This invention relates to the field of water jets and more particularly to a system for a water jet that requires no adjusting.
Many systems such as spas utilize jets to direct a flow of water. In general, such jets are often used for therapeutic reasons by directing the flow of water against a person's body. The water pressure and/or heat (if the water is heated) are believed to provide a therapeutic effect to aches and pains in the area at which the flow of water is directed.
Jets are often integrated into spas, hot tubs, baths, etc. In such applications, the person places a part of their body that is experiencing pain or aching at the outflow of the jet(s), thereby alleviating some of the pain from the flow and/or heat of the water flow.
In existing designs, the jets are typically adjustable to control both the volume of water flow as well as the direction of water flow. The direction has been adjustable in various ways using, for example, an eye-socket arrangement where an outflow tube of the jet is attached to the eye portion and can be bent into the direction desired.
Because most spas, hot tubs, bathtubs, utilize a fixed speed motor or two-speed motor to drive a water pump, the resulting flow of water through the pump is not adjustable. Therefore, adjustment of the flow rate at the jet requires a valve mechanism at the jet, typically controlled by a knob that is part of the face plate of the jet. One reason for adjusting the flow rate at the jet is predicated by the positioning of the user. When there is some distance between the user and the jet, the user will be comfortable with a high pressure, but as the distance between the user and the jet decreases, the same pressure may become painful, especially when the user gets close enough to the jet to be abutting the outflow. Therefore, a user who wishes to rest against a jet will often adjust the jet flow to lower the pressure being emitted from that jet. One can imagine how difficult it is to properly adjust an array of jets, as is often provided in many modern spas and tubs.
The valve mechanism used in many jets has the actual valve portion (e.g. an iris valve), an adjustment knob, and linkage between the actual valve portion and the knob. The adjustment knob is often the face of the jet, having knurls, indentations, ribs, etc., to enable gripping while turning to adjust the valve portion. Any device that is used with/in water is prone to build up and chemical change due to organic materials, suspended solids (e.g. sand), and harsh chemicals used to combat some of the organic materials. These act against any submerged control mechanism, working their way into the adjustment mechanism of the typical jet, making the adjustment mechanism difficult to turn or impossible to turn. Furthermore, because the jet is often held to the spa/tub wall by a rotating member (e.g. threaded nut), there are many examples where instead of adjusting the jet valve, the turning operation often results in turning the entire jet body, resulting in eventual loosening of the nut and leakage.
Spas, hot tubs, and bathtubs often have many jets, numbering from a few to several dozen, making the reliability of the overall spas, hot tubs, or bathtubs dependent upon the reliability of many individual jets. When one or two jets fail or become difficult to use, the quality reputation of the manufacturer often suffers.
Often, due to biological material build-up and water treatment chemicals, etc., the eye-socket directional adjustment often becomes difficult or impossible to change. Furthermore, with the introduction of arrays of jets, the ability to individually aim each jet becomes less important and the user can easily find a position where the jets are properly aimed without changing the direction of flow of the jets.
What is needed is a jet system that is comfortable when used in close proximity yet does not require adjustment.
In one embodiment, a jet is disclosed including a jet base portion and a face portion with an orifice extending through the jet base portion and through the face portion at an exit. A plurality of side-directed fluid orifices is included. Each of the side-directed fluid orifices is in fluid communications with the orifice.
In another embodiment, a method of method of directing water pressure is disclosed including providing the jet as describe above and connecting the input port of the jet to the source of water pressure then installing the jet into a wall of a spa/tub and connecting the jet face to the jet body. When the exit of the jet is not impeded, the water flows substantially from the exit of the jet and when the exit of the jet is impeded (or partially impeded), the water flow is redirected to the side-directed fluid orifices.
In another embodiment, a jet for spa/tub is disclosed including a jet body and a jet base portion. The jet base portion is connectable to the jet body. The jet base portion has a face portion that outwardly extends from the jet base portion. An orifice extends through the jet base portion and through the face portion at an exit opening. There is a plurality of side-directed fluid orifices. Each of the side-directed fluid orifices is in fluid communications with the orifice such that when the exit is blocked, fluid flows through the side-directed fluid orifices.
The invention can be best understood by those having ordinary skill in the art by reference to the following detailed description when considered in conjunction with the accompanying drawings in which:
Reference will now be made in detail to the presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Throughout the following detailed description, the same reference numerals refer to the same elements in all figures.
Throughout this description, for brevity purposes, the term “spa jet” will refer to any type of jet for any type of usage, including, but not limited to, spa jets, tub jets, hot tub jets, pool jets, etc. Throughout this description, as an example, water and/or air flow through such jets. The term “water” refers to a liquid that comprises water (H2O) and optionally various other dissolved or suspended chemicals and minerals including, but not limited to, pool chemicals, salts, biological materials, dissolved oxygen, suspended sand/dirt particles, etc. The term “air” refers to a gas of which our atmosphere comprises having amounts of various gases, suspended particles, water vapor, etc.
Referring to
In some embodiments, the fluid channel 84 (see
Referring to
Referring to
In the exemplary installation of
As with most spa jets, the spa jet 60/80 has a water inlet 70 and air inlet 72, though in some embodiments, only a water inlet 70 or only an air inlet 72 is present.
The jet 60/80 is installed by seating the o-rings 66/68 into the at least one o-ring seats, and pushing the tubular insertion area into the formed orifice. The o-rings 66/68 compress and apply a sealing force between the o-ring seats and the smooth inner wall 44 of the formed opening. The jet 60/80 is held in place by the base 85 of the jet 80 being inserted into the tubular insertion area and locked in place by any retainment mechanism known. As shown, the base 85 of the jet 80 press fits into the tubular insertion area of the jet body 60.
The jet 80 is a self-adjusting jet. The high-pressure water and/or air flows through the fluid channel 84 in the jet body 85 towards the fluid exit 86 in the face 82 of the jet 80. The fluid channel 84 optionally increases in diameter towards the fluid exit 86, providing an expansion of the outward flow. The fluid channel 84 is fluidly interfaced at angles (e.g. right angles) to a plurality of side-directed fluid orifice 89 preferably situated between the face 82 and the inner wall 87 of the jet 80. Normally, as fluid flows (e.g. spa water) unimpeded through the fluid channel 84, little fluid escapes through the side-directed fluid orifices 89 and most of the fluid is directed out the fluid exit 86. When the fluid exit 86 is impeded or partially impeded, the fluid pressure is redirected and flows through the side-directed fluid orifices 89, thereby reducing direct pressure against whatever is blocking the fluid exit 86 and, therefore, eliminating the need to have a pressure adjustment on each oft the jets 60/80. By this mechanism, the jets 60/80 are “self-adjusting” to accommodate a user 90 laying against the jet 60/80. Again, the jets 60/80 function with any other spa-jet interface and seal including, but not limited to the exemplary o-ring interfaces, washer interfaces, shoulder washer interfaces, caulked interfaces, combinations of such, etc.
As shown in
Equivalent elements can be substituted for the ones set forth above such that they perform in substantially the same manner in substantially the same way for achieving substantially the same result.
It is believed that the system and method as described and many of its attendant advantages will be understood by the foregoing description. It is also believed that it will be apparent that various changes may be made in the form, construction and arrangement of the components thereof without departing from the scope and spirit of the invention or without sacrificing all of its material advantages. The form herein before described being merely exemplary and explanatory embodiment thereof. It is the intention of the following claims to encompass and include such changes.
This application is related to U.S. design patent application titled Spa Jet Design, attorney docket number 2699.13, filed evendate herewithin. This application is also related to U.S. patent application titled Spa Jet Interface, attorney docket number 2699.10, filed evendate herewithin. This application is also related to U.S. patent application titled Method of Forming Spa Jet Interface, attorney docket number 2699.11, filed evendate herewithin.