242)
S5050105
Glyma14g39130





ACTTTGCGAAAAGCAAGGAA (SEQ ID = 1243)
TGACAGATTGCCTATGCTGG (SEQ ID = 1244)
S5127272
Glyma15g03920





CTGTTGAGGAACTGCCTGTG (SEQ ID = 1245)
GGCTAATTTGCTCCCTAATTG (SEQ ID = 1246)
BM955055
Glyma15g12930





TGGACCAGGAATATGCACAA (SEQ ID = 1247)
TCCCGAGACAGGATGAGAAC (SEQ ID = 1248)
S23072065
Glyma15g14320





CACCTTCCGTGAAAGAGGTAA (SEQ ID = 1249)
GCCATTAGTCTGTTTTCCATCA (SEQ ID = 1250)
BM528066
Glyma16g01980





CAAGAGAAGGAGGAAAGCCC (SEQ ID = 1251)
GGTCCTCACTGAAGAAGCCA (SEQ ID = 1252)
S34273491
Glyma16g02570





TGTTGTTGCCACCATCACTT (SEQ ID = 1253)
TGGAACACCCATCTAAGCAA (SEQ ID = 1254)
S23062212
Glyma16g02570





AAGCCAGAGACATTCCAGTG (SEQ ID = 1255)
AGTTACTGAACGGGGATTAAA (SEQ ID = 1256)
S4990094
Glyma16g07960





TTCCACTCTCCTACTTAGCCTG (SEQ ID = 1257)
TCCAAGATGATGCCATTTGA (SEQ ID = 1258)
BI469606
Glyma16g25250





CTTGCCTCTTAGGCCCTCTT (SEQ ID = 1259)
CTTGCCTTGGTTTTCCATGT (SEQ ID = 1260)
TC216457
Glyma16g34340





CCTCCAGGCAAGAGTCAATC (SEQ ID = 1261)
CGTCGTCTCTTCTTGCATTG (SEQ ID = 1262)
BE058375
Glyma16g34490





AGAGCCGGAGTAGCAGATGA (SEQ ID = 1263)
ATGGCTTCAGGGTTTGATTG (SEQ ID = 1264)
S23061916
Glyma17g07330





TCCTGTCTTTTTGGTGGGAG (SEQ ID = 1265)
CGGGGTCTGTACAAGGAACA (SEQ ID = 1266)
TC214990
Glyma17g10250





AGCATTGTTGATTGATGGGC (SEQ ID = 1267)
ATCACTGTGAATGGGCCAAA (SEQ ID = 1268)
S34273489
Glyma17g15330





TTGAACTTTGAAGTGCCGTG (SEQ ID = 1269)
TTTTGATTTCCTGTCTCACTGG (SEQ ID = 1270)
S4882412
Glyma17g15330





AAGGAGGTTTACAGCGCTCA (SEQ ID = 1271)
AATCAATCTGTTTGTGGCGG (SEQ ID = 1272)
AI938079
Glyma17g18310





AACTTGGCCTCTAATGAGGGA (SEQ ID = 1273)
CCCCTTATGGGTCCTGAAGT (SEQ ID = 1274)
CA852521
Glyma17g36370





TCCTTCCCCCTCTAGTCACA (SEQ ID = 1275)
CCAAAAGTAACTCCAATGCCA (SEQ ID = 1276)
CA936556
Glyma18g04250





CATGGCAATTTCGAGGTCTT (SEQ ID = 1277)
CTCGTAGCCGTATCAAGGAA (SEQ ID = 1278)
BG508957
Glyma18g05900





AAAATGCCTTGGCAATTCAC (SEQ ID = 1279)
CCAAGGTTTTCCCTGGTACA (SEQ ID = 1280)
CA937180
Glyma18g18140





GCACTGAGACACCTGAATCG (SEQ ID = 1281)
TTTGGGCACCAGTTTTTCTC (SEQ ID = 1282)
BE805410
Glyma18g39740





TGCAGCAAAGTTGTTGAAGG (SEQ ID = 1283)
AAGGGTTGGATGAAAAACCC (SEQ ID = 1284)
S23069986
Glyma18g49360





GGGTGGATGAAAAACACACC (SEQ ID = 1285)
AGTGCTTGTTGTGCTTCCCT (SEQ ID = 1286)
S34273430
Glyma19g02600





GCAGGGAGTGAATCAACCAT (SEQ ID = 1287)
GAGTCTTCGAAAAGGAGGGG (SEQ ID = 1288)
BU926469
Glyma19g29670





CCTTAAACGTTGCTTCCCAC (SEQ ID = 1289)
CTTGCAAATGCTGGGGTTT (SEQ ID = 1290)
S21566054
Glyma19g30220





TCATGCACCCAACATTCATC (SEQ ID = 1291)
GACACTGCACTCTCCATCCA (SEQ ID = 1292)
BU544987
Glyma19g30220





GACCCATCACGAAAAGAGGA (SEQ ID = 1293)
AAAGCTGTTTGTGCAGAGCA (SEQ ID = 1294)
S21537216
Glyma19g40630





GCCATGTAGCACATGACTCG (SEQ ID = 1295)
CCCGTTTATTCTGGGAAACA (SEQ ID = 1296)
S4993462
Glyma20g22230





TTCCCAACACAACACGTGAA (SEQ ID = 1297)
TGTTTCCCAGTTTTGAACCC (SEQ ID = 1298)
TC229776
Glyma20g22230





TGGCTTTGTTTTTCGGCTAC (SEQ ID = 1299)
TGATGAGCAGCAGCATTTTT (SEQ ID = 1300)
AW733383
Glyma20g30250





GAGGAAACATTTCTTCGGATG (SEQ ID = 1301)
CGGGTAATCGTCCTGCAATA (SEQ ID = 1302)
S5146478
Glyma20g32510





CAAAAAGCCTTGGACTGAGC (SEQ ID = 1303)
GGCAGCAGTTTGGCTATTTC (SEQ ID = 1304)
CA938036
Glyma20g34420





CCAGAGCACAAAGATGGTGA (SEQ ID = 1305)
TGGCCATGTTTTTGGATGTA (SEQ ID = 1306)
CA800552
Glyma20g35180





TCATCAATTGCAGCTTCTGAC (SEQ ID = 1307)
TGATTTTTCATCAGTCACGG (SEQ ID = 1308)
S4990921
Glyma20g35180





CAAGCTTTCAACCCCATGAT (SEQ ID = 1309)
GAAATGGGCTCAACCTGTTC (SEQ ID = 1310)
AW317542
Glyma01g37310





TTTTGGGTTCGAATTTGAGG (SEQ ID = 1311)
ACAACTATGCCTCCACCAGC (SEQ ID = 1312)
S21565729
Glyma02g07760





CACTCAGTCTCGTGCTTCCA (SEQ ID = 1313)
CCTTCTGAAATCAACACGCA (SEQ ID = 1314)
AW310386
Glyma02g26480





TTAGAATCCAATCCCTCCCC (SEQ ID = 1315)
GTTGGCACCCAAACGATAAC (SEQ ID = 1316)
BU546675
Glyma03g30650





ATCAACGGCAGAAGCAGAGT (SEQ ID = 1317)
GGATTTGGTTTTGGGGTTCT (SEQ ID = 1318)
BM271180
Glyma05g09110





CGCTGCCATCACTTTCTACA (SEQ ID = 1319)
AGAAACTGGTGCTGCCAACT (SEQ ID = 1320)
S21566467
Glyma05g38380





TCTGGGATGATGATGTTGGA (SEQ ID = 1321)
CTTTGGTGTTGTTGCCAATG (SEQ ID = 1322)
S5146166
Glyma06g21020





TTGGTTGCATCCATTGCTAA (SEQ ID = 1323)
ATGACCAATTGGGTGGTTGT (SEQ ID = 1324)
S23063408
Glyma07g32250





CATGTGTAATTCCACTGGCG (SEQ ID = 1325)
TGGGGAGGAGAGCAACTCTA (SEQ ID = 1326)
S5126778
Glyma08g47520





TTGCCAGCCTCTATCATTCC (SEQ ID = 1327)
TGATGGGTGTGAATGGAAAA (SEQ ID = 1328)
AW185294
Glyma08g47520





GATCGATTGGAAGAGCTTGG (SEQ ID = 1329)
GATCATGGTTATGGGGCATC (SEQ ID = 1330)
BE346203
Glyma10g36050





AGAATCGATACATGCGGGTT (SEQ ID = 1331)
GCAACTCACGGATCCTCGTA (SEQ ID = 1332)
S5050636
Glyma12g35000





TATTATGACTCGCATGGGCA (SEQ ID = 1333)
TGAATGGTGGAAGTGTCCAA (SEQ ID = 1334)
S21537720
Glyma13g30800





AGAAATTGAACCGGCTGATG (SEQ ID = 1335)
CCCAAAGAATCCCCACCTAT (SEQ ID = 1336)
BI892702
Glyma13g35550





CCTACAACAACGGTGCATTG (SEQ ID = 1337)
CCCTCCGTTGCTGTTACCTA (SEQ ID = 1338)
S4986242
Glyma13g35560





AAAGGTTCGAGATGCGCTTA (SEQ ID = 1339)
TGATTGATGAGCATTCAGCAG (SEQ ID = 1340)
S4981904
Glyma13g39120





ACACACAACACAGAACGACG (SEQ ID = 1341)
CTCGGGAATAATCAGATGTCG (SEQ ID = 1342)
S22952239
Glyma14g24220





TCTCCCACATGGAACACAAA (SEQ ID = 1343)
TGGAAACCAACGGGAATAGA (SEQ ID = 1344)
S5143635
Glyma15g05690





AGAAGGAAAAGTGGCACCCT (SEQ ID = 1345)
TTTGTCTCTTTGGGGACTCG (SEQ ID = 1346)
CF806665
Glyma15g08480





GCTTGGTGACCCTTTTAGGC (SEQ ID = 1347)
TGGGTTATTGCTTAGACCCTTT (SEQ ID = 1348)
BU547906
Glyma15g40510





AGCTAAGGGGCTGTCTAGGG (SEQ ID = 1349)
GATGCTGCTCAGGAAGAAGG (SEQ ID = 1350)
S5142288
Glyma16g02200





TGCTTCAGGGTATTGGAAGG (SEQ ID = 1351)
TTCACACCAACGCTCTCTTG (SEQ ID = 1352)
S4883048
Glyma16g04740





AATCAGCGGTTAATGCTTGG (SEQ ID = 1353)
TTTGGTGTGCTCAGCTTCTG (SEQ ID = 1354)
BE800180
Glyma16g04740





AAGTTGCCAATTGGGTTCAG (SEQ ID = 1355)
GTTGAGCAAACGCCTTCTTC (SEQ ID = 1356)
S6675832
Glyma17g23740





AGGACGCGTTTCGTTTTCTA (SEQ ID = 1357)
GAAGCCAGAAAGCGATCAAC (SEQ ID = 1358)
S15942527
Glyma17g35930





AACAAGACGAGAAGGAGGCA (SEQ ID = 1359)
CGTACTCTGTAATTTGGTTCAGG (SEQ ID = 1360)
CF806363
Glyma19g40280





CCGAGCTTTGAATCGAATGT (SEQ ID = 1361)
AATGGAAGTCCCTTTCTGCC (SEQ ID = 1362)
AW598682
Glyma20g31210





GCACTTCAGACATCAGGGGT (SEQ ID = 1363)
GCATAGCATGCACGTTGTTT (SEQ ID = 1364)
S4918140
Glyma10g12530





TCTTGGAGTTCCTCGTGTCA (SEQ ID = 1365)
CGACCTTTTACAATTCTTGCAG (SEQ ID = 1366)
BGT54332
Glyma11g15530





GGAAAAACCATACTTTGTCAGC (SEQ ID = 1367)
AATTTGTCCCTCCTGCATCA (SEQ ID = 1368)
TC215075
Glyma02g12800





TTTATGCCTGAGGTGACGTG (SEQ ID = 1369)
ACACATCCTCGTGCTGATTG (SEQ ID = 1370)
S5055354
Glyma20g38260





ACGCAAGGGAGAGCTGATAA (SEQ ID = 1371)
TTCCTTCCCGGACACAAGTA (SEQ ID = 1372)
AI900215
Glyma09g06750





AATCGAAGGTCTTGCTGTGG (SEQ ID = 1373)
AGTAAAGGCCCTGAACAGTTT (SEQ ID = 1374)
S23062993
Glyma13g40460





TAGCTTTGTAATGGGGCGTG (SEQ ID = 1375)
CCGTGAACTTGCACGATTAT (SEQ ID = 1376)
S4872357
Glyma04g17600





GCGATATCTCTGCTCCAAGG (SEQ ID = 1377)
ACAGTCAGGGCCAAAACAAC (SEQ ID = 1378)
S5129056
Glyma02g41260





GATGCTCAAGAAGGACGAGG (SEQ ID = 1379)
GTTGTACGCATACTGGGGCT (SEQ ID = 1380)
BU763734
Glyma19g29260





CCGGTGTTTATCCACTGCTT (SEQ ID = 1381)
GCAAGTGCATCATTTCATGG (SEQ ID = 1382)
S4918730
Glyma06g06570





AGGGGGAGAATGACGAGACT (SEQ ID = 1383)
TGCACTTTTTCCAGTTGCAC (SEQ ID = 1384)
BQ630497
Glyma06g06570





CAAGCCCATGTCCCTAAAAG (SEQ ID = 1385)
AATGGAAGCAATCAACGACC (SEQ ID = 1386)
S5126920
Glyma08g18840





TAAGCCGCCAGTGAAATCAT (SEQ ID = 1387)
GCACTTTTGGCCTGTTCAGT (SEQ ID = 1388)
S5144486
Glyma11g01290





ACATGCCAGTGAGTGCAGAT (SEQ ID = 1389)
GTGTTGGTTCAGTCCCATGT (SEQ ID = 1390)
BU926162
Glyma09g17220





CTGCAAGTACGGGGTTCACT (SEQ ID = 1391)
TTCTCCAGGGGAGATTCCTT (SEQ ID = 1392)
S22951169
Glyma09g31080





TATCAAGATGCCCCAAGAGC (SEQ ID = 1393)
GCAAAACATGGACATTGACG (SEQ ID = 1394)
BM890728
Glyma01g39490





CATGGCAATTGAAACACCTG (SEQ ID = 1395)
GTGGAAGAAATGACGGAGGA (SEQ ID = 1396)
S22952607
Glyma01g41460





TGCGATAAGCATCAAGAACG (SEQ ID = 1397)
CCGATAAGCGTGGGAAAATA (SEQ ID = 1398)
S23068862
Glyma02g01540





GAGTGGGCAAATCCCAAATA (SEQ ID = 1399)
TGCTTGGGCTCCTCATAGTT (SEQ ID = 1400)
S15924495
Glyma04g40610





GGCAGAAACAGTTGCCTCAT (SEQ ID = 1401)
AGCAACAATAGATCCGTGGG (SEQ ID = 1402)
BE330878
Glyma10g01580





GTTCTTCCGTGTTTTCGGAC (SEQ ID = 1403)
CTTGGCTGCCACATACAGAA (SEQ ID = 1404)
CA785184
Glyma10g31970





TGGGGGAATCCATGTTATTG (SEQ ID = 1405)
ACACCTTGTTGATTGCGTTG (SEQ ID = 1406)
BI426372
Glyma14g13790





CCACCTTGAGTTAACACCTCG (SEQ ID = 1407)
GCATTATGGTGCTGTTCCCT (SEQ ID = 1408)
BU544012
Glyma17g10770





ATTAATTCGCTTCGTGGTGC (SEQ ID = 1409)
CCAAAGTGCCGAGGTATTGT (SEQ ID = 1410)
S21538807
Glyma18g51890





TCCAAGCTGTATCTGGCCTT (SEQ ID = 1411)
CCGTGGTTCTTTTGGTTGAT (SEQ ID = 1412)
BU545160
Glyma13g25640





AGTCCACCCACAGGTTTCAC (SEQ ID = 1413)
ATGCCTTTACATTCGCATCC (SEQ ID = 1414)
S4977219
Glyma19g27690





GGCAAATTCAATTCTTGGGA (SEQ ID = 1415)
TAAAACTGAGGGGCCTGATG (SEQ ID = 1416)
S21700413
Glyma01g02210





CTCAAGCCACTTCATTTGGT (SEQ ID = 1417)
TTTCCCAAGAAACTACCTTCC (SEQ ID = 1418)
S5045510
Glyma01g04610





AGAATTCATCCCCTCCTTGA (SEQ ID = 1419)
TGATGATGATGATGATATGCAC (SEQ ID = 1420)
S15852371
Glyma01g23010





GTGCAGGATGTCTACGGGAC (SEQ ID = 1421)
GGCTTTCTCAGCTTTGGGTA (SEQ ID = 1422)
S4916603
Glyma01g23010





TGGTTCATGGCTTTGTGAGA (SEQ ID = 1423)
TGACCCAAACGGAGAAGAAG (SEQ ID = 1424)
S4983140
Glyma01g24880





CACCTTGCAGAATATCCGGT (SEQ ID = 1425)
CAAAAGCTTGGGAAACCAAA (SEQ ID = 1426)
S4989469
Glyma01g44670





AAAGTGGCGGTTGTTGAAAG (SEQ ID = 1427)
AAAGGTGGAGCAATGCAATC (SEQ ID = 1428)
CA783023
Glyma02g01680





AGCAATGGTGGAGCCATAAG (SEQ ID = 1429)
CCGGACAGTCTTCCCAGTAG (SEQ ID = 1430)
S21538340
Glyma02g01760





TGGAGTGACGACGATGAGTC (SEQ ID = 1431)
ATGCTTTGGAGTTTTCCCCT (SEQ ID = 1432)
S5026438
Glyma02g16410





CCAGCGCTGATTTGATGTTA (SEQ ID = 1433)
CCAGCAGAAAGCTCCAAAAC (SEQ ID = 1434)
S4869132
Glyma02g17160





CTCTCACCCAAAATCCCTCA (SEQ ID = 1435)
ATGGCTAATGGATCCCCTTT (SEQ ID = 1436)
S5035276
Glyma02g18680





GATGACAAGGTCCCACGAAT (SEQ ID = 1437)
GCCAAGCAACCTCTTCTTTG (SEQ ID = 1438)
BU550564
Glyma02g44040





GGAGAAGTGAGGTGTGAGGC (SEQ ID = 1439)
AATTTGTGGGCTCCACTGTC (SEQ ID = 1440)
BM094448
Glyma02g48040





GTTCAGTGTTGCAGCCATGT (SEQ ID = 1441)
AACCTACCCAACGTAGCAAAA (SEQ ID = 1442)
S5130128
Glyma04g39480





TGAAGATCCCCAATCCCATA (SEQ ID = 1443)
CTTTGGTGGCTCGGATCTAA (SEQ ID = 1444)
S19679391
Glyma05g11200





ATCTGGCTTTGCCAATTTGT (SEQ ID = 1445)
GTCAGGCATTTCCTGCTTCT (SEQ ID = 1446)
BU548721
Glyma05g11200





TTATCCGAGTCCATTTTGGG (SEQ ID = 1447)
GCCATTCAGAACACGAGGTT (SEQ ID = 1448)
S17641808
Glyma05g13530





TAGGCCCTTTCAACCACAAC (SEQ ID = 1449)
ATCCAGCTGTCCGAACTTGT (SEQ ID = 1450)
BE346622
Glyma05g25630





GAGAACCAAACGCTGGATGT (SEQ ID = 1451)
GCGAGTCCTTTTCACCACTC (SEQ ID = 1452)
S4918062
Glyma05g29300





ACATTATGGCTTGTGCCGAT (SEQ ID = 1453)
ACTGTGTCATGATTCGCAGC (SEQ ID = 1454)
S4868859
Glyma05g34980





AGACCAAGACCAGAACGACG (SEQ ID = 1455)
GCTCCAAACAAAGAAACCCA (SEQ ID = 1456)
S21537813
Glyma06g01300





CTGCAGGGTAGAGTTGGAGC (SEQ ID = 1457)
GTGCATCTTCATCAACACCG (SEQ ID = 1458)
S21537673
Glyma06g08790





AGGAACCCCCTGAGAGCTAC (SEQ ID = 1459)
GCAAAGAAGAACGACAGAGGA (SEQ ID = 1460)
S16521981
Glyma06g15490





ACGCCTATGAACGTGAAACC (SEQ ID = 1461)
GCATTCGGTGGGAATTAGAA (SEQ ID = 1462)
S17640718
Glyma06g26610





GGGAAAACCTCATGAGTCCA (SEQ ID = 1463)
GTCCGGTAGGCTCGATACAA (SEQ ID = 1464)
BE658021
Glyma07g04780





GGAGTTGTTGTGAGCGTGTG (SEQ ID = 1465)
TATTTGATCGTAGATCCAGCAC (SEQ ID = 1466)
S5023085
Glyma07g16420





TGGTTTGTGCAAATATCCCC (SEQ ID = 1467)
CAATTGTGAGAAAGAGCGCA (SEQ ID = 1468)
S4891180
Glyma07g28520





AGAAGTTGTGCAAAATGGGG (SEQ ID = 1469)
TTGTGCAAGATCCCCTAACC (SEQ ID = 1470)
S4925169
Glyma07g30140





GAGAGAGGGAAGCCCGTTAG (SEQ ID = 1471)
TCCACCAATAACACCAACCA (SEQ ID = 1472)
S5030137
Glyma07g32770





TTTAGGACAGTTGCTTGGGC (SEQ ID = 1473)
GAGAGTGTCGGGGATGTGTT (SEQ ID = 1474)
S5088770
Glyma07g37000





CCCATGGAGCAAATACACCT (SEQ ID = 1475)
AGCAAGCAAAAGTTTCCAGG (SEQ ID = 1476)
S21567824
Glyma08g04760





GTCCGATTGGAGAATCATGC (SEQ ID = 1477)
GAATCTCAAATTCGGTCCCA (SEQ ID = 1478)
S4903121
Glyma08g07170





TATGGGGCTATACCGCTACG (SEQ ID = 1479)
CGCCTTCTATACCCACTGGA (SEQ ID = 1480)
S4866857
Glyma08g12460





CTCTTCACGGACTTCTTGCC (SEQ ID = 1481)
AAGGATCGCGTTTAGAACCA (SEQ ID = 1482)
S23065233
Glyma08g15050





CGCGTCCGATAACAATAACA (SEQ ID = 1483)
AGAGAATTGCCGATGGTGAT (SEQ ID = 1484)
S18956636
Glyma08g16370





CCCAGATGCTTACACAAAAGC (SEQ ID = 1485)
CAGAATTTGAGTGCGCTTGA (SEQ ID = 1486)
S4911119
Glyma08g16830





AGGCAAAAGGGGATAAATGC (SEQ ID = 1487)
GCTTGTTTCAAATGGCTCGT (SEQ ID = 1488)
BQ453457
Glyma08g23240





AGGCACTTTGTTTTCCCTTG (SEQ ID = 1489)
TGCATGTTTACTGCAGCGAT (SEQ ID = 1490)
S5101279
Glyma08g47570





AAACTGGAGCTTTGACACCAA (SEQ ID = 1491)
ATATGTTCATCCCTGGCTGC (SEQ ID = 1492)
S4973725
Glyma09g06690





AAAGAAGCCAACAGGCAGAA (SEQ ID = 1493)
CCTTCCGATGCAGAAATCAT (SEQ ID = 1494)
S4925834
Glyma09g11870





AAGTTGTATGGTTGGGCCTG (SEQ ID = 1495)
ATCCCCGCCTCATACTATCC (SEQ ID = 1496)
S21565790
Glyma09g18050





TTGATGTGGAAAGGGGACAC (SEQ ID = 1497)
CGTTGGCAAAGTTATCGGTT (SEQ ID = 1498)
S4903128
Glyma10g02890





GTGTGTTGAGGGGTTTTGGT (SEQ ID = 1499)
CTCTGCTTCTGCTTGAACCC (SEQ ID = 1500)
BM522547
Glyma10g21570





ATGTGGTTGTTGTTGGTTGG (SEQ ID = 1501)
CACTTGACAGCTGAATTCCAGTA (SEQ ID = 1502)
S5100930
Glyma10g37390





GGCCGTGTTAAAACGTGTG (SEQ ID = 1503)
GGCTTTTGCTTTAGCCAGTG (SEQ ID = 1504)
S4883701
Glyma10g42460





GTTTACGCAAACACCGACCT (SEQ ID = 1505)
ATTGGATGCAGAGGGTTTTG (SEQ ID = 1506)
BM085598
Glyma10g42900





CGACAAGAAGAATGCGAACA (SEQ ID = 1507)
CTGAGACTCACTGGCCTTCC (SEQ ID = 1508)
BQ630507
Glyma11g08110





CCAAGATCAAGTGCAACACC (SEQ ID = 1509)
GGACCCATGTGAAATTGACC (SEQ ID = 1510)
S5011331
Glyma11g08590





GCACTGTTTTTCCATCGTCA (SEQ ID = 1511)
CTCGTGACCATTGTGGTTTG (SEQ ID = 1512)
S21539044
Glyma11g10910





TGCTGGGTGATATTGGTGAA (SEQ ID = 1513)
GTCTCTGCTGGCACCATTCT (SEQ ID = 1514)
S4934473
Glyma11g12560





ATGGGGAGCATATGCAGTGT (SEQ ID = 1515)
TCGACCAAGTAGGGTCTTGA (SEQ ID = 1516)
BE820313
Glyma11g20080





CAAGGCTGTTCCAACACAAA (SEQ ID = 1517)
TAGCCATCATCAAGACGCAG (SEQ ID = 1518)
S21566925
Glyma12g03130





ATGGCCAATTGGAGTATTGC (SEQ ID = 1519)
GGACAACCAGTCAAGGGAAA (SEQ ID = 1520)
S21539619
Glyma12g14030





CGTCGGATTAGAACCCTTGA (SEQ ID = 1521)
GCTTTTTCACGAAAGCAACC (SEQ ID = 1522)
TC229886
Glyma13g01310





ATCACAATGCTTGGAGACCC (SEQ ID = 1523)
TGTGCTTGTCTGAGTCCTGG (SEQ ID = 1524)
S4911726
Glyma13g31720





1TTTTCCTCGCAGTTATGCC (SEQ ID = 1525)
TCCAAAGACTAAGAGGGGGAA (SEQ ID = 1526)
S4954000
Glyma13g37320





TGCCATGCGTATTTTCTGAG (SEQ ID = 1527)
GGCCGCAAGCTTTTTAATCT (SEQ ID = 1528)
S4937572
Glyma13g39990





ACAAGCGAAGGAAGGAGTGA (SEQ ID = 1529)
GTCCGTCCCTTGCTATTCAA (SEQ ID = 1530)
S5035841
Glyma14g00670





GTCCCTTTGCAGTGGTGACT (SEQ ID = 1531)
TCAAGATCTGCCACCAAATG (SEQ ID = 1532)
S15925681
Glyma14g03340





CTCTGCTGGTGGAAGTTGGT (SEQ ID = 1533)
GATCCCGAAATCATCCGTAA (SEQ ID = 1534)
S4876235
Glyma15g03810





TATTTAAAGGTGGTCGCCCT (SEQ ID = 1535)
ATGACAGCGATGAAGAGGCT (SEQ ID = 1536)
S23064226
Glyma15g36170





ACTGCATTCATTCCGGTTTC (SEQ ID = 1537)
GGAAGAAATCCTTCGGGTTC (SEQ ID = 1538)
BU761035
Glyma15g37270





TTTTGGACGGCTAAGTGTCA (SEQ ID = 1539)
TCAGATAAGGTGCGCAGTTG (SEQ ID = 1540)
S21566203
Glyma17g13090





GGATTCAGTCACAGCAGCAA (SEQ ID = 1541)
ACACCGAGAGACGACCAGAC (SEQ ID = 1542)
S4936226
Glyma17g15240





CAGTGGGAGAAGGAGCGATA (SEQ ID = 1543)
CCGAAATATCGGAAGGGATT (SEQ ID = 1544)
TC216262
Glyma17g33500





GCCTCTTGATGACACTGCAA (SEQ ID = 1545)
TTCAATGCACTCTCCACTGC (SEQ ID = 1546)
S18530324
Glyma17g35230





TTTTCGAACAGCCTCCCTAA (SEQ ID = 1547)
ATGCGGAGTGATGGTTATGT (SEQ ID = 1548)
S21540325
Glyma17g37310





CATCTACGGGTACTGGCGAT (SEQ ID = 1549)
TCCGGAAACCAGAACTTGAC (SEQ ID = 1550)
S4992048
Glyma18g01040





TGCTTGAGCAAGGTTTTGTG (SEQ ID = 1551)
AACATGGCTGACGTATGGGT (SEQ ID = 1552)
CD412532
Glyma18g03990





GCAACTCGTGAAAGGTAGGC (SEQ ID = 1553)
TTTCATCCGGCACAGTATCA (SEQ ID = 1554)
CD399559
Glyma18g08720





TCCATTGAGGAATTGCATGA (SEQ ID = 1555)
GCGTTGAAACAGATTTGGGT (SEQ ID = 1556)
TC231646
Glyma18g47300





CGTTCATCAATGGCAGAAGA (SEQ ID = 1557)
AAGGAGCATTGCTGCATTTT (SEQ D = 1558)
S21537328
Glyma18g48000





CCATGGATGCTGAGGAACTT (SEQ ID = 1559)
CTGCCACTTCATCCTTTGGT (SEQ ID = 1560)
TC220047
Glyma19g36270





ACAATCAACCGAGGCTCAAC (SEQ ID = 1561)
CGAATCATCGTCCTCATCCT (SEQ ID = 1562)
S5146199
Glyma19g37410





CCCAGGTATGGTCCTTCTCA (SEQ ID = 1563)
CTTCTACCCCATGGCAAGAG (SEQ ID = 1564)
CD395499
Glyma20g38050





CCGTGCTGTTGTGGAATATG (SEQ ID = 1565)
ACCAGGACACCTGACTCCAG (SEQ ID = 1566)
BG238414
Glyma04g38010





CCGGTCTTTCTAGGAGGAGG (SEQ ID = 1567)
TCCAGGATGAAGCAAAGACC (SEQ ID = 1568)
BU544268
Glyma06g17050





GGCCGTAGTTGACTGTAGGG (SEQ ID = 1569)
AGTTGAATCCCCCAACGACT (SEQ ID = 1570)
S21540167
Glyma06g17050





GTGTCCAAAAATGGGCAATC (SEQ ID = 1571)
TGACGACCAATGAGGTGTGT (SEQ ID = 1572)
AW568684
Glyma06g17050





CACAAAAACCTCAACTGCGA (SEQ ID = 1573)
AATAAAAGGTGCATGTGGCA (SEQ ID = 1574)
S23063598
Glyma08g00910





TGCATTTTACCCCCTTTGAA (SEQ ID = 1575)
AGGGTTTTGGGGATTTTGTC (SEQ ID = 1576)
S4911429
Glyma10g02980





CGGAAACCCTACGGTAGACA (SEQ ID = 1577)
CAGTGCTTCGGGAAGATAGG (SEQ ID = 1578)
AW831041
Glyma01g03570





GGTTGACTATTTCCACCTACCT (SEQ ID = 1579)
TGCTGTCTTTTTGTCTCAGTG (SEQ ID = 1580)
S4994979
Glyma07g31650





AAAAAGACGACCACAGCGAC (SEQ ID = 1581)
ATCATCGTCGTCGTCATCAA (SEQ ID = 1582)
AW153030
Glyma13g24790





CATCAATTCAAGAGAATGGGG (SEQ ID = 1583)
CTTCTGAAGAATGCCTAATTGC (SEQ ID = 1584)
BU549127
Glyma15g41230





AGCAGCAGGACAGAACAGGT (SEQ ID = 1585)
AGCAGCCCTACATGGACATC (SEQ ID = 1586)
S21539760
Glyma06g07110





CGAAAGGATGAAACTCTCGC (SEQ ID = 1587)
GCCAAATACTTTCCGATCCA (SEQ ID = 1588)
S4891446
Glyma13g40460





CGAAACGGAACCAAAGAAGA (SEQ ID = 1589)
CTTCAACCTCGGGTGATTGT (SEQ ID = 1590)
BQ613064
Glyma13g41500





GAGGAATCGACGTTGGTGAT (SEQ ID = 1591)
CCGTCTCTTTCCATCTGCTC (SEQ ID = 1592)
S4933793
Glyma17g09900





TACCCTTTCCCTGCTCCTCT (SEQ ID = 1593)
CGATTGACAACTCAACCGAG (SEQ ID = 1594)
S4991114
Glyma02g09030





TGATGGTATTGCTGCTCCAG (SEQ ID = 1595)
TGCTGCAGATCCTGTTTTTG (SEQ ID = 1596)
CF808484
Glyma01g00980





TCAAAATTGTTGGCCAGTGA (SEQ ID = 1597)
TCTTGTGCTTGTTTCATCGC (SEQ ID = 1598)
S15933266
Glyma09g15750





TGCTCATTGCTACCTCAACG (SEQ ID = 1599)
ACGGCCATAGATCACCAAAG (SEQ ID = 1600)
S23068376
Glyma0022s00470





TTCGGAACAGTTTGTCGAAG (SEQ ID = 1601)
GACCAATCACAACACATGCC (SEQ ID = 1602)
BG362762
Glyma11g08610





ATATGATGACTGCCACGGGT (SEQ ID = 1603)
TGCTGTCCTCTCGAATGATG (SEQ ID = 1604)
S18957274
Glyma11g15530





CCACCTTCCCCATGATACAC (SEQ ID = 1605)
AGAAGACATGCCCTGGACTG (SEQ ID = 1606)
S21565951
Glyma15g18790





TACCTATCACCGAGAAGCGG (SEQ ID = 1607)
ATATGTTCCTGGCGAAAACG (SEQ ID = 1608)
S15926407
Glyma20g34690





GTGAGGGAGAGACGAAGACG (SEQ ID = 1609)
CTCCATTCCCTCTCACGAAA (SEQ ID = 1610)
S23071286
Glyma03g28510





TCAAGGGCATGGCTATAGGT (SEQ ID = 1611)
CCAGCACGGTTGGATTATCT (SEQ ID = 1612)
S23067653
Glyma14g31370





ATGAAGCTGCAGCCAAACTT (SEQ ID = 1613)
CTTCCTCCTCCTCCACAAGA (SEQ ID = 1614)
S5057766
Glyma14g31370





ACCATCGTCCGTTCATCAAT (SEQ ID = 1615)
TCCTCAGGGAGTTGTTTTGG (SEQ ID = 1616)
S4989926
Glyma20g36110





GTTGTGCCAGCATTTCTTGA (SEQ ID = 1617)
AATTTGAGCCCACAGGTCAG (SEQ ID = 1618)
AW201880
Glyma20g36110





ATTCGGCACGAGGGTAATC (SEQ ID = 1619)
CAACATCGTAAGGAACATTAGGC (SEQ ID = 1620)
BG653915
Glyma03g37950





ACAGCCAGAGCCTCGTTAAA (SEQ ID = 1621)
ACGAAGAGGCAGCTGAAGTC (SEQ ID = 1622)
S21537528
Glyma01g01210





TTACAAGCTGTGGATGTGCC (SEQ ID = 1623)
TGGATGAGGTCTTGGTCCTT (SEQ ID = 1624)
BI321021
Glyma02g09470





CAAATTGGGGTTTCCTTCG (SEQ ID = 1625)
TTTGCTTGTCGAGTTCGATG (SEQ ID = 1626)
S5025673
Glyma01g08060





GTGATGAGCGAACTGTGCAT (SEQ ID = 1627)
TGCCAGATAAGGCTGCAGTA (SEQ ID = 1628)
S4876508
Glyma02g01160





GAGCTCAGTCTTCCTCGTCG (SEQ ID = 1629)
AGGGTTCGTGCTTTGGTATG (SEQ ID = 1630)
S6675747
Glyma03g27180





AGCGGGTAGAGTTCACGTTG (SEQ ID = 1631)
TATTGTTGACGCTCCTCCGT (SEQ ID = 1632)
BG650304
Glyma07g14610





TATGGTGGCATGAAAACAGC (SEQ ID = 1633)
TGAGCTTTTGAAGAGCAAAGC (SEQ ID = 1634)
S5117294
Glyma07g36180





ATATGCACCCCCAGACAAAA (SEQ ID = 1635)
AAGGCCACTGGAATCATCAG (SEQ ID = 1636)
BU578952
Glyma11g36980





GCACGTGTTGTTGGTTTTTG (SEQ ID = 1637)
TATGACTATGCATCCCTGCG (SEQ ID = 1638)
S23070894
Glyma15g21860





CCCCAATGTAACTTTCCCCT (SEQ ID = 1639)
CACACTTAGCTGGAATGGCA (SEQ ID = 1640)
S23068686
Glyma19g32800





GATTGGGTTGAAGTGTTGGG (SEQ ID = 1641)
GCAAGTTTATGGGCAACCAG (SEQ ID = 1642)
BM092903
Glyma20g00900





CATTGGTTCATATCCCCCAC (SEQ ID = 1643)
CCTAGCCGCTACTCTCCCTT (SEQ ID = 1644)
BU551328
Glyma01g33260





GAATCCGACATAGGCCAGAA (SEQ ID = 1645)
ACCCCAGATTCCAACCTCTC (SEQ ID = 1646)
BE473856
Glyma13g38080





CCATTCCCATGGAAAACAAC (SEQ ID = 1647)
GGCATTTGGCTAGGATTGAA (SEQ ID = 1648)
S23064758
Glyma02g12280





GTGGTCTCAGCCTTCAGGAC (SEQ ID = 1649)
TAAGTACAAAACCGGCACCC (SEQ ID = 1650)
AW759718
Glyma03g33970





CTGAACAGCGGTACCAGGAT (SEQ ID = 1651)
GCAGCCAGGTTCTCTGATTT (SEQ ID = 1652)
S5101165
Glyma10g06500





CTGCAGACTCAGCAATTGAGAT (SEQ ID = 1653)
AGCCTGATTATGCCCCTTTC (SEQ ID = 1654)
BQ272709
Glyma19g36710





CGTGCATTTATTTTCAGGGG (SEQ ID = 1655)
ATGAGGCTGGTGCTGCTACT (SEQ ID = 1656)
S4991641
Glyma04g38730





CTGGTACATACAACGTGCCG (SEQ ID = 1657)
ACTCGGAGGATCTGCTTCTG (SEQ ID = 1658)
S4965728
Glyma04g38730





GATGGAAGAGAACGAGCGAC (SEQ ID = 1659)
CCGAAGACTGACCTTCATCC (SEQ ID = 1660)
S5109674;
Glyma01g02880




BQ610438






AGTCTGCAAGGAAGAAGGCA (SEQ ID = 1661)
TTGGGCTGATAGCGTCTTTT (SEQ ID = 1662)
BU927363
Glyma01g13950





TCATTCGTTCATCAGTGGGA (SEQ ID = 1663)
TTCATCACTTTCTGGCGTTG (SEQ ID = 1664)
S5015932
Glyma02g38370





CGATTGCAAGGAAGAGGAAG (SEQ ID = 1665)
CTATTGCATTTCTCGACGCA (SEQ ID = 1666)
S4916150
Glyma03g33900





AGCAGAGGCAACAGTATCCAA (SEQ ID = 1667)
CTGCTGTCAATGGCACAGAT (SEQ ID = 1668)
S5128683
Glyma04g01600





TCTTCTGGAAGCTATTTCGCA (SEQ ID = 1669)
ATTGATTCGCAAAAGGAAGC (SEQ ID = 1670)
BQ296202
Glyma04g01600





GGTCCGCAGAGGATTTTGTA (SEQ ID = 1671)
CCCATGCTTCAAAGCAGATT (SEQ ID = 1672)
S5020524
Glyma04g42200





AGCCTGACATAAGGTGTGCC (SEQ ID = 1673)
GACATGTATTCTCCCGGTGG (SEQ ID = 1674)
BU550308
Glyma06g21530





GGGAAGTGCAATAATGAAGCA (SEQ ID = 1675)
TACGTAGAAGAAAGGGCCGA (SEQ ID = 1676)
BU761371
Glyma11g07220





GGTGGCTCTTCTGATGCTCT (SEQ ID = 1677)
GGTCGAGATACAAAGCCTGC (SEQ ID = 1678)
S4980774
Glyma12g31910





CTCAGCCATGCAATTCTTCA (SEQ ID = 1679)
ATTGTTTTGGGAAGCACAGC (SEQ ID = 1680)
S4915127
Glyma15g07590





GCATACAACAAGTTCACCCG (SEQ ID = 1681)
AAGTCCATTTGCCACAGAGG (SEQ ID = 1682)
S15847407
Glyma16g03950





ATTGTTGAGGCCTGTATCGG (SEQ ID = 1683)
TGATGGCAGCTTTTAGGTCC (SEQ ID = 1684)
S4980388
Glyma04g42590





GAAGCCGGTGTCAAGGACTA (SEQ ID = 1685)
GGACACTACTCTCGGCTGCT (SEQ ID = 1686)
S5030305
Glyma14g24290





GGCTGAGCTAACTTTGAGCG (SEQ ID = 1687)
TGAAGTCCTGAATCAGTAGCCA (SEQ ID = 1688)
CA938591
Glyma02g10220





AAACCATTCACTGTTTGCTGG (SEQ ID = 1689)
TGGTTAACCGAAGGGTTTCA (SEQ ID = 1690)
S4916506
Glyma05g07750





TTCCCAGCCAAATTTAAGGA (SEQ ID = 1691)
GGAATATGCAAGACCCTCCA (SEQ ID = 1692)
S5146784
Glyma16g25450





ACATATGGATGGTGGCCAAT (SEQ ID = 1693)
TGCCTCGATACAAAGCACTG (SEQ ID = 1694)
S5032746
Glyma05g01130





TTTGAACCAAGCCAAAAACC (SEQ ID = 1695)
GTGGACCTAACAATGTGCCC (SEQ ID = 1696)
BQ297035
Glyma06g43720





GCTGGTGATGGTTGTTGTTG (SEQ ID = 1697)
TCGCCTATAGACGGATCCAC (SEQ ID = 1698)
S21567689
Glyma08g10350





AAGGTTGAAAAGCTGCGAAA (SEQ ID = 1699)
GCACTGCATCTACACCCAAA (SEQ ID = 1700)
S4877244
Glyma08g12970





TGAGAAGTTCCGAAGATCGAA (SEQ ID = 1701)
GTTGAAGAGCATAGGGGCAA (SEQ ID = 1702)
S21537611
Glyma10g42280





CTGCTTCCTCCGATTCTCAC (SEQ ID = 1703)
CCCAATTGATTCCAAGGAGA (SEQ ID = 1704)
BG044834
Glyma12g35720





CTCCAGAACCAGTAGCCAGG (SEQ ID = 1705)
GCTCGTTGTTGTTGTGGTTG (SEQ ID = 1706)
BE804085
Glyma13g34690





CCCCATATTGTTCTTTCTCCC (SEQ ID = 1707)
TTAAGGGCAGACCAAAGCAG (SEQ ID = 1708)
S4875309
Glyma16g05840





ACCAGCCTTTCCCAACTTTT (SEQ ID = 1709)
TCAGATGGGTTGGTGGTGTA (SEQ ID = 1710)
S23071068
Glyma18g01580





TGCTGGCTGAGGTTTCTACA (SEQ ID = 1711)
AAGGGGCTAAACCAAATCCA (SEQ ID = 1712)
TC205922
Glyma19g26560





TGCTGTTGGGTGAATGAAGA (SEQ ID = 1713)
GTTCTCAAAATCCATTGGCG (SEQ ID = 1714)
S5002246
Glyma19g29330





GTCGGACTTGTGTCCCAGTT (SEQ ID = 1715)
ACACGAAAGGTGGAGGGTC (SEQ ID = 1716)
S23071353
Glyma20g29330





GAGGTTGGCCTCCATTGATA (SEQ ID = 1717)
TCTCTCTCTTGGTGTTGGGC (SEQ ID = 1718)
TC210810
Glyma08g05240





TGACCGGGTTTCAGGAGTAA (SEQ ID = 1719)
TCTCCATCCATCCCTTTCTG (SEQ ID = 1720)
S4925034
Glyma11g34050





CGGCACTGGTTTCCAAGATA (SEQ ID = 1721)
TCAGCAACGTTCGTCATTTC (SEQ ID = 1722)
S4897670
Glyma11g14450





TCGACCTCTCCAAATCTGCT (SEQ ID = 1723)
TTGTAAGTGGAAGGGGCATC (SEQ ID = 1724)
S21539162
Glyma13g41390





ACAGCATCAACCTTAGCCGT (SEQ ID = 1725)
TTACACCCCAGCTGTTCCTC (SEQ ID = 1726)
S21540786
Glyma01g38090





ATGTGCCCAATTCTGCTACC (SEQ ID = 1727)
AGTTGCTAGTTCCGGCAAGA (SEQ ID = 1728)
S4898759
Glyma02g38030





GACCAATCATTCCAGGCATT (SEQ ID = 1729)
GCCGAGAGAGGACAAACAAA (SEQ ID = 1730)
S23070876
Glyma06g03070





TGTTGCTTGTCTTGCTTTGC (SEQ ID = 1731)
AAGTGCGGTTTTCAATGTCC (SEQ ID = 1732)
S23063028
Glyma05g24700





TTCTGCCCTTTCTGATTTCC (SEQ ID = 1733)
GCCAAGTAATGCTCCACCAA (SEQ ID = 1734)
TC227176
GTyma18g06110





GCCATTTCTCTTAGGGGGTT (SEQ ID = 1735)
GGGAAAGGGGTTTCACAGA (SEQ ID = 1736)
S4866988
Glyma17g00250





AAGACCCTGCGGGCTACTAT (SEQ ID = 1737)
AAGCTGAACCAAGTGCCTGT (SEQ ID = 1738)
S23069945
Glyma13g11200





GCAAATTCATGGAAGAGGGA (SEQ ID = 1739)
AATTGCTTCCTGGACCGTAA (SEQ ID = 1740)
S4872880
Glyma04g03310





GATCACTCAGAATCCAGGGC (SEQ ID = 1741)
GCATCGCATCAGTACAACCA (SEQ ID = 1742)
S22952242
Glyma07g21160





CATTGCAAAGCAAGGGTTTT (SEQ ID = 1743)
ACGCGATTGAGTTTTGATCC (SEQ ID = 1744)
BE802348
Glyma07g21160





TGAGTCGATATGTTTGTGCCA (SEQ ID = 1745)
CCCCCTCGAGGTATTTTATGA (SEQ ID = 1746)
S4912396
Glyma07g21160





TCACGCCATGTGCTCTACTC (SEQ ID = 1747)
AGGAGAGAGACGCCACAGAA (SEQ ID = 1748)
S4865868
Glyma12g04380





TGTTACTTCTGGTGGTCCCC (SEQ ID = 1749)
CCAGACAGCGCAATGAAATA (SEQ ID = 1750)
S4907392
Glyma12g33130





ATGAATTTGGTCCTTTCGCT (SEQ ID = 1751)
GTCATGCACCTGCTTCATATT (SEQ ID = 1752)
TC230059
Glyma17g10130





CGGACGTCAAGAACACAAGA (SEQ ID = 1753)
ATTAGGCGTATTGGTGACCG (SEQ ID = 1754)
S4981395
Glyma11g09750





CTGCAAAGTTGTTGCTTGGA (SEQ ID = 1755)
TGGAGGATAACACATTCGCA (SEQ ID = 1756)
S4885448
Glyma06g19840





CAATAAATGCACGCAACCTG (SEQ ID = 1757)
CTGCACGGTCAAAGCATCTA (SEQ ID = 1758)
S23071155
Glyma17g10130





CCAGATCGAATCAATGGAAAG (SEQ ID = 1759)
TACCAGGCTGCAATGCATAA (SEQ ID = 1760)
S4904547
Glyma11g34010





CAAGCTTTTACACCAGAGCAGA (SEQ ID = 1761)
TCGTTGCCCATCATAGTTCA (SEQ ID = 1762)
BI785471
Glyma05g38060





GTTCCTTCTTTGGAGTTGCG (SEQ ID = 1763)
CTTCAAAGCCAACAGCAACA (SEQ ID = 1764)
S22952966
Glyma09g01260





ATTCTTCCATGATGGGGGTT (SEQ ID = 1765)
CCTGAGCAAGAGTGGAGGAC (SEQ ID = 1766)
BM521609
Glyma18g10040





TACCACTCTCCACCTCCACC (SEQ ID = 1767)
CCATGTTGTGGATTCAGTGC (SEQ ID = 1768)
BE330208
Glyma03g00420





TTAAGTCTGAAACTGGAAGTGC (SEQ ID = 1769)
CCTCTCCACGTTGTTCCTTT (SEQ ID = 1770)
AW308923
Glyma06g23400





CCTTGTTTGTGTGTTCAGGC (SEQ ID = 1771)
CTTTGGCAGATTCGAGGAAG (SEQ ID = 1772)
BG155054
Glyma05g24700





TCAACCAAGGACAATTAGCA (SEQ ID = 1773)
GCACATCGTGACTAGCAGGT (SEQ ID = 1774)
CD395607
Glyma19g28580





GCGACATCTTGGTTCTTATTTG (SEQ ID = 1775)
AAGGCATTTTTCCTTCTCTGG (SEQ ID = 1776)
S22952516
Glyma02g07830





CTGCTGCAGTTGGTAACCG (SEQ ID = 1777)
ATTCCCTCCTCCAACCATGT (SEQ ID = 1778)
BU761888
Glyma11g15480





TTCTTTTGTCGTCTCGGACC (SEQ ID = 1779)
CCCTAAATCGGAACCAGAAA (SEQ ID = 1780)
S5871274
Glyma11g15480





GGGGGAAAACACCCATGTAT (SEQ ID = 1781)
TTCCAGAAGACACACCAAGC (SEQ ID = 1782)
S4876163
Glyma13g19860





CTGTGTGTTTCGCTCCAAGA (SEQ ID = 1783)
GGGAATGGATCCCGAATTAT (SEQ ID = 1784)
S23066904
Glyma20g02370





TGGGCTTCCTCAATTACACC (SEQ ID = 1785)
GTTGGGATACTGCATTGGCT (SEQ ID = 1786)
S5146307
Glyma01g22680





GTCCCTGGAGCTGATGGAT (SEQ ID = 1787)
TGGGACTCGATACAATGTGC (SEQ ID = 1788)
S5142129
Glyma03g27270





AGGAGGTGCCTGGTCTGTTA (SEQ ID = 1789)
ACAACATGGAAACCTGCTCC (SEQ ID = 1790)
BQ613024
Glyma03g27270





CATGGGGCTCCTTTTTGTTA (SEQ ID = 1791)
TTCATCCAGCTCATGGACAA (SEQ ID = 1792)
S21538774
Glyma19g01920





GAATTGCTCGGCTCATTTTC (SEQ ID = 1793)
TGAAGGCGAAGAGTCTGACC (SEQ ID = 1794)
S23061205
Glyma18g08990





GCAAACCAGCTTCTGGAGAG (SEQ ID = 1795)
CGACAATCCTGAACCCAAAT (SEQ ID = 1796)
S5146235
Glyma02g09060





TAGTGAAAGCACGAGAGCGA (SEQ ID = 1797)
CAAGAACGAAGCTTTGACCC (SEQ ID = 1798)
BE807568
Glyma04g05820





CGGTTACAATGGGCTTCTGT (SEQ ID = 1799)
CAGGCTGGTGATGTCATTTG (SEQ ID = 1800)
S23061947
Glyma05g05490





CAACAACCACCTCCACAAAA (SEQ ID = 1801)
CAACACCAATGGAGCTTGTG (SEQ ID = 1802)
S16523441
Glyma10g36950





TTTCCGTGATTTTCTGACCC (SEQ ID = 1803)
CACCACGATATATGGCAGCA (SEQ ID = 1804)
S4880628
Glyma11g37390





CTGCATTCTCTGCAACTCCA (SEQ ID = 1805)
TCTGAAATTCGGTGAGGCTT (SEQ ID = 1806)
S22952226
Glyma16g01370





AACACCTTCAAAGCCACCAC (SEQ ID = 1807)
TGGATGGAACAGTGGCATTA (SEQ ID = 1808)
S5146234
Glyma16g28250





TGTGGTGTTGCCAGTGGTAT (SEQ ID = 1809)
GAGAAGAACTCGGTGGCAAG (SEQ ID = 1810)
BM519961
Glyma20g30640





TGATACAGGGAAAGAGAGACGC (SEQ ID = 1811)
GACCTGACCCGACCCAAAT (SEQ ID = 1812)
BI699475
Glyma20g39410





ACCAGCAAACAAAAACTGGG (SEQ ID = 1813)
CATCACAAACAAGCTGGTGG (SEQ ID = 1814)
BE802758
Glyma06g08780





CCAGGGATCATAGATGTCGAA (SEQ ID = 1815)
TACAGCACGGAACCACTAGC (SEQ ID = 1816)
S5142330
Glyma09g32420





TGCAGCTTCACACACAATGA (SEQ ID = 1817)
CTTGGGACTTGTTGAAGGGA (SEQ ID = 1818)
S5146302
Glyma17g31400





CGCTGGATTGATTCTGGAGT (SEQ ID = 1819)
GCATGCATCTACCACCACAC (SEQ ID = 1820)
S21539810
Glyma14g08020





AGTTACAATGTTGGCGCCTT (SEQ ID = 1821)
GGAGCTGGTTGAGATGGTGT (SEQ ID = 1822)
S4901474
Glyma15g05490





TTGTCATCACCCATGAATCG (SEQ ID = 1823)
TTTTGGAAGGCATTTCTGCT (SEQ ID = 1824)
BU549842
Glyma19g33170





AATTCCCAAGAATCCCTTGC (SEQ ID = 1825)
CCCTCAGTTGGTGCTGATG (SEQ ID = 1826)
S15849836
Glyma01g05000





GCATTCTATTGAAGAGCGCC (SEQ ID = 1827)
AGCGGTCATGGGTATCAAAG (SEQ ID = 1828)
S5076201
Glyma03g41270





TCACAGGGTGATTGGTGAAA (SEQ ID = 1829)
ATGCCAACCCAAGATATGGA (SEQ ID = 1830)
S5145495
Glyma08g40850





AAAACCTGTGTTCACTGGGC (SEQ ID = 1831)
CAGGGCCTATCAGTGCAAAT (SEQ ID = 1832)
S4898136
Glyma01g06550





AGAAAAAGGTCAAGCGCTCA (SEQ ID = 1833)
AGCGCTTGTTAGGATGAGGA (SEQ ID = 1834)
AI966268
Glyma01g06550





CAATCTCTCCGCGTTTTCTC (SEQ ID = 1835)
TTGAAGTGCGAACAAGAACG (SEQ ID = 1836)
TC231049
Glyma01g06870





CTTTCAGCAGCAGCAACAAC (SEQ ID = 1837)
CGGAACATCATTTCTGCTTG (SEQ ID = 1838)
TC207514
Glyma02g15920





TCCTTGGCTCTGGAAGAGAA (SEQ ID = 1839)
TTTGGATTCTCAGGGTTTGG (SEQ ID = 1840)
BE657634
Glyma02g39870





AAATTTTGGAAGTGGGGGAC (SEQ ID = 1841)
CCAATCCTGTGGCTGTATAA (SEQ ID = 1842)
S4911583
Glyma02g39870





CTCTCATCCAAACTGCCTGG (SEQ ID = 1843)
TGCTGACCGATACAAATGGA (SEQ ID = 1844)
BU578846
Glyma02g47650





TTATCACCGATCCTCATCCC (SEQ ID = 1845)
CAAGATCAAGCCCCATTTGT (SEQ ID = 1846)
S15850879
Glyma03g31630





TGGCCAAGAGTCAACGACTA (SEQ ID = 1847)
GTGATACACGCATCACGTAAAA (SEQ ID = 1848)
AW507762
Glyma03g37670





TCTCCTTGATTTCCCTCTATCG (SEQ ID = 1849)
CGCAGGTTGCTGGTTGTTAT (SEQ ID = 1850)
TC231690
Glyma03g37940





CTGGTTGTATGTGATATCTCGG (SEQ ID = 1851)
ACCTTCATATCGACAGGGCA (SEQ ID = 1852)
S4999395
Glyma03g37940





TTAATGCCCCTTCTTCAACG (SEQ ID = 1853)
CTGCAGTGAAGTTCGGATCA (SEQ ID = 1854)
TC212079
Glyma03g38360





TTTCAGCCCCAACTTCAGTC (SEQ ID = 1855)
GAAAGGGAAATCCGTGTCAA (SEQ ID = 1856)
TC209320
Glyma03g41750





CGCAACAAACACATAGCCAC (SEQ ID = 1857)
CTGCCATTTTCTCACCGATT (SEQ ID = 1858)
TC216813
Glyma04g08060





TTTACATTGCAACCACCACC (SEQ ID = 1859)
AAGAAAGGGGAACTGTTGGG (SEQ ID = 1860)
S22953062
Glyma04g08060





GATAACCGTCACTCTGCCGT (SEQ ID = 1861)
CAGCATCTTCCAACACGAGA (SEQ ID = 1862)
TC221320
Glyma04g39650





AGAAGTGAGGCTATTGGGCA (SEQ ID = 1863)
CCCAGCTCAAGTCACTCTCC (SEQ ID = 1864)
BM144029
Glyma05g36970





TTGCAGCTTGCGTAATATCG (SEQ ID = 1865)
TGTGTCGTCCATTCGTCATT (SEQ ID = 1866)
S5017551
Glyma05936980





TCATCTCCTTACTCAGCCGC (SEQ ID = 1867)
AAGGTGGAGGGAGGTTGGT (SEQ ID = 1868)
CA936030
Glyma06g08120





GCTCCAAACTCATCAACCGT (SEQ ID = 1869)
TTCAAGAGAAAAACCGTGGG (SEQ ID = 1870)
S4909087
Glyma06g13090





CCATCACCTGATATCCCCAC (SEQ ID = 1871)
ATGACCCAGAGCCAAAAAGA (SEQ ID = 1872)
S21567785
Glyma06g27440





AAGGTCGCATGAATAAGTTCG (SEQ ID = 1873)
CCCCCTCGAGTTTTTGTTTT (SEQ ID = 1874)
S4883851
Glyma07g02630





GTTTGGAAACAAAACCGTGG (SEQ ID = 1875)
GGCAACAACACATGGTGAAG (SEQ ID = 1876)
S15852359
Glyma07g13610





TCAACTGAAAGCTTCGAGCA (SEQ ID = 1877)
GTTTCCATCCATGTCACCCT (SEQ ID = 1878)
TC213679
Glyma08g01430





TTCTACCCAGTTTTGCACCC (SEQ ID = 1879)
TTGCAGGGCTGCTACTTTCT (SEQ ID = 1880)
TC232713
Glyma08g02160





AATTCTGGCTCCGTGTTAGC (SEQ ID = 1881)
GCTCCCTTTAATGCCCTTCT (SEQ ID = 1882)
S4904584
Glyma08g02580





CGATGTGGATGTATTGGACG (SEQ ID = 1883)
TATATACCTGGGGTGCTGCG (SEQ ID = 1884)
TC223475
Glyma08g15210





GCAAGCTTTTCTCTTTGGGA (SEQ ID = 1885)
ACTCACCCGCTTCAGTTCCT (SEQ ID = 1886)
S5871333;
Glyma08g23380




TC225723






GTTATTACCGGTGCACCCAC (SEQ ID = 1887)
TGAATTTGAATCGTCGCAAG (SEQ ID = 1888)
TC232880
Glyma09g37930





ACTCCTTTTCAACCCCATCC (SEQ ID = 1889)
GAGGAAATTGAGGGAGGGAC (SEQ ID = 1890)
CF809068
Glyma09g41050





TCAGGGATCCTCATCCTCAC (SEQ ID = 1891)
TGGATAATATTGTTGGCGCA (SEQ ID = 1892)
S4875903
Glyma10g03820





GCATCGGCAAATACTTACACAA (SEQ ID = 1893)
CTTGGTCCCATTACTCAATCAA (SEQ ID = 1894)
S21538195
Glyma10g13720





ACGTACACCGGAGACCACTC (SEQ ID = 1895)
GAAGCAGGAGAGTGACCCAG (SEQ ID = 1896)
TC223128
Glyma10g37460





TCGGCACGAGAAAACTTCTT (SEQ ID = 1897)
GGGCATGATGTCCTGAAACT (SEQ ID = 1898)
S4897912
Glyma11g18810





TCCTTCCCAACACAAACACA (SEQ ID = 1899)
TTTCTGGAAAACTCCATCCG (SEQ ID = 1900)
S4983390
Glyma11g29720





TAAGCTCCTGCCTTCCAGTG (SEQ ID = 1901)
GGTGCTTCTTGCAAAGGTTC (SEQ ID = 1902)
TC220597
Glyma12g23950





GCGGTGAGGGTGTATCTCTT (SEQ ID = 1903)
CGCGCGTTAATACCACCTAT (SEQ ID = 1904)
S4906707
Glyma13g00380





CCCAAACCTCTAAGGACAACC (SEQ ID = 1905)
TGACCATGCAATGAAAGAGG (SEQ ID = 1906)
TC208324
Glyma13g17800





ATTCTGATCTCCCAAGCGAA (SEQ ID = 1907)
TGAGTCATCGCGACTAGACAA (SEQ ID = 1908)
TC222844
Glyma13g29600





AAGGAAGCAAGTTGAGCGAA (SEQ ID = 1909)
GAGAGGGAGGGAGTGGTTGT (SEQ ID = 1910)
S4873428
Glyma13g36540





CCACACCTTGCTGACACAGT (SEQ ID = 1911)
ATGGAAGTGATGGCTGCTG (SEQ ID = 1912)
S5052631
Glyma13g38630





TCTTCCCCACCAACAGCTAC (SEQ ID = 1913)
TGCTCTAACATAACCTGCGG (SEQ ID = 1914)
S4904543
Glyma13g44730





CAGCTATTGCTTTTGTTCCCA (SEQ ID = 1915)
GAGAAAGAGAGAGAGGGTCCAA (SEQ ID = 1916)
S22953012
Glyma14g17730





ACAGCCTGAGAAGTTGCGAT (SEQ ID = 1917)
ACTGTCCATTTGGAACACCG (SEQ ID = 1918)
BE820324
Glyma15g00570





GATTCCCCGTCAACCTCAG (SEQ ID = 1919)
TGAGAGGGTGGAGGTGTAGG (SEQ ID = 1920)
CF807231
Glyma15g11680





TGAAAAACTTCCCTCTTGTGC (SEQ ID = 1921)
TTTCCATTGCAAACCAAACA (SEQ ID = 1922)
S4909263
Glyma16g02960





GATCACGAGCCCTCTCTCAC (SEQ ID = 1923)
CCTAAATCCTCAGAGCTGCAC (SEQ ID = 1924)
S4901804
Glyma17g18480





GAGCCAATTGATCAACACGA (SEQ ID = 1925)
TCACTCTCGGCAGCTTTTCT (SEQ ID = 1926)
BM188198
Glyma17g33890





GCACTTCGAATTGTCGCTGT (SEQ ID = 1927)
CTCAAACCAAAGTGAAGCCC (SEQ ID = 1928)
S4992221
Glyma17g33890





AAGCACATTAGATTGCGTCG (SEQ ID = 1929)
TGTGACATCGCCTCGAGTAA (SEQ ID = 1930)
S4925263
Glyma18g47350





GATGGTTACCGATGGAGGAA (SEQ ID = 1931)
TTGCTTCTTCACATTGCACC (SEQ ID = 1932)
S4874738
Glyma19g26400





TTGGTCTTCCTCCTTTGTGG (SEQ ID = 1933)
AATTCACCCCAACAACCAAA (SEQ ID = 1934)
S21566010
Glyma19g40470





TTGCAAAGTTTAGAGACCAA (SEQ ID = 1935)
TGGGTTGACAAATTAGTCCTT (SEQ ID = 1936)
S4864975
Glyma20g03410





GGACAGGGATGAGGATGAAA (SEQ ID = 1937)
ATACGAGGATCCTATGGGGC (SEQ ID = 1938)
S21568212
Glyma20g03410





GCAGGAAGGGAATACTGACG (SEQ ID = 1939)
CCTACATTCCAGGCCCAGT (SEQ ID = 1940)
S4971908
Glyma03g03500





CCCTCAGTCACAGAAACAGC (SEQ ID = 1941)
GCTCTACTGCCTCAAATGGC (SEQ ID = 1942)
TC215832
Glyma12g10210





GGCACGAGATAAACGGAAGT (SEQ ID = 1943)
TCAGGAGTCTTCCCATCCAG (SEQ ID = 1944)
S4911826
Glyma13g38750





GGGCTCATTTTCCCCATATT (SEQ ID = 1945)
TATTCAATAGCGCAGCCCTT (SEQ ID = 1946)
S4877093
Glyma17g12200





TTATCCCAACGCCTTTTCTG (SEQ ID = 1947)
AGGAAGAGCCAAAACACCAA (SEQ ID = 1948)
BGT55046
Glyma08g23720





TCGTGATGAGAGAGTATCGCTT (SEQ ID = 1949)
TCCGTCCAGACTGCACATAA (SEQ ID = 1950)
S5055124
Glyma08g23720





AAACCACCCAAGGTGATCTG (SEQ ID = 1951)
TGTCGCGAATCGTATGAGAA (SEQ ID = 1952)
S15940089
Glyma10g35330





CTGGTGTATCGTGTGCGTCT (SEQ ID = 1953)
AAAGGGAGAGGTTGGTGGTT (SEQ ID = 1954)
BM886879
Glyma12g30920





CGAACCGAGTGCTTTCACTT (SEQ ID = 1955)
ATGATGCTTCTGGGTAACGG (SEQ ID = 1956)
S5138328
Glyma12g07510





GAAGGAAGAAACAACGCTCG (SEQ ID = 1957)
CGAACCAGTGTCACTAGCCA (SEQ ID = 1958)
BM095044
Glyma04g01120





TGCTTCGTTTGCACCTAATG (SEQ ID = 1959)
CGGCCATAGTGTCTCCACTT (SEQ ID = 1960)
CA783495
Glyma06g01140





AAATGGATCAGCAGAGTGGG (SEQ ID = 1961)
GGGAGGAGTCATCTGTGGAA (SEQ ID = 1962)
CA820031
Glyma06g02970





CAGGAACAGACATGGCACTG (SEQ ID = 1963)
TGGACAGTTCCTCAGATCCC (SEQ ID = 1964)
S21538405
Glyma09g14880





GGTGTTGGAACCATAGGCAT (SEQ ID = 1965)
AAGCATTGGAACCAGGTGAG (SEQ ID = 1966)
S22952581
Glyma11g07930





AGCTGCTTTAAGGAACGTGG (SEQ ID = 1967)
GCTTTCATATGGATGAGCTGC (SEQ ID = 1968)
S4995471
Glyma11g11850





AGCCAGTAGCCTTTCTGCAA (SEQ ID = 1969)
ACGTGACCTTTTTCATTGCC (SEQ ID = 1970)
S28053803
Glyma12g05570





AAGGTTGTGTTGCGTCTTCA (SEQ ID = 1971)
AAGGCATAACACATCTCCGC (SEQ ID = 1972)
S5104460
Glyma13g33420





GCTGAAATTGCAACTGGGAT (SEQ ID = 1973)
AAGGTTGTAAGCAGGCCCTT (SEQ ID = 1974)
S5140118
Glyma14g36930





TGGTATCCGGCTCATCTTTC (SEQ ID = 1975)
CGGTTCATAACCCTCATGCT (SEQ ID = 1976)
CD405603
Glyma11g31270





GTGCAAGAGAAACCCTCTGC (SEQ ID = 1977)
CCTAGGGCTTGTGAGTTTGC (SEQ ID = 1978)
BG047435
Glyma01g04310





TGGATGAAGCAGGATATAGATGG (SEQ ID = 1979)
ATCAACCTACGCACCGCTAC (SEQ ID = 1980)
S5010723
Glyma01g24820





GCCACTTGTACCGCCTGTTA (SEQ ID = 1981)
GGGGAATTTTCAGGCAACTC (SEQ ID = 1982)
BG362868
Glyma01g38290





GATCTCAACTTGCCAGCTCC (SEQ ID = 1983)
ACCCAATTGCTGCAGAGAAG (SEQ ID = 1984)
S4908810
Glyma01g41780





TTACTCCATCGGTCTCTCGAC (SEQ ID = 1985)
GTGAGTTCGGTCTCCGACA (SEQ ID = 1986)
CD405808
Glyma01g41780





GAGAAGGGGTAGGGATCCAG (SEQ ID = 1987)
CAAGGAGGACATGGAGTTGG (SEQ ID = 1988)
S21537487
Glyma02g31270





AATGTTTCAAGCAACCAGGC (SEQ ID = 1989)
TTGGCTGTGGAAAGGTTTTT (SEQ ID = 1990)
S21540805
Glyma02g46270





TCAAGGATGCCTCGGTCAC (SEQ ID = 1991)
TCATGCTGTAGAAGGTGCTGA (SEQ ID = 1992)
TC210774
Glyma02g46270





TTGGACTTGGAGTTACACCTG (SEQ ID = 1993)
AGAAAAAGAAGCTGAGGTGGTG (SEQ ID = 1994)
AW598570
Glyma03g33070





AATGCAACCTCGTTTTCGTC (SEQ ID = 1995)
TATGATCCAACCTTGCCCTC (SEQ ID = 1996)
BM086022
Glyma03g38180





CAATTGCAGAAGGTAGATGAGTC (SEQ ID = 1997)
GCCAATTGTACTGTTTGGTTTG (SEQ ID = 1998)
S21537369
Glyma03g38180





GGGATTCAAGGTCCACTTCA (SEQ ID = 1999)
GCGAGAGACAGGAGGAAGAA (SEQ ID = 2000)
S23067472
Glyma03g39120





TAAGCCTAGGCCACGAAGAA (SEQ ID = 2001)
ACCCCAACCTGCACTATCTG (SEQ ID = 2002)
S22953038
Glyma04g03560





GGGTAACCTCGTCATCAACG (SEQ ID = 2003)
TGGTCCACTCACACAGGAAG (SEQ ID = 2004)
BF324775
Glyma04g04760





TCCCTCGGCTCAAATATCAC (SEQ ID = 2005)
CCCTTAATAGGGTTGGGCTT (SEQ ID = 2006)
S23070418
Glyma04g15990





GCCAGTCCAACTGTGACCTT (SEQ ID = 2007)
TCATCGGGCATGAAAGGTAT (SEQ ID = 2008)
AI461128
Glyma04g16850





GGTCCACCTTCTTCCTCCTC (SEQ ID = 2009)
AAACAGTGCTCTCGGATGCT (SEQ ID = 2010)
S23065601
Glyma04g36630





GAAAATGGGGTGGCTAACAA (SEQ ID = 2011)
GAGAGAGACACAACCTCGGC (SEQ ID = 2012)
BM527349
Glyma05g26780





AGAAGCTTGTGGTGGAGGAG (SEQ ID = 2013)
GACCAACAAGGAGCTGGTGT (SEQ ID = 2014)
S5129767
Glyma05g26990





TTTTCTAGCTACCCTAGCGAAT (SEQ ID = 2015)
GCTGGCTATTAATCCCACGTA (SEQ ID = 2016)
BQ299693
Glyma05g33590





ATCCTGGCTGCTCATTATGG (SEQ ID = 2017)
CTGTACCCAAAGGAGGTGGA (SEQ ID = 2018)
BM142986
Glyma05g34280





TTTCCGGACTACTCAGCAGG (SEQ ID = 2019)
TGAGGATTTTCAATCATGGG (SEQ ID = 2020)
S4873409
Glyma06g04840





CCCACCAAGGTTTGTAATGC (SEQ ID = 2021)
GCAGCACCTGAAATTAGGGA (SEQ ID = 2022)
S23062231
Glyma06g21730





GTGGTGCAGCTGGGAATAAT (SEQ ID = 2023)
CATGGATGCAATTTCCAATG (SEQ ID = 2024)
S5059623
Glyma07g01130





CATGGAGTGATCTTGTTGTTGC (SEQ ID = 2025)
CAACAAGCCTTAACGAGACAGA (SEQ ID = 2026)
S15937949
Glyma07g17810





GGTGATGGCGAGTTGAAAGT (SEQ ID = 2027)
AACCCTTGGAGTTGCTGATG (SEQ ID = 2028)
S4916522
Glyma08g09970





AGCATCTATCACGGCCAATC (SEQ ID = 2029)
AAAGGCAAAAGAGCCATCAA (SEQ ID = 2030)
S5145792
Glyma08g13310





CTAGCCACAAGAAGCCCAAG (SEQ ID = 2031)
CCATGCCACAAATTGAACAC (SEQ ID = 2032)
S5045942
Glyma10g05210





CGAACTCCGTTGGAGAAAAG (SEQ ID = 2033)
AGGCTTGGCAAAAAGTCTCA (SEQ ID = 2034)
S23062194
Glyma10g05210





AAGCTTCTGCTTTGCCTGAG (SEQ ID = 2035)
TCTCCACTTCAAGGAATATCCA (SEQ ID = 2036)
S5146708
Glyma10g05850





CACCTCCGTTGTTGTTGTTG (SEQ ID = 2037)
CAAATGGGTTCCACCAGAAG (SEQ ID = 2038)
S21539084
Glyma10g05880





GGAGTTCGCCTAGTTCCTGA (SEQ ID = 2039)
CTCATAATTCGATGGGTCGC (SEQ ID = 2040)
AI794788
Glyma10g17510





GGTTGCACTTGACTTGGGTT (SEQ ID = 2041)
AATGTCCTGGTCCCACAAAG (SEQ ID = 2042)
S4993174
Glyma10g17510





AAGAAAGGCTTTTGCAGCAT (SEQ ID = 2043)
TGAGGACAATTTTTCCCACAC (SEQ ID = 2044)
S21566969
Glyma10g37780





GGAAGTAACAGCGTTGGAGG (SEQ ID = 2045)
CCCACTCATTCCCCTCACTA (SEQ ID = 2046)
S4913507
Glyma10g42660





CAAGCTTTGGGAGGACACAT (SEQ ID = 2047)
CTGCTGCCAGAACTCATCAA (SEQ ID = 2048)
BI321317
Glyma10g43630





CCTCCTGTTAGGGTGGTGAA (SEQ ID = 2049)
AGCTCCACCTCCAGCAGTTA (SEQ ID = 2050)
BG508740
Glyma10g44160





CAACGATGCCACCAACATAG (SEQ ID = 2051)
TAGCGGTGATAGCAGTGGTG (SEQ ID = 2052)
CA786021
Glyma12g30270





GTTTGGGACATCATCGTCGT (SEQ ID = 2053)
CGTTGGCATGTGTAAATGATG (SEQ ID = 2054)
AW568213
Glyma13g40240





TTCATGTGAATGGCTTTGGA (SEQ ID = 2055)
AAGCTTTGCTATTCCGGGTT (SEQ ID = 2056)
S6670395
Glyma14g13360





CCTTGGATTGGACAACCATC (SEQ ID = 2057)
GACCAGGACCACCACCTCTA (SEQ ID = 2058)
S4964820
Glyma15g02840





AAATGACAAGCCTTTGTGGC (SEQ ID = 2059)
TGGATGACCTTGTTTCAGCA (SEQ ID = 2060)
S21540601
Glyma16g06040





TGAAGTTCATGCTCTGCACC (SEQ ID = 2061)
TTGGATGACACTAAAGGGGC (SEQ ID = 2062)
S4993204
Glyma16g27280





GACCCCAGTGTGATGTTGAA (SEQ ID = 2063)
ATGCCTTTTTGACGAGCAAT (SEQ ID = 2064)
S19678454
Glyma16g27280





AGGATTTGTGACAAGCGTGG (SEQ ID = 2065)
AGGAACACAAACTCGCCAAT (SEQ ID = 2066)
BU548087
Glyma17g15140





TTTCAGCAATGGCAGAGCC (SEQ ID = 2067)
AGTGAAGCTTTGGAGGGAGA (SEQ ID = 2068)
BI892530
Glyma17g15140





GAACCGTCAAGGTTTTTGGA (SEQ ID = 2069)
ACAGTTTCATCGCGATCCTT (SEQ ID = 2070)
BM887582
Glyma17g33140





ACTCTCAGAATTCCATCGCC (SEQ ID = 2071)
ATCGAGTGTTTGCTTCGCTT (SEQ ID = 2072)
BU964979
Glyma18g02010





TCGCGGTACTCTTCGAATTT (SEQ ID = 2073)
CAAGCCATTCCCAACCATAA (SEQ ID = 2074)
S23067146
Glyma18g07330





AGAGCAGTGGCAGTGGAAAT (SEQ ID = 2075)
CACATGATCCACCAAAGCAG (SEQ ID = 2076)
BI424123
Glyma19g32220





ATAGCACGAGGGTGGTTACG (SEQ ID = 2077)
TGCCATCTTTCCAAACAACA (SEQ ID = 2078)
AW306777
Glyma19g35740





TCACCTCAGTTGCTTCAACG (SEQ ID = 2079)
AAACACTTTGCATTCCCTGG (SEQ ID = 2080)
BI785592
Glyma19g36430





TAAGGCCTGAGAGTTTCCGA (SEQ ID = 2081)
CCCACTAACAGAGCAGGAGG (SEQ ID = 2082)
S21540486
Glyma19g40220





TGAACTGATGTCAGGGTCCA (SEQ ID = 2083)
TAGCGAGACAGACCCACCTT (SEQ ID = 2084)
TC219174
Glyma02g17260





AATTGGGAAGGGTGTGTGAA (SEQ ID = 2085)
GATTTGGATCGATTCGTGCT (SEQ ID = 2086)
S4915601
Glyma02g29360





CCGCCATTCCCTTTATTGTA (SEQ ID = 2087)
GGGCCTAAAAACCATGGAAA (SEQ ID = 2088)
S4866216
Glyma02g39210





TTGTAACCCGATTCTTGGGA (SEQ ID = 2089)
AGTTTCCAGAAAGGCCTGGT (SEQ ID = 2090)
S23067580
Glyma05g02920





AAAATGCCAAGAGTTGGCTG (SEQ ID = 2091)
TACTTCTGCGAGCATTGTGC (SEQ ID = 2092)
S5128425
Glyma05g37520





TGATGTGGCTGAAAATGGAG (SEQ ID = 2093)
AAGATTCTTTTCCGGCCATT (SEQ ID = 2094)
S4863815
Glyma06g18240





CTTGTCACAACATCACCGTGT (SEQ ID = 2095)
TGTTTGCACTGTTCCCAACT (SEQ ID = 2096)
S5129446
Glyma07g37980





AGTAATCGAACCCCAGACCC (SEQ ID = 2097)
AAACTCTGCCCCTGTAGCAA (SEQ ID = 2098)
CA953058
Glyma08g16340





TCTCGATTTCATCGCCTTCT (SEQ ID = 2099)
AACCTGCAAGTTTGACCACC (SEQ ID = 2100)
BU546851
Glyma08g25050





CACAGATATGGAGGCGGTCT (SEQ ID = 2101)
TTTGAAGGCCCTCCCTTATT (SEQ ID = 2102)
S5080459
Glyma08g36540





TTTTGGCAAAGGCTCTGTCT (SEQ ID = 2103)
CTGCTCAGGCAAACCAGAAT (SEQ ID = 2104)
CA785414
Glyma08g43270





GATAGATCAGGCTCCTCCCC (SEQ ID = 2105)
TCCTCATGGGAATGGAAAAG (SEQ ID = 2106)
S21566772
Glyma09g15600





GATAGGACAGCCAGAATGCC (SEQ ID = 2107)
ATGGCAACTCTTCCAGCAAT (SEQ ID = 2108)
BI786323
Glyma09g38650





TTTTGATGGCAACTGTTCAAAG (SEQ ID = 2109)
ATGGGGTGAGCACAAAAGAG (SEQ ID = 2110)
S5102318
Glyma10g02540





GAAGATGGCAAGGTCCTTCA (SEQ ID = 2111)
GATTGACCCCATTTGACCAC (SEQ ID = 2112)
S18531023
Glyma10g31370





GCTCTTCCTCTTTCTGCCCT (SEQ ID = 2113)
AATGCCACTCGCAACAAAG (SEQ ID = 2114)
S23065610
Glyma10g41530





TCTGATGTCTTTTCAGTTGCG (SEQ ID = 2115)
TGAAGCACCTTCTCAGTCCA (SEQ ID = 2116)
S4924581
Glyma11g10610





TTCCAGTCTGGGTTCTCCTG (SEQ ID = 2117)
AAGAGCAAACAGCTGCATCA (SEQ ID = 2118)
TC225717
Glyma12g36600





TGCTCCTGCCTTTGATTCTT (SEQ ID = 2119)
TGTAGCTCCATCTCCTGGCT (SEQ ID = 2120)
TC224861
Glyma14g01990





CCATGGATGGAGCAGCTGTA (SEQ ID = 2121)
ATAACCAAGAAGCATTGCCA (SEQ ID = 2122)
S4898613
Glyma14g01990





GATTTTCCCATTGCCTGAGA (SEQ ID = 2123)
GCAGCATGAATTCAGACCACT (SEQ ID = 2124)
S4867817
Glyma18g47660





GATTCCACTGTTCCCTCCAA (SEQ ID = 2125)
AGGCATAGTAGTCCCTGCCA (SEQ ID = 2126)
BU964406
Glyma19g27980





TGCTCCTCAAGGAAGGAAAA (SEQ ID = 2127)
GGTCAGGATACCACTGGGTG (SEQ ID = 2128)
CD409339
Glyma19g32340





GCCAGGTAACATGAAATCCAG (SEQ ID = 2129)
CATTGCCGGAGATGTACAGA (SEQ ID = 2130)
CD408173
Glyma20g36140





GACCCGACCAACCTTAAACA (SEQ ID = 2131)
TCTTGGGCCAAAGCAAATAC (SEQ ID = 2132)
S4866746
Glyma20g39160





TGTCATGCGATCGAAATGTT (SEQ ID = 2133)
TTGTGAATTGCATCTCTCGC (SEQ ID = 2134)
CF806129
Glyma02g38870





TAACCGTAGGTGAACGGCTC (SEQ ID = 2135)
CGAAGACGGAGCAGAAAAGT (SEQ ID = 2136)
CD413483
Glyma06g06300





AGAGGAGCGAGTCCAATCTG (SEQ ID = 2137)
GAGTAACTGTGCGCAAACGA (SEQ ID = 2138)
S4981738
Glyma07g02320





AATATGGAACAGAAGCCCCC (SEQ ID = 2139)
CGCGATGGGAAGATTATTGT (SEQ ID = 2140)
CD402050
Glyma13g01290





GAGGGAGATTTGTGAAGGCA (SEQ ID = 2141)
ACACACGAGCATTGAACTCG (SEQ ID = 2142)
S4948369
Glyma16g05540





GGATTGCTGTTGTGTCAGGA (SEQ ID = 2143)
TATCGCAGTACCCTCGCTTC (SEQ ID = 2144)
S4912269
Glyma17g07420





TTCACCCCATGTTTATCGTG (SEQ ID = 2145)
GGTGATGATGGGTTAAGGGA (SEQ ID = 2146)
AW567640
Glyma19g27240





CCAACCAGCTCTTCTCCAAG (SEQ ID = 2147)
TCTGGCACAGAACAGAGGTG (SEQ ID = 2148)
AW756603
Glyma19g39460





TTACACTGTTGAACGCAGCC (SEQ ID = 2149)
ATGACCCTTTGAGCACAACC (SEQ ID = 2150)
S21566080
Glyma20g07050





TGTAGCCTAACCCCTCCCTT (SEQ ID = 2151)
CGTCACATGCTCTTGCAGTT (SEQ ID = 2152)
AW598554
Glyma20g24940





CACAACACAACAATTCCAACCT (SEQ ID = 2153)
ATTTGCAATATTGTGGGGGA (SEQ ID = 2154)
BU548330
Glyma16g26140





ATACCGATATGATCGGCGAG (SEQ ID = 2155)
CTTTGAAAGGGGAATGCTGA (SEQ ID = 2156)
BM521216
Glyma19g27160





TTTGCTTTCAAATGTGGCTG (SEQ ID = 2157)
CTCCACCTGATGCACTTCTG (SEQ ID = 2158)
BI321109
Glyma09g41790





CCAACCTTTCTGCAGCATTT (SEQ ID = 2159)
CCTGTTCACTCTGACAGGCTC (SEQ ID = 2160)
AW459839
Glyma02g12080





AACAAGATCCTTGCACCACC (SEQ ID = 2161)
ACTTTAAGCCACCACATGGC (SEQ ID = 2162)
S5127299
Glyma04g41170





AAACTGTTCTTCGACGGAGC (SEQ ID = 2163)
GCTCCACTTTAACCGTGACC (SEQ ID = 2164)
S21540121
Glyma06g22800





GGAGGGTCTGAATCCAACTG (SEQ ID = 2165)
GACCCGAAACCAAATTCAAA (SEQ ID = 2166)
S34534192
Glyma08g20840





GGCTTGCATTGAATGGTTTT (SEQ ID = 2167)
CTATATGGGCAACACTGGGG (SEQ ID = 2168)
S5143054
Glyma09g37170





TGCTGGTTCGTACCCTTTTC (SEQ ID = 2169)
ACCGATGGCATCTGAGAAAC (SEQ ID = 2170)
BI497850
Glyma12g06880





CTCTAGCTCCACCACGAACC (SEQ ID = 2171)
AAACCTTGGGAAAGGAACAC (SEQ ID = 2172)
S34534190
Glyma13g24600





TGCCAAAAGGGAACTGAAAC (SEQ ID = 2173)
CATCACCCCCAGTTTCCTC (SEQ ID = 2174)
S23070950
Glyma15g02620





TGACCCAAACCTATGTGCAA (SEQ ID = 2175)
GGCATTATGCTGTTGAGGGT (SEQ ID = 2176)
S34534176
Glyma15g07730





TGTTCCACTTGATCAGCAGC (SEQ ID = 2177)
GGTGGTGGCAGAGTTTTGTT (SEQ ID = 2178)
S4932109
Glyma16g02550





CATTTCCCGGTGTTGAAATC (SEQ ID = 2179)
CATTGCGTCTTCTGGAGTCA (SEQ ID = 2180)
BE657938
Glyma16g26030





AGCACCTTCCAACAACAACC (SEQ ID = 2181)
CCATGTATAGGGCCAAGGAA (SEQ ID = 2182)
S34534182
Glyma17g10920





CCTCAAGGAAGAAGGAACCC (SEQ ID = 2183)
GGTTCGGTAGCTCAGCAAAG (SEQ ID = 2184)
S34534187
Glyma17g21540





CTAGGCAACGAGCCAAAAAG (SEQ ID = 2185)
TATGGTGACTACTCGCACGC (SEQ ID = 2186)
S5143416
Glyma15g09330





TGATGATCCTGGAGGAAAGG (SEQ ID = 2187)
ACTCTGTGCAATGCTTGTGG (SEQ ID = 2188)
BQ453782
Glyma01g10390





GCTTCCCGGTTTTTGAATTT (SEQ ID = 2189)
CCCACTGAAACAGGTCCATT (SEQ ID = 2190)
TC234963
Glyma02g05710





ATTACGGGAAAGTGCGACTG (SEQ ID = 2191)
TCCGCAACCATAATTGTGAC (SEQ ID = 2192)
BE820520
Glyma02g07850





TGAAGAAAGAGGAGGAGCCA (SEQ ID = 2193)
GCTTTCAAGGACTGAGACCG (SEQ ID = 2194)
CA799894
Glyma02g08150





AAAGAAACGGGCATATGGTG (SEQ ID = 2195)
GCCTTTCCATCATTCTCCAC (SEQ ID = 2196)
S4925538
Glyma03g27250





GGGTAATTTGGGGGAAAAGA (SEQ ID = 2197)
TATGTTCCGTGGCGTACAAA (SEQ ID = 2198)
S4864621
Glyma04g01090





CACGCGATGTTTGGCTACTA (SEQ ID = 2199)
GAGGACGGACCGTATGTGAC (SEQ ID = 2200)
S4872958
Glyma06g01110





GTCTTCAGCTCCTCCTCGG (SEQ ID = 2201)
TCCCCAGTGATCCTCATTTC (SEQ ID = 2202)
S23071239
Glyma07g01960





CTTCCTCAGGGAACAGTCCA (SEQ ID = 2203)
GAGAGGAGTCTTGGTGGTGC (SEQ ID = 2204)
S4885901
Glyma07g37190





GTTGCACCCAGAAAATGCTT (SEQ ID = 2205)
CAGGCATTGCATAGGGTCTT (SEQ ID = 2206)
S4897423
Glyma11g20480





GTTGCACCCAGAAAATGCTT (SEQ ID = 2207)
CAGGCATTGCATAGGGTCTT (SEQ ID = 2208)
BE556639
Glyma11g20480





TGGAGATTTGATGAAGCCAA (SEQ ID = 2209)
GCACTCAAACTGCCACAAGA (SEQ ID = 2210)
BE658870
Glyma12g29730





CCCACACTTTTTGGTCCTCA (SEQ ID = 2211)
TTAGGAAAGGGGAGGGAAAA (SEQ ID = 2212)
S5142472
Glyma13g00200





GGGCTCGTAGGTAACGTCAG (SEQ ID = 2213)
GTCATAGCCGGCGAATTAAG (SEQ ID = 2214)
S4875857
Glyma13g40020





TGGAATTCGACAAAGGAAGG (SEQ ID = 2215)
GCTATGCAACGTGTTTCCCT (SEQ ID = 2216)
S5061040
Glyma15g18380





GAGTGGCAGGATAGTCCAGG (SEQ ID = 2217)
CTCTCTCCTTATCCGCTCCC (SEQ ID = 2218)
S5019221
Glyma17g06290





GCTAGCTTCTGGGGAGCCTA (SEQ ID = 2219)
CAGGTTGTGAGGCATTTTGA (SEQ ID = 2220)
BU082623
Glyma20g32050





CCAGAGTTGGCTGTTCCATT (SEQ ID = 2221)
AGCTTCCTCAGTCAAATGTGC (SEQ ID = 2222)
S23064229
Glyma09g10010





ACTGGTTTGCCACAAGGAAC (SEQ ID = 2223)
TCCCGAAGGAAAGCACTCTA (SEQ ID = 2224)
S5141720
Glyma03g31820





CCTTGAGCTGAGTTCTGGCT (SEQ ID = 2225)
GGTTTTCATGATGACCCTGG (SEQ ID = 2226)
S22951753
Glyma02g10480





CATCGTCATCTTGATCGTCC (SEQ ID = 2227)
AAGTCCAGCTCTAAGCAGCG (SEQ ID = 2228)
S23061682
Glyma07g04040





ACAAGGCTGATAGGAAGCGA (SEQ ID = 2229)
TTCCTTGTTTCTTGGCCATC (SEQ ID = 2230)
S4883098
Glyma14g11400





GCAACAGATGTCAAATAGCCG (SEQ ID = 2231)
AAGCTTTACAAACCCATGACG (SEQ ID = 2232)
CF808329
Glyma19g17460





TTTTAATGGGGTCTGGCAAC (SEQ ID = 2233)
ACGCGTTAGTTCTGCTTCGT (SEQ ID = 2234)
CF808357
Glyma07g00230





GTTATCAAAAGGACCGTGGC (SEQ ID = 2235)
TTGCCTTGCTTCCTTGTTCT (SEQ ID = 2236)
AW102412
Glyma15g00250





GAGGCCTCCAATGTAATCCA (SEQ ID = 2237)
TCTCTTCCTTGGGAAGCAAC (SEQ ID = 2238)
S5079445
Glyma02g47850





TCTTCTTGTGGTGCTTGTGC (SEQ ID = 2239)
GTTGCGGTAACCACAGGAAT (SEQ ID = 2240)
BF066816
Glyma07g34890





CTTTGGAGATCCCATCATGC (SEQ ID = 2241)
CGTTGAGCTTCTGGTGGAAT (SEQ ID = 2242)
BI786075
Glyma20g02690





GCGCACATTGTTCTGCTTTA (SEQ ID = 2243)
TCCTTGCTCAAGTTCAACCA (SEQ ID = 2244)
BU550961
Glyma01g43000





TCACGGTTCGTACTGACGAG (SEQ ID = 2245)
AGTGCTCCACCCATTGTTGT (SEQ ID = 2246)
S4882921
Glyma03g02930





CAATGCTGCGTCTCACTTGT (SEQ ID = 2247)
CATACATGAATGGGGCCTCT (SEQ ID = 2248)
S21537821
Glyma04g41500





CTACCACAACTAGGAGCCGC (SEQ ID = 2249)
CATTATCACGGCTTGCAGAA (SEQ ID = 2250)
BU550136
Glyma05g01100





CAATGCCGATTACTCTCCGT (SEQ ID = 2251)
GAGACGGAACCTCCGAGTCT (SEQ ID = 2252)
S6674973
Glyma05g36110





TTTACAGTTCCAGCACAGCG (SEQ ID = 2253)
ATTATGCAAGAGAATGCCCG (SEQ ID = 2254)
S23064088
Glyma06g01090





AGGTCACGGGAGGAAGATTT (SEQ ID = 2255)
GAGATGGGTGCTAGGCATGT (SEQ ID = 2256)
S21567496
Glyma06g34960





TGAAACTTCCAGGCCAAAAC (SEQ ID = 2257)
AGCGAAATTCGGGAAAGACT (SEQ ID = 2258)
S4865156
Glyma07g27820





AAATAGGGGCATTGATGACG (SEQ ID = 2259)
TTCCAATCCCGGTCCATAG (SEQ ID = 2260)
S4934838
Glyma08g13630





ACATTCATGCCCCCATCTAA (SEQ ID = 2261)
CGCAACACAACATATGCTCC (SEQ ID = 2262)
S4865951
Glyma08g13630





CATCTCCAACGTCTCGGTTT (SEQ ID = 2263)
CCTGCAAAGAAGCTTGATGA (SEQ ID = 2264)
S4877743
Glyma08g36700





AGACCAGTTTTGGCATTGAGA (SEQ ID = 2265)
TTCCAAGCGTGTTTACCAGTC (SEQ ID = 2266)
S23072300
Glyma08g40840





TTGAGCTAGGTTTGACGGCT (SEQ ID = 2267)
TGGATTTGTCCAAGGTGTGA (SEQ ID = 2268)
BI094989
Glyma09g37750





TGGCATCAAAAAGGAGAACA (SEQ ID = 2269)
TGAATGCTGGCATCGTAAAG (SEQ ID = 2270)
S5142209
Glyma10g05910





TATTGGTCCAGTTTTGGGGA (SEQ ID = 2271)
CAACCTTCCAATATCCCTGG (SEQ ID = 2272)
BM178746
Glyma10g21950





TGCCAGTCAGGATCAGTTTG (SEQ ID = 2273)
CCCAGATAGCATTGAAGGGA (SEQ ID = 2274)
BE346270
Glyma10g41540





ACGTGACCATAACAACGGGT (SEQ ID = 2275)
GTGCACCGTTGACAAAGCTA (SEQ ID = 2276)
BF009919
Glyma10g41870





GGGAGGCCATACTCATCAGA (SEQ ID = 2277)
AACTCAGGTGGATGATTCGC (SEQ ID = 2278)
BI315918
Glyma11g33420





CAATTACACCGAGCATCACG (SEQ ID = 2279)
ATCATCGCTCATCGTGTCAG (SEQ ID = 2280)
S4876881
Glyma12g30920





TCTCTCCCGCTAAGGTACGA (SEQ ID = 2281)
ACCATTGCATCCAACAATGA (SEQ ID = 2282)
S5144973
Glyma13g19790





TCCCCAAGGAAGCGTAAATA (SEQ ID = 2283)
ACGTTCGGCTACATCAAAGC (SEQ ID = 2284)
S4980807
Glyma13g41450





TTAATTGCTGAGCAGGGACC (SEQ ID = 2285)
TTGCAGCAGTGCGATAATTC (SEQ ID = 2286)
S4891868
Glyma13g41590





TCTGGCTCTCTTGGAATTGG (SEQ ID = 2287)
GATCGGGTGATAGTTCACGG (SEQ ID = 2288)
BU546053
Glyma17g37430





GGCTTGCATCTTTTGGTTCT (SEQ ID = 2289)
TCCCTCATCTGCAATTTTCC (SEQ ID = 2290)
AI748637
Glyma18g15520





AGTGCCTCCTCTGCTATGGA (SEQ ID = 2291)
CAAGCAATTGAAGCACTGGA (SEQ ID = 2292)
S6669987
Glyma19g32340





TGTTTTGTTGGCATGGAGAA (SEQ ID = 2293)
AGCTGAAACTACCTCGCCAA (SEQ ID = 2294)
BM526462
Glyma19g39460





TCTCATCCTGTTTTCTGCCC (SEQ ID = 2295)
TGACATCCTTGACGTGGAAA (SEQ ID = 2296)
S21700432
Glyma19g39460





TCTCCTCGGTTAAAGGGGTT (SEQ ID = 2297)
GCACCCAGTATCGCAGTGTA (SEQ ID = 2298)
BM954606
Glyma20g29060









Example 3
Tissue Specific Transcription Factors in Soybean

The primers in the primer library described in Example 2 were used to quantitate TF gene expression in 10 tissues from soybean plants. Briefly, soybean strain Williams 82 was grown under normal conditions. RNA samples from 10 different tissues were prepared as described in Example 7 and in U.S. patent application Ser. No. 12/138,392. cDNA were prepared from these RNA samples by reverse transcription. The cDNA samples thus obtained were then used as templates for PCR using primer pairs specific for soybean TFs. The PCR products of each TF gene in different tissues were quantitated and the results are summarized in Table 2. FIG. 3 summarizes a total of 38 TFs found to be expressed at much higher levels in one soybean tissue than its expression levels in 9 other tissues tested. The detailed expression levels of all these TFs are shown in Table 2. FIG. 4 shows the expression pattern of a number of representative TFs. These tissue specific TF genes may play a specific role in the development and function of the particular tissue in which they are highly expressed.









TABLE 2





Tissue specific expression of soybean transcription factors (expression levels are


relative to Cons6)






















Gene








annotation

Root
Strip


ID number
number
Root tip
hair
root
Root
Stem





AW831868
Glyma12g34510
0.000377
0.000913
0.001047
0.025711
0.001901


BE058570
Glyma10g41930
0.006345
0.032269
0.007563
0.002613
0.007938


BE800180
Glyma16g04740
0.006846
0.053484
0.040451
0.013657
0.03417


BI469606
Glyma16g25250
0.006882
0.000671
0.000388
0.011848
0.017494


BI971027
Glyma16g04410
0.022791
1.303916
0.052251
0.099274
0.004044


BM887093
Glyma04g40960
0.007407
0.16902
0.124614
0.03937
0.188003


BQ080756
Glyma03g31940
0.00101
0.00664
0.003759
0.124583
0.001814


BQ611037
Glyma03g28630
0.000398
0.000386
0.010116
0.979969
0.000673


BU549106
Glyma04g02980
0.01402
0.019978
0.003652
0.009667
1.98E−06


BU550564
Glyma02g44040
1.98E−06
1.98E−06
1.98E−06
1.98E−06
1.98E−06


BU550961
Glyma01g43000
0.003684
0.002649
0.008877
0.01521
0.005019


BU761035
Glyma15g37270
1.98E−06
1.98E−06
1.98E−06
1.98E−06
0.000283


CA938036
Glyma20g34420
1.98E−06
1.98E−06
1.98E−06
0.00018
1.98E−06


CF806953
Glyma10g36760
0.004128
0.01162
0.002918
0.014551
0.001365


S17640718
Glyma06g26610
0.004416
0.473948
0.003488
0.004315
0.004902


S21537044
Glyma18g29400
0.034376
0.008795
0.018193
0.003953
0.005454


S21537813
Glyma06g01300
0.070762
0.00725
0.115771
0.288467
0.162836


S21539810
Glyma14g08020
0.138422
0.196741
0.206804
0.080272
0.118622


S22336596
Glyma06g02990
0.000506
0.001179
0.00017
0.001694
0.001099


S4862200
Glyma03g08270
1.98E−06
1.98E−06
1.98E−06
1.98E−06
3.85E−05


S4864621
Glyma04g01090
1.98E−06
1.98E−06
4.65E−05
1.98E−06
1.98E−06


S4866216
Glyma02g39210
1.98E−06
1.98E−06
1.98E−06
1.98E−06
1.98E−06


S4873428
Glyma13g36540
0.287638
5.152291
0.209787
0.583371
0.096919


S4874772
Glyma07g33510
0.000897
0.001974
0.00094
0.005291
0.000768


S4878382
Glyma15g10370
0.012597
1.98E−06
1.98E−06
1.98E−06
1.98E−06


S4883048
Glyma16g04740
0.01051
0.22375
0.029437
0.027897
0.088106


S4883295
Glyma17g36490
1.98E−06
1.98E−06
1.98E−06
1.98E−06
1.98E−06


S4891301
Glyma07g04210
0.000887
1.98E−06
0.000688
0.008373
0.012137


S4901892
Glyma07g04200
1.98E−06
1.98E−06
1.98E−06
1.98E−06
1.98E−06


S4906707
Glyma13g00380
1.98E−06
1.98E−06
1.98E−06
1.98E−06
1.98E−06


S4912396
Glyma07g21160
1.98E−06
1.98E−06
1.98E−06
1.98E−06
1.98E−06


S4913107
Glyma04g05500
1.98E−06
1.98E−06
3.98E−05
1.98E−06
1.98E−06


S4937572
Glyma13g39990
1.98E−06
1.98E−06
1.98E−06
1.98E−06
1.98E−06


S4989510
Glyma08g24340
0.042589
0.09655
0.041722
0.060124
0.048579


S4995844
Glyma08g47240
0.001913
0.012798
0.007723
9.63E−05
6.73E−05


S5045510
Glyma01g04610
1.98E−06
1.98E−06
1.98E−06
1.98E−06
1.98E−06


S5132128
Glyma05g22860
0.008098
0.004085
0.025675
0.325942
0.031254


TC229552
Glyma07g32380
1.98E−06
0.000806
1.98E−06
0.002534
0.011291
























Tissue









with the





Apical

Young
Green
highest



ID number
Leaves
meristem
Flower
pod
seed
expression







AW831868
0.000453
0.001683
0.000788
0.000963
0.000547
root



BE058570
0.001846
0.006939
0.44787
0.010157
0.010481
flower



BE800180
0.07513
0.05112
1.741048
0.010309
0.002802
flower



BI469606
0.357805
0.002047
0.024918
0.005017
0.00083
leaves



BI971027
0.019503
0.004129
0.012126
0.002966
0.004464
root hair



BM887093
0.047448
0.148805
2.518399
0.118856
0.010943
flower



BQ080756
0.001012
0.000118
0.00584
0.003366
0.001692
root



BQ611037
0.001543
0.001235
0.003832
0.000636
0.003859
root



BU549106
0.011153
0.000713
2.374515
0.020434
0.034092
flower



BU550564
1.98E−06
1.98E−06
0.000213
1.98E−06
1.98E−06
flower



BU550961
0.000521
0.002986
0.000785
0.004731
0.137695
green seed



BU761035
1.98E−06
1.98E−06
1.98E−06
1.98E−06
1.98E−06
stem



CA938036
1.98E−06
1.98E−06
1.98E−06
1.98E−06
1.98E−06
root



CF806953
0.000748
0.000924
0.188744
0.00106
0.007963
flower



S17640718
0.002196
0.007197
0.009113
0.001554
0.001936
root hair



S21537044
0.002606
0.01036
0.003158
0.012512
0.706535
green seed



S21537813
0.083595
0.041227
0.134828
39.06024
0.117816
young pods



S21539810
0.021762
0.069847
0.046511
69.95437
0.023965
young pods



S22336596
0.000857
0.001766
0.458955
0.002108
0.003727
flower



S4862200
1.98E−06
1.98E−06
1.98E−06
1.98E−06
1.98E−06
stem



S4864621
1.98E−06
1.98E−06
1.98E−06
1.98E−06
1.98E−06
strip root



S4866216
1.98E−06
1.98E−06
3.76E−05
1.98E−06
1.98E−06
flower



S4873428
0.162969
0.04782
0.249838
0.051913
0.055284
root hair



S4874772
0.279323
0.000438
0.005084
0.000848
0.001814
leaves



S4878382
1.98E−06
1.98E−06
1.98E−06
1.98E−06
1.98E−06
root tip



S4883048
0.209528
0.057981
4.490488
0.030216
0.006497
flower



S4883295
0.000243
1.98E−06
1.98E−06
1.98E−06
1.98E−06
leaves



S4891301
0.000356
0.002711
0.003744
0.021872
0.369057
green seed



S4901892
1.98E−06
1.98E−06
3.83E−05
1.98E−06
1.98E−06
flower



S4906707
1.98E−06
1.98E−06
4.29E−05
1.98E−06
1.98E−06
flower



S4912396
1.98E−06
1.98E−06
0.00044
1.98E−06
1.98E−06
flower



S4913107
1.98E−06
3.2E−06
1.98E−06
1.98E−06
2.89E−06
strip root



S4937572
1.98E−06
1.98E−06
2.54E−05
1.98E−06
1.98E−06
flower



S4989510
0.032361
0.044497
0.035619
0.04467
1.037795
green seed



S4995844
0.000194
0.000888
0.00123
0.03702
3.785746
green seed



S5045510
3.7E−05
1.98E−06
1.98E−06
1.98E−06
1.98E−06
leaves



S5132128
0.002617
0.023895
0.007964
0.008026
0.015074
root



TC229552
2.641493
0.040778
0.279462
0.054674
0.129584
leaves










The tissue specific expression of some of these TFs was confirmed by creating a transcriptional fusion with GUS (i.e., β-glucosidase) or GFP (green fluorescent protein) reported genes. The coding regions of the reporter gene was cloned under control of the promoter of the tissue specific TF gene as described below.


Briefly, the Gateway system by Invitrogen Inc. (Carlsbad, Calif.) was used to clone promoter upstream to the GFP and GUS cDNAs. A 2 kb DNA fragment 5′ to the first codon of the bHLH gene was identified by mining genomic sequences available on Phytozome website (http://www.phytozome.net/soybean.php). Through two independent PCR reactions, AttB sites at the extremities of the promoter sequences were created. Genomic DNA from the soybean strain Williams 82 was used as template for PCR. Using the Gateway® BP Clonase® II enzyme mix, the promoter fragment was introduced first into the pDONR-Zeo vector (Invitrogen, Carlsbad, Calif.) then into pYXT1 or pYXT2 destination vectors using the Gateway® LR Clonase® II enzyme mix (Invitrogen, Carlsbad, Calif.). pYXT1 and pYXT2 were destination vectors carrying the GUS and GFP reporter genes respectively (Xiao et al., 2005).



A. rhizogenes (strain K599) was transformed by electroporation with bHLHpromoter-pYXT1 and bHLHpromoter-pYXT2 vectors. Soybean hairy root transformation was carried out essentially as described by Taylor et al. (2006). Briefly, two-week old soybean shoots were cut between the first true leaves and the first trifoliate and placed into rock-wall cubes (Fibrgro, Sarnia, Canada). Each shoot was inoculated with 4 ml of A. rhizogenes (OD600=0.3) and then allowed to dry for approximately 3 days (23° C., 50% humidity, long day conditions) before watering with deionized water. After one week, the plants were transferred to pots with vermiculite:perlite mix (3:1) wetted with nitrogen-free plant nutrient solution (Lullien et al., 1987). One week later, the shoots were transferred to the green house (27° C., 20% humidity, long day conditions). Two weeks after vermiculite-perlite transfer, the shoots were inoculated with B. japonicum (10 ml, OD600=0.08).



FIG. 5 shows the protein localization of the bHLH TF gene (Glyma03g28630) in mature root cells as indirectly shown by the localization of the reporter proteins, namely, GUS and GFP. The inset is a bar chart showing the tissue specific expression of the bHLH gene (FIG. 5).


Example 4
Soybean Transcription Factors Regulated by Different Seed Developmental Stages

In order to identify soybean TF genes whose expression levels are regulated at different seed developmental stages, soybean tissues including roots, leaves, stems and seeds were harvested and RNA extracted. qRT-PCR was performed as described in Examples 7-9 and in U.S. patent application Ser. No. 12/138, 392 to determine the expression levels of each TF at different seed developmental stages, ER5 (early R5 stage-R5 starting of seed filling), LR5 (late R5 stage-seed filing ongoing), R6 (seed filling stage), and R7 (maturation stage) and R8 matures seed stage. TF Genes that showed stage specific expression during seed development are termed “Transcription Factors Implicated in Seed Development” (TFISD). Examples of TFISD include, for example, Myb, C2C2, bZip, CCAAT binding, DOF, etc. FIG. 6 shows the relative expression levels some of the TFISD genes at ER5, LR5, R6, and R7 stages as compared to the expression levels in leaf, stem and root tissues.


Further functional investigation of these TFISDs will help to understand the mechanisms regulating seed filling and seed composition. These soybean TFISDs, such as bZip and CCAAT, are overexpressed in Arabidopsis thaliana under the control of inducible or constitutive promoters. The expression levels of various genes implicated in seed development are determined to help elucidate which downstream genes are regulated by a TFISD. The filling or composition of the seeds and other characteristics of the seeds are also examined to establish the relationship between the expression of a TFISD and seed development.


In another aspect, the DNA elements responsible for the stage specific expression of a TFISD during seed development are determined using various reporter genes as described above. These DNA elements include but are not limited to promoters, enhancers, attenuators, methylation sites etc. Structural or functional genes are placed under control of the DNA elements of the soybean TFISDs such that they are expressed at specific stage during seed development. The structural or functional genes may be from soybean or other plants that have been identified to control seed composition, such as protein and/or oil content.


Example 5
Soybean Transcription Factors Implicated in Flood Resistance

Some soybean strains are naturally more resistant to flooding than others. To identify soybean genes that may confer upon a plant flood resistant phenotype, the gene expression of two soybean strains are profiled. One strain, PI 408105A (PI—Plant introduction), is flooding stress tolerant; the other strain, S99-2281 (Breeding line), is flooding stress sensitive.


The two soybean strains were grown under normal conditions and water was introduced to flood the plants. Tissues samples were collected at Day 1, Day 3, Day 7 and Day 10 post flooding. Microarray profiling was used to determine the expression levels of all genes across the entire genome as described above. FIG. 7 shows a representative result of this study showing some of the genes that have different expression pattern between the flood tolerant strain and the flood sensitive strain.


Example 6
Soybean Transcription Factors Implicated in Root Nodule Development

The expression patterns of soybean regulatory genes regulated during nodule development were studied using qRT-PCR. Expression of 126 soybean TF genes were profiled to identify soybean TFs that are upregulated or downregulated during root nodule development. Table 3 lists the changes of expression levels for these 126 genes recorded at 4 days, 8 days and 24 days after inoculation. These genes are candidate genes that control nodule development, plant-symbiont interaction or nitrogen fixation and assimilation.









TABLE 3







Soybean TFs regulated by nodulation











4DAI inoculated/
8DAI inoculated/
24DAI inoculated/



uninoculated
uninoculated
uninoculated






















standard


standard


standard



Soybean gene ID
ID number
putative function
average
error
T-test
average
error
T-test
average
error
T-test





















Glyma13g34920
S4870460
AP2/EREBP
null
null
null
null
null
null
0.0041
0.0010
0.0254


Glyma03g27250
S4925538
Zinc finger (GATA)
2.7610
1.2381
0.1782
1.1661
0.3447
0.7931
0.0930
0.0189
0.0003


Glyma06g10400
S15937116
DNA-binding protein
0.7604
0.1929
0.2622
0.6342
0.0154

0.1056
0.0254
0.0018


Glyma10g43630
BI321317
Zinc finger (C2H2)
1.1479
0.5524
0.9952
1.5142
0.3195
0.5968
0.1113
0.0044
0.0397


Glyma15g18580
S5025536
Basic Helix-Loop-Helix
1.7694
0.6192
0.3160
1.0650
0.3202
0.9332
0.1169
0.0528
0.0150




(bHLH)


Glyma20g38260
S5055354
nucleic acid single-
0.9342
0.2630

null
null
null
0.1261
0.0752
0.0126




stranded binding protein


Glyma04g05820
BE807568
Trihelix, Triple-Helix
1.1654
0.2850
0.8227
1.1297
0.4484
0.7938
0.1972
0.0985
0.0040




transcription factor


Glyma10g33810
TC206902
AP2/EREBP
1.0222
0.1972
0.7975
1.0252
0.2560
0.8413
0.1980
0.0274
0.0064


Glyma19g26400
S4874738
WRKY
1.0750
0.2885
0.8497
0.6926
0.1175
0.2617
0.1999
0.0688
0.0384


Glyma18g29400
S21537044
AP2/EREBP
1.1727
0.1290
0.3358
0.7855
0.4581
0.6265
2.0647
0.3327
0.0162


Glyma10g42280
S21537611
TCP transcription factor
0.9488
0.1247
0.5827
1.3880
0.2083
0.1428
2.0656
0.2021
0.0149


Glyma12g36540
S4935933
CCAAT-box binding
1.1503
0.1860
0.4094
1.3646
0.1570
0.0769
2.1097
0.3208
0.0105




trancription factor


Glyma12g04050
TC232817
Basic Leucine Zipper
0.9649
0.1227
0.6352
1.3929
0.1991
0.1372
2.1559
0.2155
0.0167




(bZIP)


Glyma10g09410
BI700659
E2F transcription factor
1.0123
0.0596
0.8801
1.6292
0.4756
0.1134
2.2668
0.5909
0.0317


Glyma03g27050
S23071305
AP2/EREBP
1.0683
0.1425
0.6706
1.1717
0.1123
0.5999
2.3737
0.4996
0.0121


Glyma07g37980
S5129446
Zinc finger (C3H)
1.2206
0.1404
0.3311
1.0549
0.0576
0.4002
2.3915
0.4416
0.0016


Glyma10g42660
S4913507
Zinc finger (C2H2)
1.0050
0.1657
0.9669
0.9960
0.0282
0.9611
2.7025
0.0492
0.0001


Glyma13g30750
TC211634
ARF
0.8151
0.0087
0.2390
1.2921
0.4398
0.5716
2.8829
0.4239
0.0062


Glyma19g32340
CD409339
Zinc finger (C3H)
0.8513
0.1819
0.2863
1.1554
0.2271
0.4972
2.9131
0.8257
0.0496


Glyma09g37800
S34818018
Basic Leucine Zipper
0.9686
0.2486
0.7747
1.1879
0.2154
0.6097
3.3727
1.5487
0.0161




(bZIP)


Glyma08g22190
S5146871
AUX/IAA
0.6252
0.1419
0.3734
1.1201
0.5247
0.8074
3.4143
0.5200
0.0344


Glyma03g30650
BU546675
NAC
1.2833
0.4010
0.5563
1.2886
0.0867
0.0371
3.7703
0.3376
0.0428


Glyma19g29670
BU926469
MYB
0.9438
0.1614
0.7317
1.5806
0.3393
0.1133
4.0482
0.4318
0.0061


Glyma13g41500
BQ613064
RNA binding protein
1.1564
0.0456
0.3395
1.1898
0.2049
0.4907
4.2031
0.7354
0.0187


Glyma05g22860
S5132128
Basic Leucine Zipper
1.5438
0.1840
0.0347
1.3781
0.2110
0.0742
4.6022
0.9991
0.0001




(bZIP)


Glyma19g37410
S5146199
Putative trancription
0.8374
0.1658
0.4889
1.2023
0.2185
0.5208
5.0210
0.6797
0.0122




factor


Glyma19g34380
S5146870
AUX/IAA
1.0066
0.2793
0.9851
1.1874
0.1551
0.5041
7.8049
2.9402
0.0016


Glyma01g24880
S4983140
Putative trancription
0.9389
0.3863
0.5745
null
null
null
151.7420
28.6031
0.0012




factor


Glyma18g49360
S23069986
MYB
0.8181
0.1675
0.3751
1.0255
0.3074
0.9919
47.7709
18.4422
0.0015


Glyma08g15050
S23065233
Putative trancription
1.5286
0.5863
0.3851
1.4524
0.6690
0.9583
0.2158
0.0385
0.0449




factor


Glyma10g03820
S4875903
WRKY
1.0083
0.1463
0.9516
0.8669
0.0792
0.1634
0.2209
0.0628
0.0046


Glyma07g06620
BU761457
Basic Leucine Zipper
0.9533
0.2330
0.7092
1.0947
0.3143
0.8183
0.2393
0.1377
0.0247




(bZIP)


Glyma08g47520
AW185294
NAC
0.7773
0.1326
0.0981
1.0578
0.3354
0.6729
0.2409
0.1048
0.0158


Glyma08g28010
AW507968
Basic Helix-Loop-Helix
0.8930
0.1309
0.4916
1.4171
0.3733
0.2802
0.2426
0.1314
0.0335




(bHLH)


Glyma18g04250
CA936556
MYB
1.1707
0.2022
0.5279
1.3043
0.2824
0.6232
0.2429
0.0415
0.0005


Glyma02g07760
S21565729
NAC
0.9406
0.0987
0.4297
0.9266
0.0731
0.7875
0.2745
0.0483
0.0075


Glyma16g25250
BI469606
MYB
1.3212
0.2494
0.2994
0.8117
0.1320
0.3082
0.2795
0.0472
0.0094


Glyma05g29300
S4918062
Putative trancription
1.0378
0.2134
0.8786
1.0915
0.1172
0.3748
0.2829
0.0317
0.0197




factor


Glyma02g00870
S21567471
AP2/EREBP
2.4161
1.4434

0.6669
0.3493
0.2401
0.2846
0.1714
0.0398


Glyma06g17330
S21565817
Basic Helix-Loop-Helix
1.1535
0.8609
0.3088
1.1882
0.1552
0.3092
0.2947
0.1238
0.0490




(bHLH)


Glyma11g15180
TC209021
MYB
0.7496
0.1867
0.2943
1.1878
0.3354
0.8175
0.2984
0.1063
0.0227


Glyma17g36370
CA852521
MYB
0.8230
0.1616
0.2173
0.6856
0.0771
0.2644
0.3023
0.1798
0.0156


Glyma03g38040
S23068160
MYB
1.2749
0.1861
0.3516
1.2714
0.4377
0.8142
0.3097
0.0370
0.0225


Glyma18g49290
BE211253
homeobox
1.0295
0.0622
0.8308
0.8473
0.1265
0.3704
0.3129
0.0747
0.0012


Glyma02g39870
S4911583
WRKY
1.1196
0.1051
0.4969
1.0034
0.0764
0.9774
0.3179
0.0526
0.0101


Glyma17g15330
S4882412
MYB
1.1342
0.2042
0.5399
0.7354
0.1591
0.2876
0.3214
0.0159
0.0194


Glyma03g29190
CD403874
Heat Shock
0.7127
0.2722
0.2374
null
null
null
0.3249
0.1398
0.0206


Glyma11g31400
S15849732
AP2/EREBP
1.0140
0.3891
0.6382
1.2984
0.2967
0.3441
0.3253
0.0606
0.0192


Glyma08g23380
S5871333;
WRKY
1.4950
0.1788
0.0166
1.2729
0.2751
0.6005
0.3260
0.0995
0.0468



TC225723


Glyma13g39990
S4937572
Putative trancription
null
null
null
0.0739
0.0515
0.1236
0.3281
0.1650
0.0329




factor


Glyma04g39650
TC221320
WRKY
1.1538
0.4635
0.7449
1.1197
0.2534
0.9211
0.3330
0.1177
0.0114


Glyma13g26790
S15850286
MYB
1.3668
0.6214
0.9855
1.2882
0.6793
0.8892
0.3378
0.1162
0.0352


Glyma15g42380
S5874971
homeobox
0.8199
0.1138
0.1728
0.9709
0.0327
0.9446
0.3396
0.0718
0.0297


Glyma03g42450
BI468894
ERF
1.3218
0.3525
0.3497
1.1025
0.3557
0.8416
0.3409
0.1496
0.0460


Glyma08g05240
TC210810
Telomeric DNA binding
0.8258
0.0486
0.1032
1.0829
0.0788
0.7860
0.3453
0.0743
0.0224




protein


Glyma01g02210
S21700413
Putative trancription
0.7219
0.1185
0.1956
1.0696
0.1139
0.6855
0.3462
0.0749
0.0063




factor


Glyma15g12930
BM955055
MYB
1.2772
0.1592
0.2876
1.6597
0.8282
0.6742
0.3476
0.0789
0.0072


Glyma13g03700
S5035170
EIL transcription factor
1.0633
0.2527
0.9572
1.0433
0.2308
0.9362
0.3530
0.0693
0.0285


Glyma18g51680
TC222644
AP2/EREBP
1.0475
0.2480
0.8205
0.8431
0.2389
0.4574
0.3611
0.0843
0.0060


Glyma20g07050
S21566080
Zinc finger (Constans)
0.8561
0.1378
0.1995
0.9250
0.0635
0.7803
0.3683
0.0749
0.0438


Glyma07g37000
S5088770
Putative trancription
0.8949
0.1126
0.5691
1.0733
0.1454
0.7785
0.3802
0.0074
0.0012




factor


Glyma08g10550
BE440918
ARF
1.0060
0.1462
0.9541
1.1239
0.1115
0.7283
0.3820
0.0990
0.0023


Glyma13g01930
TC215663
AP2/EREBP
0.7809
0.1389
0.1295
0.8062
0.0327
0.0750
0.3855
0.0877
0.0173


Glyma20g26700
BE347092
homeobox
1.1685
0.2355
0.7085
0.8903
0.1832
0.3591
0.3883
0.1272
0.0083


Glyma11g14040
TC205929
AP2/EREBP
1.0685
0.1079
0.9306
2.0874
0.5212
0.0513
0.3886
0.0443
0.0173


Glyma13g40830
S34273475
MYB
0.9417
0.1920
0.5502
0.8718
0.1023
0.3014
0.3895
0.1084
0.0062


Glyma03g41750
TC209320
WRKY
1.4823
0.5589
0.3749
1.6455
0.7602
0.5298
0.3943
0.1082
0.0108


Glyma04g06620
CA800598
CCR4-NOT transcription
0.9729
0.0484
0.8915
0.8324
0.0885
0.1191
0.4053
0.1565
0.0203




factor protein


Glyma16g02570
S23062212
MYB
1.2342
0.2333
0.3848
0.9812
0.1631
0.7190
0.4099
0.0342
0.0123


Glyma08g02930
S5103646
MADS-box transcription
1.0981
0.2118
0.6936
0.8036
0.0353
0.0996
0.4124
0.0754
0.0166




factor


Glyma01g00980
CF808484
RNA polymerase
1.1548
0.1079
0.3052
1.3258
0.2230
0.4004
0.4311
0.0623
0.0111


Glyma06g07110
S21539760
RNA binding protein
1.0194
0.0779
0.8477
0.9515
0.0679
0.7690
0.4333
0.0839
0.0088


Glyma08g09970
S4916522
Zinc finger (C2H2)
1.2207
0.2167
0.4408
0.9998
0.1144
0.9344
0.4387
0.0580
0.0014


Glyma08g40840
S23072300
Zinc finger transcription
0.7525
0.1954
0.1852
1.0100
0.2741
0.8588
0.4388
0.1056
0.0298




factor


Glyma18g04060
S21567638
DNA-binding protein
0.8622
0.2695
0.3083
1.0005
0.1033
0.9705
0.4392
0.0554
0.0262


Glyma04g04170
TC229348
Basic Leucine Zipper
0.9751
0.1371
0.6604
0.9994
0.1136
0.8394
0.4426
0.0699
0.0296




(bZIP)


Glyma16g34490
BE058375
MYB
1.0663
0.0958
0.6121
0.8559
0.0752
0.0655
0.4456
0.0708
0.0032


Glyma04g43350
S23069218
ARF
0.9859
0.0722
0.8526
0.9822
0.0488
0.6723
0.4498
0.0395
0.0425


Glyma02g47640
S23062201
GRAS
1.3510
0.0920
0.0816
0.8958
0.0701
0.2491
0.4506
0.0475
0.0093


Glyma18g00840
CA802838
calmodulin binding/
0.8793
0.1428
0.4504
0.9442
0.1922
0.4961
0.4512
0.0579
0.0157




transcription regulator


Glyma04g38730
S4991641
SRT2 DNA binding
0.9981
0.0984
0.9424
0.9012
0.0941
0.2597
0.4583
0.1385
0.0276




protein


Glyma16g01500
S16535713
AP2/EREBP
0.8188
0.1319
0.1801
1.0489
0.1163
0.8918
0.4610
0.0945
0.0495


Glyma02g38870
CF806129
Zinc finger (Constans)
0.8538
0.0911
0.1033
0.9632
0.2704
0.5319
0.4611
0.1052
0.0335


Glyma13g38630
S5052631
WRKY
0.4547
0.2339
0.2011
0.8259
0.0097
0.2332
0.4629
0.0997
0.0258


Glyma13g36540
S4873428
WRKY
1.0814
0.2457
0.8593
0.9587
0.0670
0.6690
0.4651
0.0393
0.0354


Glyma06g45770
TC208469
BTB-POZ domain
0.8203
0.1084
0.1372
0.9540
0.1041
0.5595
0.4662
0.0308
0.0104




containing protein


Glyma03g33900
S4916150
SWI2/SNF2
1.0370
0.2073
0.9081
1.2713
0.2168
0.2528
0.4741
0.0885
0.0209


Glyma17g16930
S4898544
homeobox
1.0337
0.1258
0.8089
0.8724
0.1388
0.3013
0.4763
0.0294
0.0003


Glyma06g11010
S23065007;
AP2/EREBP
1.1101
0.1506
0.4878
0.9704
0.0980
0.9202
0.4781
0.0688
0.0212



TC225047


Glyma14g17730
S22953012
WRKY
1.3342
0.2613
0.1882
1.0379
0.0247
0.6640
0.4783
0.0468
0.0317


Glyma01g40380
S5142323
AP2/EREBP
0.8435
0.1130
0.1451
1.0290
0.0598
0.8371
0.4816
0.0562
0.0048


Glyma06g01300
S21537813
Putative trancription
0.8343
0.1654
0.2005
1.1674
0.0547
0.1321
0.4878
0.0601
0.0046




factor


Glyma09g03690
S21538601
MYB
1.3245
0.2860
0.3070
1.0924
0.4345
0.7433
0.4922
0.1123
0.0185


Glyma20g30650
BI945044
GT2 transcription factor
0.9957
0.1774
0.8315
0.8892
0.0798
0.5330
0.4929
0.1354
0.0156


Glyma14g24290
S5030305
SWIRM
1.2861
0.1341
0.3337
0.8821
0.0535
0.6059
0.4992
0.0346
0.0482


Glyma13g05270
S5115730
homeobox
0.8988
0.0397
0.3734
1.2276
0.1554
0.3701
0.4210
0.1351
0.0463


Glyma17g15480
CD392418
AP2/EREBP
0.9608
0.4122
0.8250
0.7739
0.0666
0.7026
0.4330
0.2568
0.0422


Glyma05g20460
TC210199
Heat Shock
1.2608
0.2567
0.4055
0.9835
0.1699
0.7049
0.4697
0.0216
0.0038


Glyma03g38360
TC212079
WRKY
0.9683
0.0588
0.7941
0.8400
0.1458
0.2406
0.4713
0.0491
0.0237


Glyma07g16170
BG790017
ARF
0.9410
0.0803
0.6827
1.0808
0.2229
0.9300
0.4976
0.0693
0.0452


Glyma06g21020
S5146166
NAC
1.1051
0.1515
0.8157
0.7941
0.1055
0.2808
0.4231
0.0543
0.0042


Glyma19g31940
S21566681
Heat Shock
0.9619
0.5212
0.7035
0.7648
0.3109
0.2292
0.2116
0.0222
0.0053


Glyma02g15920
TC207514
WRKY
0.8653
0.0569
0.1970
0.9529
0.0585
0.7881
0.2216
0.0500
0.0158


Glyma08g41620
CD398155
Basic Helix-Loop-Helix
0.8224
0.0664
0.4187
0.9041
0.1365
0.5857
0.3323
0.0900
0.0015




(bHLH)


Glyma13g29600
TC222844
WRKY
1.2688
0.3646
0.5880
1.1817
0.0802
0.3056
0.3511
0.0337
0.0014


Glyma05g28960
TC216155
Basic Leucine Zipper
0.9342
0.1680
0.4743
0.9865
0.3481
0.8462
2.7218
0.7822
0.0190




(bZIP)


Glyma02g42200
S5142660
homeobox
1.8122
0.2169
0.0538
2.6317
1.0563
0.0328
0.3776
0.2415


Glyma01g02760
S5096279
AP2/EREBP
1.3732
0.2569
0.2281
2.6576
0.9045
0.0438
0.7916
0.0852
0.4686


Glyma07g14610
BG650304
SBP (squamosa)
0.6999
0.1691
0.1354
6.7245
1.8803
0.0023
0.6831
0.0664


Glyma06g08610
S21566814
DNA methyltransferase
0.9672
0.1052
0.6099
2.6527
0.2000
0.0058
1.3852
0.2100
0.1410




MET


Glyma09g33240
TC234528
AP2/EREBP
1.2172
0.1224
0.3082
4.2588
1.9736
0.0370
1.4063
0.6678
0.7125


Glyma14g03100
AW433203;
MADS-box transcription
0.5703
0.2149

0.2785
0.0103
0.0428
121.5298
82.1908
0.4000



S4907367
factor


Glyma03g27180
S6675747
SBP (squamosa)
0.8921
0.2391
0.7628
4.1947
1.4340
0.0078
0.7373
0.4142


Glyma03g26700
AI795005
homeobox
1.2921
0.2658
0.3942
2.6577
0.5534
0.0074
null
null
null


Glyma08g01720
S4932151;
DNA-binding protein
0.9799
0.1063
0.7141
2.0629
0.3361
0.0048
1.5672
0.7780
0.7498



S4932199


Glyma03g31980
S23065855
MYB
0.7106
0.1967

4.2979
1.4269
0.0463
5.6824
3.1100
0.0649


Glyma05g38580
BU549908
Gt-2 related transcription
1.4156
0.1620
0.1199
6.4978
1.5640
0.0025
3.1237
1.5513




factor


Glyma03g42260
S34273417
MYB
0.3535
0.0639
0.0182
0.5732
0.2556
0.1130
0.0562
0.0169
0.1460


Glyma12g34510
AW831868
CCAAT-box binding
17.3134
3.5968
0.0003
4.9513
1.2052
0.0253
0.5121
0.2223
0.0483




trancription factor


Glyma02g35190
S4925563
CCAAT-box binding
2.5915
0.5040
0.0051
3.3677
0.8492
0.0351
2.4274
0.7438
0.0713




trancription factor


Glyma16g04410
BI971027
AP2/EREBP
2.6167
0.1800
0.0008
3.0160
0.7454
0.0064
1.3674
0.5438
0.5911


Glyma17g07330
S23061916
MYB
0.9442
0.0613
0.4210
2.1859
0.2877
0.0013
5.7650
1.0579
0.0002


Glyma16g26290
S22951832
Basic Helix-Loop-Helix
1.0193
0.0470
0.9066
2.9187
0.3793
0.0006
7.4517
1.6829
0.0001




(bHLH)


Glyma13g40240
AW568213
Zinc finger (C2H2)
0.8720
0.1869
0.6470
4.9161
0.6953
0.0096
7.8311
1.4691
0.0008


Glyma01g01210
S21537528
RNA-dependent RNA
1.1556
0.2210
0.5509
2.1941
0.2437
0.0087
4.2572
0.9753
0.0486




polymerase


Glyma10g10240
S5108906
CCAAT-box binding
6.8243
0.9302
0.0214
13.7461
3.8739
0.0007
6.8275
1.8162
0.0250




trancription factor









The expression pattern of 13 of these TF genes through different stages of nodule development after inoculation of B. japonicum are shown in FIG. 8. These 13 genes are: panel A: Glyma16g04410 (AP2/EREBP); B: Glyma02g35190 (CCAAT-Box); C: Glyma12g34510 (CCAAT-Box); D: Glyma16g26290 (bHLH); E: Glyma10g10240 (putative transcription factor); F: Glyma03g31980 (Myb); G: Glyma06g08610 (DNA methyltransferase); H: Glyma13g40240 (Zinc Finger); I: Glyma01g01210 (RNA-dependent RNA polymerase); J: Glyma18g49360 (Myb); K: Glyma17g07330 (Myb); L: Glyma19g34380 (Aux/IAA); M: Glyma03g27250 (Zinc finger (GATA). The expression pattern through different stages of nodule development 0 (white bar), 4 (light grey bars), 8 (grey bars), 16 (dark grey bars), 24 (black grey bars) and 32 days (black bars) after B. japonicum inoculation and in response to KNO3 treatment (open bars) are shown. “*” means the data were statistically significant.


Using a RNAi gene-silencing strategy, the functions of some TFs implicated in nodule development were further characterized. When one of these TFs, MYB, was silenced, lower number but bigger nodules were observed. This result suggests that this MYB gene plays a role in the nodulation process (FIG. 9).


Panel A of FIG. 9 compares the number of nodules between RNAi-GUS (grey bar) and RNAi 523065855 soybean roots (white bar). The number of nodules was reduced when expression of the 523065855 gene was suppressed. Panel B shows the comparison of nodule size between RNAi-GUS (left) and RNAi 523065855 (right) roots. According to their size, nodules were divided in four categories: large (dotted bars), medium (grey bars) and small nodules with leghemoglobin (white bars) and immature nodules (i.e. lack of leghemoglobin; vertical striped bars). Panel C shows gene expression levels of 523065855 in RNAi-GUS (left) and RNAi 523065855 (right) nodules to confirm that the RNA silencing worked. Transcriptomic analysis was performed on large, medium and small size nodule (open, grey and black bars respectively). Gene expression levels were normalized using Cons6 gene. Panel D shows the expression levels of a gene, Glyma19g34740, which shares strong nucleotide sequences homology with, but is different from 523065855. The expression levels of Glyma19g34740 were not altered by RNAi 523065855, indicating the specificity of RNAi construct in the silencing of 523065855. Gene expression levels were quantified by qRT-PCR on RNAi-GUS (grey bars) and RNAi 523065855 (white bars) small, medium and large nodules and were normalized by Cons6 gene.


Next, the localization of the TF genes during nodulation was determined by using the GUS or GFP reporter genes system described above. Transcriptional fusions containing promoter sequences of the TF genes and coding sequence of the reporter gene were constructed and introduced into soybean plants. Briefly, Gateway system (Invitrogen, Carlsbad, Calif.) was used to clone the promoter of the Glyma03g31980 gene upstream of the GFP and GUS cDNAs. By mining genomic sequences available on Phytozome website (http://www.phytozome.net/soybean.php), a 1967 by DNA fragment 5′ to the first codon of the Glyma03g31980 gene was identified. By two independent PCR reactions, the AttB sites were created at the extremities of the promoter sequences. Soybean Williams 82 genomic DNA was used as template and the following primers were used for these two PCRs:











First PCR:



Glyma03g31980promoAttB-for:



5′-AAAAAGCAGGCTCCTACATGAATATGTGTTCAAAATA



and







Glyma03g31980promoAttB-rev:



5′-AGAAAGCTGGGTTTTGATGACTTAGACTACTCCTTC







Second PCR:



universal AttB primers-attB1 adaptor:



5′-GGGGACAAGTTTGTACAAAAAAGCAGGCT



and







attB2adaptor:



5′-GGGGACCACTTTGTACAAGAAAGCTGGGT.






Using the Gateway® BP Clonase® II enzyme mix, the Glyma03g31980 promoter fragment was introduced first into the pDONR-Zeo vector (Invitrogen, Carlsbad, Calif.), then into pYXT1 or pYXT2 destination vectors using the Gateway® LR Clonase® II enzyme mix (Invitrogen, Carlsbad, Calif.). pYXT1 or pYXT2 destination vectors carry the GUS or GFP reporter genes, respectively (Xiao et al., 2005). A. rhizogenes (strain K599) was transformed by electroporation with Glyma03g31980promoter-pYXT1 and Glyma03g31980promoter-pYXT2 vectors.


The expression of the reporter genes was monitored by following the GUS (blue) or GFP (green) signals. FIG. 10 shows the expression pattern of a MYB transcription factor during nodulation using GFP (A, B) and GUS (C, D, E, F) as reporter genes, respectively. Sections of root and nodules showed a strong expression of the MYB gene in the epidermal and endodermal cells, and vascular tissues and, in less strong in infected zone of the nodule (G, H, I). Also, as shown in FIG. 10, the MYB TV gene was not exclusively expressed in the nodule (FIG. 10). Expression patterns or other TFs are shown in FIG. 11, which also confirms their strong expression in the soybean nodules. Squamosa1=Glyma07g14610; Squamosa2=Glyma03g27180; Putative Transcription factor=Glyma01g40230.


Example 7
Gene Profiling of Drought Response Genes in Soybean

Genetic material and the growing system: cv Williams 82 was used for the green house experiments. Plants were grown in Turface-sand medium in 3 gallon pots. One-month old soybean plants were subjected to gradual stress by withholding water and the samples were collected in three biological replicates. To quantitate the stress level we monitored relative water content (RWC), leaf water potential, and turface-soil mixture water potential and moisture content. Leaf RWC, leaf water potential, and soil water content were 95%.-0.3 MPa, and 20% (v/v), respectively, for well-watered samples. These values were 65%, −1.6 MPa, 9.6% for the water-stressed samples.


RNA isolation and the microarray: Flash-frozen plant tissue samples were ground under liquid nitrogen with a mortar and pestle. Total RNA is extracted using a modified Trizol (Invitrogen Corp., Carlsbad, Calif.) protocol followed by additional purification using RNEasy columns (Qiagen, Valencia, Calif.). RNA quality is assayed using an Agilent 2100Bioanalyzer to determine integrity and purity; RNA purity is further assayed by measuring absorbance at 200 nm and 280 nm using a Nanoprop spectrophotometer.


Microarray hybridization, data acquisition, and image processing: We used the pair wise comparison experimental plan for the microarray experiments. A total number of 12 hybridizations were conducted as: 2 biological conditions×3 biological replicates×2 tissue types. First strand GDNA were synthesized with 30 pg total RNA and T7-Oligo(dT) primer. The total RNA were processed to use on Affymetrix Soybean GeneChip arrays, according to the manufacturer's protocol (Affymetrix, Santa Clara, Calif.). The GeneChip soybean genome array consists of 35,611 soybean transcripts (details as in the results description). Microarray hybridization, washing and scanning with Affymetrix high density scanner were performed according to the standard protocols. The scanned images were processed and the data acquired using GCOS. Having selected genes that are significantly correlated with phenotype or treatment, data mining is conducted using a variety of tools focusing on class discovery and class comparison in order to identify and prioritize candidates.


Confirmation of gene expression by qRT-PCR: Validation of the microarray profiling and the expression of significant genes at significant time points in the experiments were determined by a high-throughput two-step quantitative RT-PCR (qRT-PCR) assay using SYBR Green on the ABI 7900 HT and by the delta delta CT method (Applied Biosystems) developed in course of these studies.


One-month old soybean plants were subjected to gradual stress by withholding water and the samples were collected in three biological replicates. To quantitate the stress level we monitored relative water content (RWC), leaf water potential, and surface-soil mixture water potential and moisture content. Total RNA isolation and microarray hybridizations were conducted using standard protocols. We used 60K soybean Affymetrix GeneChips for the transcriptome profiling. The GeneChip® Soybean Genome Array is a 49-format, 11-micron array design, and it contains 11 probe pairs per probe set. Sequence Information for this array includes public content from GenBank® and dbEST. Sequence clusters were created from UniGene Build 13 (Nov. 5, 2003). The GeneChip® Soybean Genome Array contains ˜60,000 transcripts and 37,500 transcripts are specific for soybean. In addition to extensive soybean coverage, the GeneChip® Soybean Genome Array includes probe sets to detect approximately 15,800 transcripts for Phytophthora sojae (a water mold that commonly attacks soybean crops) as well as 7,500 Heterodera glycines (cyst nematode pathogen) transcripts. (www.affymetrix.com) The affymetrix chip hybridization data of the soybean root under stress were processed. The statistical analysis of the data was performed using the mixed linear model ANOVA (log2 (pm)˜probe+trt+array (trt)). The response variable “log2 (pm)” is the log base 2 transformed perfect match intensity after RMA background correction and quantile normalization; the covarlate “probe” indicates the probe levels since for each gene there are usually 11 probes; “trt” is the treatment/condition effect and it specifies if the array considered is treatment or control; “array(trt)” is the array nested within trt effect, as there are replicate arrays for each treatment.


FDR adjusted p-value is less than 0.01 cutoff point where fdrp is less than 0.01.


The statistically analyzed data were sorted and the functional classifications (KOG and G0) were performed. Significantly differentially expressed transcripts in root and leaf tissues between well-watered and water stressed condition are:


p value adjusted FDR 5%

    • Leaf tissue—2497 up regulated, 938 down regulated
    • Root tissue—885 up regulated, 5428 down regulated
    • Leaf vs root—769 up regulated, 406 down regulated


      p value adjusted FDR 1%
    • Leaf tissue—2088 up regulated, 863 down regulated
    • Root tissue—800 up regulated, 5428 down regulated
    • Leaf vs root—576 up regulated, 211 down regulated


The functional classification of the differentially expressed genes in soybean leaf under drought condition is summarized in Table 4, which shows the numbers of genes that are either up- or down-regulated in each category as defined by protein function.









TABLE 4







Functional Classification of drought responsive transcripts in


soybean leaf tissues:











Up
Down
Up + Down


Leaf tissue
regulated
regulated
regulated













Information Storage and
508
29
537


Processing


Transcription
106
27
133


Metabolism
225
88
313


Amino Acid Metabolism
74
10
84


Carbohydrate Metabolism
80
28
108


Cellular Process and Signaling
320
80
400


Signal Transduction
42
46
88


Poorly Characterized
302
102
404


No Annotation
840
524
1364


Total
2497
934
3431









Sequences for the genes and proteins disclosed in this disclosure can be found in GenBank, a nucleotide and protein sequence database maintained by the National Center for Biotechnology Information (NCBI), or in the Soybean genome database maintained by the University of Missouri at Columbia, Mo. Both databases are freely available to the general public.


The functional classification of the differentially expressed genes in soybean root under drought condition is summarized in Table 5, which shows the numbers of genes that are either up- or down-regulated in each category as defined by protein function.









TABLE 5







Functional Classification of drought responsive transcripts in


soybean root tissues:











Up
Down
Up + Down


Root tissue
regulated
regulated
regulated













Information Storage and
14
187
201


Processing


Transcription
23
147
170


Metabolism
96
619
715


Amino Acid Metabolism
28
132
160


Carbohydrate Metabolism
36
273
309


Cellular Process and Signaling
125
599
724


Signal Transduction
44
274
318


Poorly Characterized
109
574
683


No Annotation
409
2624
3033


Total
884
5429
6313









Example 8
Identification of Transcription Factors that are Upregulated in Response to Drought Condition

Based on database mining of transcription factors, domain homology analysis, and the soybean microarray data obtained in Example 1 using drought-treated root tissues from greenhouse-grown plants, 199 candidate transcription factor genes or ESTs derived from these genes with putative function for drought tolerance were identified. 64 of the candidates showed high sequence similarity to known transcription factor domains and might possess high potential for drought tolerant gene identification. The remaining 135 of the candidates showed relatively low sequence similarity to known transcription factors domains and thus might represent a valuable resource for the identification of novel genes of drought tolerance. The candidates generally belonged to the NAM, zinc finger, bHLH, MYB, AP2, CCAAT-binding, bZIP and WRKY families.


On the basis of family novelty and the magnitude of drought-inducibility, three transcripts were chosen for a pilot experiment to characterize and isolate promoters for drought tolerance studies. The three candidates were BG156308, BI970909, and BI893889, which belonged to the bHLH, CCAAT-binding, and NAM families, respectively. Under drought condition, the expression levels of these three genes were increased from 2.5 to 252-fold. Moreover, no transcription factor from those families has been reported to control drought tolerance in soybean and other crops. Therefore, these candidate genes may represent novel members of these families that may also play a role in plant drought response. Functional characterization of these transcription factors may help elucidate pathways that are involved in plant drought response.


Example 9
Validation of Genes that are Upregulated in Response to Drought Conditions

A set of 62 candidate drought response genes (or DRGs) identified in the microarray experiment were further confirmed by quantitative reverse transcription-PCR (qRT-RCR). Briefly, RNA samples from root or leaf tissues obtained from soybean plants grown under normal or drought conditions were prepared as described in Example 1. cDNA were prepared from these RNA samples by reverse transcription. The cDNA samples thus obtained were then used as template for PCR using primer pairs specific for 64 candidate genes. The PCR products of each gene under either drought or normal conditions were quantified and the results are summarized in Table 6. The Column with the heading “qRT-PCR Root log ratio of expression level” shows the base 2 logarithm of the ratio between the root expression level of the particular gene under drought condition and the expression level of the same gene under normal condition. Similarly, the Column with the heading “qRT-PCR Leaf log ratio of expression level” shows a similar set of data obtained from leaf tissues. The qRT-PCR results are generally consistent with the microarray data, suggesting that the genes whose expression levels are up-regulated or down-regulated are likely to be true Drought Response Genes (DRGs).









TABLE 6







List of the 62 Root Drought Response Genes and the fold change


in their expression levels under drought condition














qRT-PCR
qRT-PCR



NCBI

Root log
Leaf log



Accession#
Fold
ratio of
ratio of


Item
of soybean
Change in
expression
expression


No.
EST
Microarray
level
level














1
AW100172
3.084026621
1.1797147
0.89568458


2
BI700189
5.250749017
2.89530165
0.90051965


3
AW101461
2.131337965
3.21871313
1.09980849


4
BI701724
2.445271745
0.77306449
2.11599468


5
CD405935
2.378775421
1.76596939
0.43572003


6
CF806221
5.844540021
2.70717347
1.78868292


7
CF806953
3.07486286
2.42832356
31.9623187


8
CF807326
2.533554706
4.31347621
0.86931523


9
CF807343
8.420142043
2.81313931
2.38497146


10
CF807784
3.526862338
0.75168858
5.96195575


11
BE807836
11.39265251
3.19859278
1.743448


12
CF807852
3.418157687
1.80999411
2.07365181


13
AW507968
3.104335099
2.57047147
1.06228435


14
CF808510
11.48486693
2.51601932
2.12556985


15
CF808574
6.774193077
1.21492591
3.76595519


16
CD409075
2.893022301
3.22692788
0.98651507


17
CD415193
2.82518237
1.60014503
1.40222319


18
BE820446
2.634118248
2.33678338
1.42179684


19
BE821438
2.543318408
1.07485769
0.92875609


20
BI321576
2.207357752
0.63989821
1.21050888


21
BE821939
2.355222512
0.75568942
1.01744913


22
BE822796
2.095832928
2.06451848
0.57453114


23
BF324082
3.416959863
2.93603195
0.11280892


24
BF325482
5.267479195
2.84297419
1.26288389


25
BF425742
2.068872398
0.22402707
5.84737453


26
BI427426
4.769527624
0.82651543
0.63576272


27
BQ628686
4.497761581
2.56211932
0.99246743


28
BM731850
2.044991104
7.95105702
0


29
BQ741562
10.24611681
15.9935984
1.69791001


30
BU544037
3.939302141
1.60124419
2.81553158


31
BU545050
2.494897545
1.32904873
2.10737637


32
BI945178
2.772128801
0.92235029
11.833886


33
BU545579
3.055064447
0.62824172
1.59091674


34
BE346777
2.151895139
5.74552211
0.9252839


35
BU547499
5.270995487
0.18070183
2.2429669


36
BU549025
5.875864511
4.88986172
0.64500951


37
AW349551
2.153270217
0.70421783
2.97328413


38
BU550139
3.139509682
0.70494926
0.85223744


39
AW351262
17.11708494
7.26594779
0.80510266


40
BG653183
2.017838456
1.04722758
1.21660345


41
AW458014
2.091595353
3.60212605
0.96501459


42
BE658881
3.954686528
0.27741121
1.88936137


43
AW459852
2.172823071
0.12099984
2.09419822


44
BU761457
3.897946544
18.4130026
1.27165266


45
BU761764
5.880074724
1.1706269
1.6027114


46
CB063558
2.30019111
5.6008094
2.04036275


47
BI967585
2.27451735
1.70729339
0.50600516


48
BF070218
3.582174165
2.61411208
1.5118947


49
BI970890
2.476691576
1.20762874
1.38105521


50
BI972938
3.803601179
1.62313275
1.35083956


51
BQ473657
3.265947707
2.62538985
2.16894329


52
CA783329
3.61154719
7.7510692
0.78218675


53
BI784829
2.917788554
5.49343803
0.74028789


54
BI786091
4.256920675
0.55810224
14.0406907


55
BQ786702
6.11243033
8.00622041
1.8724372


56
BM188078
5.347282485
1.471782
0.6766539


57
BG790575
2.130840142
16.3768237
0.59244221


58
BM891713
2.627768053
0
2.0252528


59
CD391920
5.01907607
9.76984495
1.69402246


60
BI893143
2.349057984
0
0


61
BM094926
2.10562882
0.37615956
0.9078373


62
BM094932
2.04661982
1.66278157
1.52008079


63
D26092
Endo control
1
1


64
J01298
Endo control
1.29685184
0.49968529









Table 7 lists additional soybean root related, drought related transcription factors that are up- or down-regulated in response to drought condition.









TABLE 7







List of the root related, drought related transcription factors and control


transcripts with the well information














Fold
Root


Well #
TF name
gene function
Change
Drought










Preferentially expressed in roots under drought stress











1
TC205125
homeodomain transcription factor
11206.16
Increase


6
S15940089
Zinc finger protein
4.838342
Increase


10
S4864621
other transcription factor families
64633.02
Increase


11
TC206208
YABBY2-like transcription factor
16.8259
Increase


15
TC206511
other transcription factor families
2.094395
Increase


16
S4981395
other transcription factor families
287.0654
Increase


25
S4914293
Zinc finger protein
3.250378
Increase


32
S21537971
other transcription factor families
6.666005
Increase


41
S5142323
other transcription factor families
8.709554
Increase


54
S21539162
other transcription factor families
4.26547
Increase


55
TC208789
MADS box transcription factor
5.405061
Increase


62
S4911726
putative transcription factor
1.780905
Increase


65
TC209970
bZIP transcription factor
4.86728
Increase


80
S4898613
Zinc finger protein
−45.2693
Decrease


81
S4875857
zinc finger protein
8.182562
Increase


85
S4932151
DNA-binding protein
15.54086
Increase


93
S5146255
putative transcription factor
10.16303
Increase


94
S4932942
CHP-rich
4.51783
Increase


99
TC211088
putative transcription factor
4.930426
Increase


103
TC211951
MYB domain transcription factor
8.909314
Increase


105
TC211971
AP2/EREBP, APETALA2/Ethylene-responsive element binding
25.6248
Increase




protein family


115
TC214232
Cyclic-AMP-dependent transcription factor
8.449923
Increase


119
TC214990
MYB domain transcription factor
−18.893
Decrease


126
S21539727
homeodomain transcription factor
6.347033
Increase


127
S4885901
putative transcription factor
7.898513
Increase


136
S21566748
myb-related protein
−1.74946
Decrease


140
S21566080
Zinc finger protein
2.456977
Increase


142
S21567785
WRKY domain transcription factor
5.92074
Increase


146
DQ055133

Glycine max DREB3

2.523947
Increase


147
TC215663
other transcription factor families
−2.3001
Decrease


149
TC215913
MYB domain transcription factor
3.379221
Increase


151
TC216048
other transcription factor families
7.061372
Increase


152
S23070183
DNA binding protein
6.046817
Increase


153
TC216103
bZIP transcription factor
−10.9042
Decrease


162
S4866988
other transcription factor families
73.15146
Increase


171
S4925034
other transcription factor families
5.185675
Increase


172
S21538195
WRKY domain transcription factor
44.60338
Increase


173
S23070894
SBP, Squamosa promoter binding protein
−1.52992
Decrease


175
S4950242
DNA-binding protein
10.8754
Increase


178
S21538802
other transcription factor families
3.248115
Increase


179
S4901375
EIN3 + EIN3-like(EIL) transcription factor
17.97298
Increase


180
S21540792
Zinc finger protein
3.019452
Increase


190
S21565790
putative transcription factor
5.64075
Increase


193
AY974352

Glycine max NAC4

−5.82879
Decrease


200
S21538617
MADS box transcription factor
2.645173
Increase


201
TC220047
putative transcription factor
4.425233
Increase


203
TC220458
bZIP transcription factor
−2.2654
Decrease


205
TC220597
WRKY domain transcription factor
5.577539
Increase


206
S4912250
DNA-binding protein
1.563624
Increase


209
TC221650
bZIP transcription factor
3.294681
Increase


222
S23072065
MYB domain transcription factor
10.55804
Increase


224
S4896043
MYB domain transcription factor
10.08066
Increase


227
S4907367
MADS box transcription factor
368.2633
Increase


230
S23062231
Zinc finger protein
1.869604
Increase


231
S21539774
other transcription factor families
−1.78122
Decrease


238
S23069233
putative transcription factor
4.137847
Increase


249
TC225042
other transcription factor families
2.196565
Increase


250
S4870629
MYB domain transcription factor
12.09642
Increase


251
TC225047
other transcription factor families
−4.23604
Decrease


256
DQ055134

Glycine max C2H2

8.017523
Increase


262
S5129107
other transcription factor families
3.352282
Increase


267
S15850208
hunchback protein like
4.083246
Increase


272
S4909265
putative transcription factor
15.51433
Increase


282
S4911235
other transcription factor families
2.575462
Increase


288
S22951753
hunchback protein like
4.764069
Increase


292
S4862202
other transcription factor families
2.192659
Increase


300
S5146307
putative transcription factor
3.136905
Increase


305
Z46956

Glycine max HSTF5

2.429612
Increase


306
S4904949
RING zinc finger protein
4.276327
Increase


319
J01298

Glycine max ACT1

3317.992
Increase


326
S22952905
putative transcription factor
1.838091
Increase


339
TC232307
putative transcription factor
4.302425
Increase


341
TC232363
MYB domain transcription factor
10.08527
Increase


342
S4877094
Zinc finger protein
3.108471
Increase


343
TC232817
putative transcription factor
1.84859
Increase


357
TC235019
other transcription factor families
−4.2854
Decrease


359


−4.05153
Decrease


364
S21537216
MYB domain transcription factor
−1.86593
Decrease


368
S21540786
General Transcription
8.493241
Increase


374
S21566054
G2-like transcription factor, GARP
3.81518
Increase


386
S15849836
DNA-binding protein
7.890462
Increase


387
S23061430
LUG
4.831874
Increase


388
S15850391
other transcription factor families
5.091384
Increase


389
S23061682
Alfin-like
3.198659
Increase


401
S23063489
C3H zinc finger
7.364133
Increase


407
S23064915
CCAAT box binding factor
4.978799
Increase


413
S4877491
MYB domain transcription factor
3.24489
Increase


423
S4882183
DNA-binding protein
3.987868
Increase


426
S5002246
other transcription factor families
8.419645
Increase


438
S18531023
Zinc finger protein
3.771058
Increase


447
S23067564
MYB domain transcription factor
5.655465
Increase


450
S21537821
SET-domain transcriptional regulator family
3.259263
Increase


451
S23068300
myb-related protein
9.987982
Increase


454
S21538405
Zinc finger protein
5.684593
Increase


456
S21539619
other transcription factor families
7.193817
Increase


457
S4884782
RING zinc finger protein
2.513477
Increase


459
S4884795
putative transcription factor
2.273172
Increase


460
S5019221
putative transcription factor
2.681338
Increase


461
S4885448
other transcription factor families
4.713803
Increase


468
S5026438
General Transcription
4.021517
Increase


471
S4891443
bZIP transcription factor
3.238835
Increase


486
S21565183
bHLH, Basic Helix-Loop-Helix
2.244631
Increase


487
S23070876
General Transcription
7.075226
Increase


489
S23071068
TCP transcription factor
5.322845
Increase


493
S23071477
bHLH, Basic Helix-Loop-Helix
6.724547
Increase


504
S22951976
Aux/IAA
5.278411
Increase


505
S4895927
putative DNA-binding protein
5.299699
Increase


513
S4897794
bHLH, Basic Helix-Loop-Helix
4.477768
Increase


518
S5075763
HB, Homeobox transcription factor
17.40339
Increase


526
S5076266
bZIP transcription factor
14.63446
Increase


530
S22952226
Trihelix, Triple-Helix transcription factor
3.24605
Increase


538
S22953062
WRKY domain transcription factor
2.514294
Increase


540
S23061205
Leucine zipper transcription factor
6.660365
Increase


541
S4869132
TUB transcription factor
2.039763
Increase


542
S23061455
Aux/IAA
15.93303
Increase


546
S23061550
bHLH, Basic Helix-Loop-Helix
4.828178
Increase


547
S4875111
Aux/IAA
3.263079
Increase


550
S23061947
Trihelix, Triple-Helix transcription factor
9.147663
Increase


557
S4900633
other transcription factor families
6.366285
Increase


558
S5088770
other transcription factor families
3.60347
Increase


559
S4901877
other transcription factor families
3.414657
Increase


564
S5100831
Zinc finger protein
1.990323
Increase


567
S4904547
other transcription factor families
1.98464
Increase


570
S5103646
Agamous like
4.954743
Increase


578
S23062909
bHLH, Basic Helix-Loop-Helix
12.34281
Increase


584
S23063261
myb-related protein
15.35067
Increase


592
S23064130
General Transcription
4.930358
Increase


596
S23064932
MYB domain transcription factor
3.246497
Increase


598
S23065007
other transcription factor families
7.825335
Increase


599
S4888307
ARR
4.308908
Increase


603
S4908810
C2H2 zinc finger
3.976952
Increase


606
S5130128
DNA-binding protein
9.46924
Increase


607
S4910460
MYB domain transcription factor
3.567659
Increase


609
S4910851
EIN3 + EIN3-like(EIL) transcription factor
1.553793
Increase


620
S5146158
bZIP transcription factor
12.02518
Increase


621
S4913507
Zinc finger protein
3.82379
Increase


625
S4891278
bHLH, Basic Helix-Loop-Helix
3.25324
Increase


627
S4891674
MADS box transcription factor
2.409738
Increase


629
S4892093
AP2/EREBP, APETALA2/Ethylene-responsive element binding
−3.3456
Decrease




protein family


630
S23066857
Bromodomain proteins
8.293166
Increase


640
S23070418
C2H2 zinc finger
10.62733
Increase


653
S4917467
Zinc finger protein
24.3013
Increase


655
S4917546
MYB domain transcription factor
3.082696
Increase


666
S6675518
putative transcription factor
4.461472
Increase


674
S23071935
other transcription factor families
3.704373
Increase


678
S4861946
AP2/EREBP, APETALA2/Ethylene-responsive element binding
2.403874
Increase




protein family


688
S4867907
putative transcription factor
103.7044
Increase


698
S5035170
EIN3 + EIN3-like(EIL) transcription factor
3.675418
Increase


707
S4948369
Zinc finger protein
15.55212
Increase


711
S4953170
other transcription factor families
5.62144
Increase


718
S5126262
MYB domain transcription factor
9.556359
Increase


721
S4980774
Chromatin remodeling complex subunit
11.08125
Increase


723
S4981647
ARF, Auxin Response Factor
6.775763
Increase


726
S4872717
DNA-binding protein
3.506245
Increase


728
S4872880
other transcription factor families
8.086666
Increase


740
S4875903
WRKY domain transcription factor
7.377872
Increase


744
S4876683
ARF, Auxin Response Factor
4.451186
Increase


745
S4967941
MADS box transcription factor
4.636514
Increase


753
S4976159
AT-rich interaction domain containing transcription factor
8.441762
Increase


755
S4980388
Chromatin remodeling complex subunit
1.940131
Increase


764
S5146871
Aux/IAA
−4.69505
Decrease


164
AY974349

Glycine max NAC1

34.31886
Increase


199
DQ028773

Glycine max NAC5

5.514578
Increase


720
S5146166
NAC domain transcription factor
3.189606
Increase


177
AY974351

Glycine max NAC3

1.004904
Similar


704
S5050636
NAC domain transcription factor
3.678247
Increase


165
DQ028770

Glycine max NAC2

2.248117
Increase


204
DQ028774

Glycine max NAC6

16.47516
Increase


384
S22952239
NAC domain transcription factor
12.28312
Increase


501
S4863935
CCAAT box binding factor
10.82859
Increase







Preferentilally expressed in roots









3
TC205627
bZIP transcription factor


7
TC205929
AP2 transcription factor like


14
S4930680
DNA-binding protein


17
TC206902
AP2 transcription factor like


18
S4882983
MYB domain transcription factor


22
S4966677
EIN3 + EIN3-like(EIL) transcription factor


24
S4904584
WRKY domain transcription factor


50
S5011331
other transcription factor families


83
S5046001
MYB domain transcription factor


90
S4981738
Zinc finger protein


123
S4879817
Zinc finger protein


130
DQ054363

Glycine max DREB2 gene



155
TC216155
bZIP transcription factor


191
S23068684
bZIP transcription factor


215
TC223128
WRKY domain transcription factor


244
S5045942
Zinc finger protein


259
TC225723
WRKY domain transcription factor







House keeping/controls









Gmub12



UBI



Tub



ELF



Scof










Example 10
Sequences of Soybean Transcription Factors Belonging to the Different Families

Soybean transcription factors belonging to different families are shown in FIG. 1. The Soybean Database Identification numbers of members of these families are shown in FIGS. 15-78. The sequences of the genes coding for these proteins and the proteins themselves may be obtained from the Soybean Genome Databases maintained by the University of Missouri at Columbia which may be accessed freely by the general public. The links for some of these databases are listed below:


http://casp.rnet.missouri.edu/soydb


http://www.phytozome.net/soybean.php and


http://www.phytozome.net/cgi-bin/gbrowse/soybean/?start=5935000; stop=6024999; ref=Gm01; width=800; version=100;


cache=on; drag and drop=on; show_tooltips=on; grid=on; label=Transcripts-Glycine_max_est-Gmax_PASA_assembly


The sequences of all genes or proteins listed in this disclosure or those referenced by PublicID, GenBank ID, or soybean gene ID are hereby incorporated by reference into this disclosure as if fully reproduced herein.


Example 11
Bioinformatic Analysis of Soybean Transcription Factors to Identify the Enrichment or Depletion of Specific Transcription Factor Families in Soybean when Compared to Other Model Plant Species

The amino acid sequences of the TFs in each 64 Arabidopsis TF families were downloaded from DATF (Guo, et al., 2005) and the sequences were aligned by a multiple sequence alignment tool MUSCLE (Edgar, 2004). A hidden Markov model was trained for each Arabidopsis family by SAM (Hughey and Krogh, 1995) using the multiple sequence alignment. Each of the 6,690 soybean TFs was aligned individually to each of the 64 hidden Markov models and then was assigned to the TF family whose hidden Markov model generated the lowest e-value. This e-value indicates the fitness between the query TF sequence and the hidden Markov model, with smaller e-value indicating better fitness between them. Out of the entire soybean TFs, the highest e-value was 0.305 on one soybean TF, and a total of 166 soybean TFs had an e-value between 0.1-0.4, which indicates most of the soybean TFs had a confident classification to one of the 64 TF families from Arabidopsis.


Comparisons of TF numbers in each TF family between soybean and Arabidopsis: The numbers of transcription factors in each of the 64 families for soybean and Arabidopsis were compared (Table 1). For each family, the TF number of soybean was divided by the one in Arabidopsis. A higher ratio shows the families have an enriched number of soybean transcriptions as compared to Arabidopsis. Based on TAIR version 8 (Rhee, et al., 2003), Arabidopsis has 32,825 proteins, while soybean has 75,778 proteins based on the soybean genome sequencing completed in early 2008 by the Department of Energy-Joint Genome Institute (Schmutz, et al., 2009). Therefore, the soybean gene number is about two times bigger than Arabidopsis, and the >2.3 ratio (75,778/32,825) in Table 1 shows enrichment in soybean after considering the genome size difference between these two species.









TABLE 8







The comparisons of number of transcription factors (gene models)


in every soybean and Arabidopsis TF family, ranked by the


ratio of soybean sequence number divided by the Arabidopsis


sequence number.













Soybean

Arabidopsis





Family Name
Num.
Num.
Ratio
















GeBP
12
21
0.6



BBR-BPC
12
13
0.9



HSF
30
24
1.2



PcG
51
44
1.2



GRF
14
9
1.6



NIN-like
28
16
1.8



NAC
221
117
1.9



S1Fa-like
6
3
2



bZIP
237
107
2.2



AS2
100
45
2.2



CCAAT-DR1
12
5
2.4



MADS
279
118
2.4



C2C2-DOF
105
43
2.4



SRS
31
13
2.4



CCAAT-HAP5
47
19
2.5



CCAAT-HAP3
45
18
2.5



E2F-DP
37
15
2.5



C2H2
372
145
2.6



BES1
34
13
2.6



AP2-EREBP
425
159
2.7



ZIM
76
27
2.8



GARP-G2-like
157
56
2.8



TCP
75
27
2.8



Trihelix
80
29
2.8



LUG
20
7
2.9



bHLH
487
158
3.1



C2C2-CO-like
142
46
3.1



AUX-IAA
105
34
3.1



C3H
211
69
3.1



HB
304
98
3.1



MYB-related
211
65
3.2



CPP
29
9
3.2



PHD
215
65
3.3



Alfin
31
9
3.4



SBP
91
27
3.4



C2C2-GATA
104
30
3.5



MYB
574
165
3.5



ZD-HD
59
17
3.5



ARF
129
34
3.8



TLP
62
16
3.9



EIL
24
6
4



HMG
75
17
4.4



ULT
9
2
4.5



CCAAT-HAP2
23
5
4.6



MBF1
14
3
4.7



GRAS
164
35
4.7



GARP-ARR-B
53
11
4.8



LIM
86
18
4.8



FHA
93
17
5.5



PLATZ
60
11
5.5



JUMONJI
112
20
5.6



ARID
64
11
5.8



CAMTA
41
7
5.9



GIF
18
3
6



HRT-like
12
2
6



ABI3-VP1
101
16
6.3



C2C2-YABBY
43
6
7.2



TAZ
76
10
7.6



WRKY
245
30
8.2



SAP
10
1
10



Whirly
21
2
10.5



VOZ
34
2
17



NZZ
18
1
18



LFY
34
1
34










The functions of the top 5 and bottom 5 TF families ranked by the TF number ratio between soybean and Arabidopsis are listed in Table 9. The functions are cited from the database DATF (Guo, et al., 2005). As shown in Table 9, soybean TFs are mostly enriched in those families that are involved in reproductions, such as pollen and flower development.









TABLE 9







The brief functions of the top and bottom 5 families ranked


by the ratio of soybean TF number divided by Arabidopsis


TF number.









Family
ratio













GeBP
0.6
GL1 enhancer binding protein, acting as a repressor of




leaf cell fate


BBR-BPC
0.9
Regulate gene SEEDSTICK (STK), which controls




ovule identify, and characterized its mechanism of




action


HSF
1.2
Heat shock transcription factor, responsible for




relaying signals of cellular stress to the transcriptional




apparatus


PcG
1.2
PcG mutants exhibit posterior transformations in




embryos and adults caused by depression of homeltic




loci in flies, and in vertebrates, also regulate non-




homeotic targets.


GRF
1.6
Plays a regulatory role in stem elongation


SAP
10
Involved in the initiation of female gametophyte




development


Whirly
10.5
Activate pathogenesis-related genes


VOZ
17
Control V-PPase for pollen development


NZZ
18
Develop and control sporangia


LFY
34
Controls the production of flowers









Example 12
Tissue Specific and Nodulation Related Expression Pattern of Soybean Transcription Factors

qRT-PCR provides one of the most accurate methods to quantify gene expression. Using this technology, the expression of 1034 out of the 5671 transcription factor genes (TF) identified in soybean (18%) was quantified during soybean root nodulation and in different tissues. See Example 2. The entire soybean genome has been published. See e.g., Schmutz et al., 2010. To better understand the regulation of soybean TF gene expression, it is important to note that two duplication events occurred in the soybean genome about 59 and 13 million years ago, respectively. These duplications have led to multiple copies of the same gene in the soybean genome which is also called homeologous genes.


The expression levels of homeologous soybean genes during soybean root nodulation and in response to KCl and KNO3 were compared using the qRT-PCR data (FIG. 79). The expression of homeologs quantified by qRT-PCR can diverge significantly after duplication of soybean genome. On each graphic, the expression of the two homeologs is indicated in grey and black. Transcription factor transcripts from 4, 8 and 24 days after inoculation (DAI) roots inoculated (IN) or mock-inoculated (UN) with B. japonicum and roots treated with KCl and KNO3 (x-axis) were normalized against the soybean reference gene Cons6 (y-axis).


This analysis unveiled numerous examples of homeologous soybean TF genes showing differential expression (FIG. 79) and the complete extinction of the expression of one of the duplicated genes (FIG. 79-K). Such gene is also called pseudogene.


Despite the value of such analysis, it was frustrating to limit our analysis to a small fraction of the soybean TF genes. The restricted number of soybean TF genes analyzed by qRT-PCR is mainly limited by the design of specific primers for each gene analyzed. Consequently, the use of technologies such as Illumina-Solexa technology allowing the accurate quantification of the transcriptome of the entire set of soybean TF genes is required. Illumina-Solexa technology allows quantifying very accurately the expression of transcripts including low abundant transcripts such as TF gene transcripts and is not restricted to a subset of the soybean genes


Despite the value of such analysis, the number of soybean TF genes that can be analyzed by qRT-PCR is limited by the design and synthesis of specific primers for each gene analyzed. The use of technologies such as Illumina-Solexa technology may allow the accurate quantification of the transcriptome of the entire set of soybean TF genes. Illumina-Solexa technology may enable very accurate quantification of the expression of genes including low-abundance transcripts such as TF gene transcripts and is not restricted to a subset of the soybean genes.


With the help of the Illumina-Solexa technology, a soybean transcriptome atlas has been developed which shows, among others, the expression of the 5671 soybean TF genes across 14 different conditions and/or location, namely, Bradyrhizobium japonicum-inoculated and mock-inoculated root hairs isolated 12, 24 and 48 hours after inoculation, Bradyrhizobium japonicum-inoculated stripped root isolated 48 hours after inoculation (i.e. root devoid of root hair cells), mature nodule, root, root tip, shoot apical meristem, leaf, flower, green pod (Table 10). The upper half of Table 10 shows expression of these genes in 7 conditions/tissues, while the lower half of Table 10 shows expression of the same genes in the remaining 7 conditions/tissues. No transcripts were detected across the 14 conditions tested for 787 soybean TF genes (Table 10). Although this set of conditions is not exhaustive; this result suggests that these 787 genes might be pseudogenes (i.e. genes silenced during their evolution). Such a result confirmed previous reports based on qRT-PCR as described above.


This large scale analysis also enables the identification of soybean TF genes showing a repetitive induction of their expression during root hair cell infection by B. japonicum (Table 11). It is worth noting that some of these soybean TF genes were orthologs to Lotus japonicus and Pisum sativum TF genes that have been previously identified as key-regulators of the root hair infection by rhizobia (Table 11).


120 soybean TF genes were identified which were expressed at least 10 times more in one soybean tissues when compared to the remaining 9 tissues (i.e. mock-inoculated root hairs isolated 12 and 48 hours after treatment, mature nodule, root, root tip, shoot apical meristem, leaf, flower, green pod. See FIG. 14 and Table 12. By comparing our list to previously published data, we were able to identify the soybean orthologs of Arabidopsis proteins regulating floral development (FIG. 80). Taken together, these analyses confirm the relatively high quality of the soybean TF gene expression profiles as quantified by Illumina-Solexa technology.









Lengthy table referenced here




US20120198587A1-20120802-T00001


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US20120198587A1-20120802-T00002


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US20120198587A1-20120802-T00003


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US20120198587A1-20120802-T00004


Please refer to the end of the specification for access instructions.






Example 13
Expression Pattern of Members of Nac Family of Transcription Factors (TFs) and Analysis of the Transgenic Arabidopsis Plants Harboring the Same

NAC transcription factors (TFs) are plant specific transcription factors that have been reported to enhance stress tolerance in number of plant species. The NAC TFs regulate a number of biochemical processes which protect the plants under water-deficit conditions. A comprehensive study of the NAC TF family in Arabidopsis reported that there are 105 putative NAC TFs in this model plant. More than 140 putative NAC or NAC-like TFs have been identified in Rice. The NAC TFs are multi-functional proteins and are involved in a wide range of processes such as abiotic and biotic stress responses, lateral root and plant development, flowering, secondary wall thickening, anther dehiscence, senescence and seed quality, among others.


170 potential NACs were identified through the soybean genome sequence analysis. Full length sequence information of 41 GmNACs are available at present and 31 of them are cloned. Quantitative real time PCR experiments were conducted to identify tissue specific and stress specific NAC transcription factors in soybean and the results are shown in FIGS. 81 and 82. Briefly, soybean seedling tissues were exposed to dehydration, abscisic acid (ABA), sodium chloride (NaCl) and cold stresses for 0, 1, 2, 5 and 10 hours and the total RNAs were extracted for this study. The cDNAs were generated from the total RNAs and the gene expression studies were conducted using ABI 7990HT sequence detection system and delta delta Ct method.


The drought response of these genes was studied, and the results are shown in FIG. 84. Briefly, drought stress was imposed by withholding water and the root, leaf and stem tissues were collected after the tissue water potential reaches 5 bar, 10 bar and 15 bar (representing various levels of water stress). Total RNAs were extracted from these tissues and the gene expression studies were conducted using the ABI 7900 HT sequence detection system. These experiments revealed tissue specific and stress specific NAC TFs and the expression pattern of these specific NAC family members.


A number of NAC TFs were cloned and expressed in the Arabidopsis plants to study the biological functions in-planta. Transgenic Arabidopsis plants were developed and assayed for various physiological, developmental and stress related characteristics. Two of the major gene constructs (following gene cassettes) were utilized for the transgene expression in Arabidopsis plants. One is CaMV35S Promoter-GmNAC3gene-NOS terminator, the other construct is CaMV35S Promoter-GmNAC4gene-NOS terminator. The coding sequence of the GmNAC3 gene is listed as SEQ ID No. 2299, while the coding sequence of the GmNAC4 gene is listed as SEQ ID No. 2300. For the transgenic experiments, the Arabidopsis ecotype Columbia was transformed with the above gene constructs using floral dip method and the transgenic plants were developed. Independent transgenic plants were assayed for the transgene expression levels using qRT-PCR methods (FIG. 83). (Q1 is the independent transgenic lines expressing GmNAC3 and Q2 is the independent transgenic lines expressing GmNAC4).


Examination of the transgenic plants revealed that the transgenic plants showed improved root growth and branching as compared to controls (FIG. 84). Because the root system plays an important role in drought response, these transgenic plants have the potential for drought tolerance. These DRG candidates and the constructs may be used to produce transgenic soybean plants expressing these genes. The DRG candidate genes may also be placed under control of a tissue specific promoter or a promoter that is only turned on during certain developmental stages. For instance, a promoter that is on during the growth phase of the soybean plant, but not during later stage when seeds are being formed.


A trend towards the enhanced root branching (more lateral roots) was observed under simulated drought stress conditions using the poly ethylene glycol (PEG) containing growth medium. Major observations during these studies include, for example, GmNACC3 and GmNACC4 are differentially expressed in soybean root, and both seemed to be expressed at a higher level in the root. It is likely that the proteins encoded by the transgenes in GmNACQ1 and GmNACQ2 help regulate lateral root development in transgenic Arabidopsis plants.


Example 14
Transgenic Arabidopsis Plants with GmC2H2 Transcription Factor and GmDOF27 Transcription Factor Shows Better Plant Growth and Development Characteristics

To identify other proteins that may be beneficial to a host plant, Arabidopsis transgenic plants with the following gene constructs were generated: (a) CaMV35S Promoter-GmC2H2 gene-NOS terminator; and (b) CaMV35S Promoter-GmDOF27 gene-NOS terminator. The coding sequence of the GmC2H2 gene is listed as SEQ ID No. 2301, while the coding sequence of the GmDOF27 gene is listed as SEQ ID No. 2302. The homozygous transgenic lines (T3 generation) were developed and the physiological assays were conducted, including, for example, examination of root and shoot growth, stress tolerance, and yield characteristics.



FIG. 85 shows comparison of the vector control and transgenic plants morphology at the reproductive stage. There appeared to be distinct differences between the control and transgenic Arabidopsis plants in shoot growth and flowering and silique intensity. Further analysis is conducted to examine the biomass changes, root growth and seed yield characteristics under well watered and water stressed conditions.


While the foregoing instrumentalities have been described in some detail for purposes of clarity and understanding, it will be clear to one skilled in the art from a reading of this disclosure that various changes in form and detail can be made without departing from the true scope of the invention. For example, all the techniques and apparatus described above may be used in various combinations. All publications, patents, patent applications, or other documents cited in this application are incorporated by reference in their entirety for all purposes to the same extent as if each individual publication, patent, patent application, or other document were individually indicated to be incorporated by reference for all purposes.


REFERENCES

In addition to those references that are cited in full in the text, additional information for those abbreviated citations is listed below:

  • Boyer, J S, 1983, Environmental stress and crop yields. In C. D. Raper and P. J. Kramer (ed) Crop reactions to water and temperature stresses In humid, temperature climates. Westview press, Boulder, Colo. pp 3-7.
  • Muchow R C, Sinclair T R. 1988. Water and nitrogen limitations In soybean grain production. II. Field and model analyses. Field Crop Res. 15:143-158.
  • Specht J E, Hume D J, Kumind S V. 1999. Soybean yield potential-A genetic physiological perspective. Crop Science 39:1560-1570.
  • Wang W, Vinocur B, Altman A: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 2003, 218:1-14.
  • Vinocur, B, Altman A: Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 2005, 16:123-32.
  • Chaves M M, Oliveire M M: Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 2004, 55; 2365-2384.
  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M: Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 2003, 6:410-417.
  • Schena M, Shalon D, Davis R W, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470
  • Shalon D, Smith S, Brown P (1990) A DNA microarray system for analyzing complsx DNA samples using two-color fluorescent probe hybridization. Genome Res. 8: 639-645.
  • Bray E A: Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 2004, 55:2331-2341.
  • Denby K, Gehring C: Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling In Arabidopsis. Trends in Plant Sci 2005, 23547-552.
  • Shinozaki K, Yamaguchi-Shinozaki K: Molecular responses to drought and cold stress. Curr Opin Biotech 1996, 7:181-167
  • Shinozaki. K, and Yamaguchi-Shinozaki, K: Molecular responses to dehydration and low temperature; differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 2000, 3:217-223.
  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K: Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 2001, 13:61-72.
  • Fowler S, Thomashow M F: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation In addition to the CBF cold response pathway, Plant Cell 2002, 14:1875-1690.
  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K: identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 2004, 38:982-993.
  • Edgar, R. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, 32, 1792-1797.
  • Guo, A., He, K., Liu, D., Bai, S., Gu, X., Wei, L. and Luo, J. (2005) DATF: a database of Arabidopsis transcription factors, Bioinformatics, 21, 2568-2569.
  • Hughey, R. and Krogh, A. (1995) SAM: sequence alignment and modeling software system. In, Technical Report: UCSC—CRL-95-07. University of California at Santa Cruz.
  • Rhee, S., Beavis, W., Berardini, T., Chen, G., Dixon, D., Doyle, A., Garcia-Hernandez, M., Huala, E., Lander, G., Montoya, M., Miller, N., Mueller, L., Mundodi, S., Reiser, L., Tacklind, J. and Weems, D. (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community, Nucleic Acids Research, 224-228.
  • Schmutz, J., Cannon, S., Schlueter, J et al. (2010) Genome sequence of the paleopolyploid soybean (Glycine max (L.) Merr.). Nature, 463 (7278):178-183.









LENGTHY TABLES




The patent application contains a lengthy table section. A copy of the table is available in electronic form from the USPTO web site (). An electronic copy of the table will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).





Claims
  • 1. A method for generating a transgenic plant from a host plant, said transgenic plant being more tolerant to an adverse condition when compared to the host plant, said method comprising a step of altering the expression levels of a transcription factor or fragment thereof, said adverse condition being at least one condition where one or more of an environmental conditions is too high or too low, said environmental condition being selected from a group consisting of water, salt, acidity, temperature and combination thereof, the expression of said transcription factor being upregulated or downregulated in an organism in response to said adverse condition.
  • 2. The method of claim 1, wherein said organism is a second plant that is different from said host plant.
  • 3. The method of claim 1, wherein said transcription factor is exogenous to said host plant.
  • 4. The method of claim 1, wherein said transcription factor is derived from a plant that is genetically different from the host plant.
  • 5. The method of claim 4, wherein said transcription factor is derived from a plant belonging to the same species as the host plant.
  • 6. The method of claim 1, wherein the transcription factor is encoded by a coding sequence selected from the group consisting of the polynucleotide sequence of SEQ ID. No. 2299, SEQ ID. No. 2300, SEQ ID. No. 2301, and SEQ ID. No. 2302.
  • 7. The method of claim 1, wherein the coding sequence of said transcription factor or a fragment thereof is operably linked to a promoter for regulating expression of said polypeptide.
  • 8. The method of claim 7, wherein the promoter is derived from another gene that is different from the gene encoding said transcription factor.
  • 9. The method of claim 2, wherein the expression of said transcription factor is upregulated or downregulated in said second plant in response to said adverse condition by at least a two-fold changes in expression levels.
  • 10. A method for generating a transgenic plant from a host plant, said transgenic plant being more tolerant to an adverse condition when compared to the host plant, said method comprising the steps of: (a) introducing into a plant cell a construct comprising a regulatory sequence and a coding sequence encoding a first polypeptide, said regulatory sequence being at least 90% identical to the promoter sequence of a second polypeptide, wherein the second polypeptide is a transcription factor, the expression of said transcription factor being upregulated or downregulated in an organism in response to said adverse condition, said adverse condition being at least one condition where one or more of an environmental condition is too high or too low, said environmental condition being selected from a group consisting of water, salt, acidity, temperature and combination thereof, and (b) generating a transgenic plant expressing said first polypeptide.
  • 11. The method of claim 10, wherein the coding sequence is operably linked to the regulatory sequence whereby the expression of the first polypeptide is regulated by the regulatory sequence.
  • 12. The method of claim 10, wherein said organism is a second plant that is different from said host plant.
  • 13. The method of claim 10, wherein the regulatory sequence is a promoter that is at least one member selected from the group consisting of a cell-specific promoter, a tissue specific promoter, an organ specific promoter, a constitutive promoter, and an inducible promoter.
  • 14. The method according to claim 13, wherein at least a portion of said coding sequence is oriented in an antisense direction relative to said promoter within said construct.
  • 15. The method of claim 10, wherein the adverse condition is drought.
  • 16. A transgenic plant generated from a host plant using the method of claim 1, or claim 10, said transgenic plant exhibiting increased tolerance to the adverse condition as compared to the host plant.
  • 17. The transgenic plant of claim 16, wherein the transcription factor is encoded by a coding sequence selected from the group consisting of the polynucleotide sequence of SEQ ID. No. 2299, SEQ ID. No. 2300, SEQ ID. No. 2301, and SEQ ID. No.
  • 18. The transgenic plant of claim 17, wherein the coding region of the transcription factor is operably linked to a promoter for regulating expression of said transcription factor.
  • 19. The transgenic plant of claim 18, wherein the promoter is at least one member selected from the group consisting of a cell-specific promoter, a tissue specific promoter, an organ specific promoter, a constitutive promoter, and an inducible promoter.
  • 20. The transgenic plant of claim 16, wherein the host plant is selected from the group consisting of soybean, corn, wheat, rice, cotton, sugar cane, and Arabidopsis.
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 61/270,204 filed Jun. 30, 2009, the contents of which are hereby incorporated into this application by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US10/40687 6/30/2010 WO 00 4/17/2012
Provisional Applications (1)
Number Date Country
61270204 Jun 2009 US