The present invention relates to the field of antennas, and, more particularly, to space antennas having extendible hoops and related methods.
Common space antenna configurations are radial rib reflectors or unfolding rib reflectors, which generally include a parabolic shaped flexible reflective layer connected to collapsible ribs that are movable between stored and deployed positions. Cords, wires, or guidelines may couple the flexible reflective layer to the reflector ribs and provide support and tension to the antenna. A technical shortcoming of this space antenna design is the increased package volume required when the antenna is in the stored position within a satellite, thus taking up valuable space.
To address these storage limitations on the satellite, a space antenna may be designed as a hoop reflector, where the reflective layer is attached to an extendible hoop. To shape the reflective layer into a parabolic surface, the extendible hoop usually has a thickness out of the plane of the hoop that is greater than the depth of the parabolic surface. It usually has a bending stiffness to prevent the guide wire or other cord attachments to the reflective layer from warping out of plane.
One common space antenna configured as a hoop reflector is a high compaction ratio (HCR) reflector formed as a center fed antenna that is highly compact using a basic hoop-column design. The cords that support the hoop are radially aligned to intersect at a single point inside the center mast formed as an extendible boom. This hoop antenna may have a torsional dynamic mode singularity that is only restrained by the non-linear motion of the radial cords. This may result in a low natural frequency that can only be improved by significantly increasing the tension in the radial cords. For example, as the satellite is repositioned and internal satellite components such as the gyroscope move within the satellite, vibrations are imparted to the satellite, which may affect the antenna's torsional stability.
Since the radial cord arrangements contribute little to the torsional stiffness in the nominal position, the stiffness is mainly derived from the large-displacement motion of the space antenna. This is similar to a pendulum having zero stiffness to side loads until it is displaced, which causes the support cord to rotate, and the mass to rise, and a restoration force to be generated. This resulting torsion mode in the hoop configured space antenna may cause unwanted effects in orbit, and the natural frequencies imparted to the space antenna are usually undesirable to customers and may impact antenna performance.
Some proposals to address these technical problems associated with hoop configured antenna designs have added balanced sets of long diagonal cords that may improve some torsional rigidity and torsional stiffness. Long diagonal cords, however, often create additional redundant load paths that may be unacceptable for operation of the antenna.
In general, a space antenna may comprise an extendible boom movable between stored and deployed positions. An extendible hoop may surround the extendible boom and may be movable between the stored and deployed positions. A front cord arrangement may be coupled to the extendible hoop and define a curved shape in the deployed position. A reflective layer may be carried by the front cord arrangement. A rear cord arrangement may be behind the front cord arrangement and may be coupled between the extendible hoop and the extendible boom. The rear cord arrangement may comprise a rear plurality of interconnected cords defining a plurality of rear polygons. A plurality of tie cords may extend between the front cord arrangement and the rear cord arrangement. A top cord arrangement may be above the reflective layer and coupled between the hoop and the extendible boom.
The plurality of rear polygons may comprise a plurality of rear triangles, for example. The plurality of rear polygons may define a plurality of rear non-radial paths between the extendible hoop and the extendible boom. The plurality of rear polygons may also define a plurality of spaced apart rear rings concentric with the extendible boom. The plurality of tie cords may be parallel to the extendible boom.
The front cord arrangement may comprise a front plurality of interconnected cords defining a plurality of front polygons. The plurality of front polygons may comprise a plurality of front triangles. The plurality of front polygons may define a plurality of front non-radial paths between the extendible hoop and the extendible boom. The plurality of front polygons may also define a plurality of spaced apart front rings concentric with the extendible boom.
The top cord arrangement may comprise a top plurality of interconnected cords defining a plurality of top polygons, which may comprise a plurality of top triangles. The plurality of top polygons may define a plurality of top non-radial paths between the extendible hoop and the extendible boom. The plurality of top polygons may also define a plurality of spaced apart top rings concentric with the extendible boom. An antenna feed may be carried by the extendible boom.
Another aspect is directed to a method of making a space antenna. The method may comprise coupling a front cord arrangement to an extendible hoop to define a curved shape in a deployed position, coupling a reflective layer to the front cord arrangement, and coupling a rear cord arrangement behind the front cord arrangement and between the extendible hoop and an extendible boom within the extendible hoop. The rear cord arrangement may comprise a rear plurality of interconnected cords defining a plurality of rear polygons. The method may include coupling a plurality of tie cords between the front cord arrangement and the rear cord arrangement, and coupling a top cord arrangement above the reflective layer and between the extendible hoop and the extendible boom.
Other objects, features and advantages of the present embodiments will become apparent from the detailed description which follows, when considered in light of the accompanying drawings in which:
The present description is made with reference to the accompanying drawings, in which exemplary embodiments are shown. However, many different embodiments may be used, and thus, the description should not be construed as limited to the particular embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete. Like numbers refer to like elements throughout, and prime and double prime notation are used to indicate similar elements in different embodiments.
Referring initially to
The satellite 22 may include other components not illustrated in detail, such as a solar or nuclear power system; an attitude control circuit; a gyroscope; a transceiver operative with the space antenna 20; a payload circuit that collects data from an installed camera, particle detector or other sensor; and a propulsion system to adjust trajectory.
As illustrated, a front cord arrangement 32 is coupled to the extendible hoop 30 and defines a curved parabolic shape in the deployed position as shown in the partial view of the space antenna 20 of
In an example, the plurality of rear polygons 44 may be formed as a plurality of rear triangles as shown by the configuration of the rear polygons in
In an example, the front cord arrangement 32 as perhaps best shown in the plan view of
In the example of the space antenna 20′ of
Referring again to the example of
Although triangles have been described as the polygon shape that may be formed at the rear cord arrangement 40, the front cord arrangement 32, and the top cord arrangement 48, other polygon shapes may be formed such as diamonds, rhomboids or other shapes that help eliminate the radial cord networks as commonly used with previous hoop antenna structures, forming what some skilled in the art may refer to as a modified isogrid configuration, which in an example are structural elements that run at different angles, such as 0°, 60° and 120° as non-limiting examples, and divide a plane into a series of triangles. The use of front, rear, and top polygons 56,44,48 having an arrangement each of non-radial paths 58,50,70 may appear to be less efficient in design because the polygons run at angles instead of forming radial cords that extend directly from the extendible hoop 30 to the extendible boom 26. The use of the front, rear, and top polygons 56,44,48, however, are highly efficient at carrying loads in a planar configuration, and therefore, allow an efficient load path for both the axial forces and the twisting forces imparted by torsion in the high compaction ratio hoop antenna design.
The front, rear, and top cord arrangements 32,40,48 may also be modified to reduce the number of front, rear, and top polygons 56,44,68 such as the formed triangles as the polygon pattern is propagated towards the extendible boom 26. This polygon configuration prevents a large number of the cords from converging at the extendible boom 26 and allows the pattern defined by the front, rear, and top cord arrangements 56,40,68 to concentrate the loads into the best available support locations.
In an example, the torsion mode of the space antenna 20 using the polygon structure as described may be increased from roughly 0.27 Hertz to 1.5 Hertz because the frequency is proportional to the square root of stiffness, representing a roughly 30-fold increase in torsional stiffness. Radial cord networks that were common in previous designs for a hoop antenna are substituted with at least the rear cord arrangement 40 having the rear plurality of interconnected cords 42 defining the plurality of rear polygons 44. The front cord arrangement 32 and top cord arrangement 48 also may include a structure having front and top polygons 56,58 to add the torsional stiffness to the overall structure of the space antenna 20. The plurality of tie cords 46 are parallel to the extendible boom 26 and form vertical ties that connect the front cord arrangement 32 to the rear cord arrangement 40 at the same polar coordinates in an example, and not only help maintain torsional stiffness, but also help maintain the parabolic shape of the reflective layer 36.
The space antenna 20 as described is an improvement over the more conventional hoop antenna designs that include radial cords that converge at a virtual point in the center of an extendible boom formed as the mast. Deleting those radial cords and substituting them with at least a rear cord arrangement 40 with its rear polygons 44 and also optionally the front cord arrangement 32 and top cord arrangement 48 and their front and top polygons 56,68 creates different load paths for the cords. This turns the different front, rear, and top cord arrangements 32,40,48 into a truss formation and permits their mathematical analysis using a simple linear finite element method (FEM) function, where the front, rear, and top polygons 56,44,68 may be discretized in spaced dimensions to predict the different vibration modes. The different front, rear, and top cord arrangements 32,40,48 may be tensioned enough such that any vibration imparted to the space antenna 20 does not create slack.
The number of front, rear, and top polygons 56,44,68 such as the triangles shown in
In another example, the cords forming the top cord arrangement 48 may be attached to different hoop hinges forming the extendible hoop 30 to allow the hinges to go “over-center” more easily. Arch cords as used in previous hoop antenna designs may be eliminated with the space antenna 20 due to a lower cord density in the center near the extendible boom 26. As noted before, the top cord arrangement 48 may be formed as radial cords to simplify the antenna structure. It is possible that only the rear cord arrangement 40 may be formed with its rear plurality of interconnected cords 42 to define a plurality of rear polygons 44 such as rear triangles, while the front cord arrangement 32 may include radial cords. However, greater torsional stiffness may be achieved when all three of the front, rear, and top cord arrangements 32,40,48 include the interconnected cords formed as polygons.
Referring now to
It is possible to use a mold to aid in forming the space antenna 20, where the different cords may be tensioned with weights or springs, and the mold is integrated onto the extendible hoop 30. Grooves could be formed in the mold to maintain in position the different cords forming the rear cord arrangement 40, the front cord arrangement 32, and top cord arrangement 48. The use of this type of mold may reduce the number of operations when building the space antenna 20 and integrate the bonding of different cord arrangements in a single step. It is also possible to build the front cord arrangement 32 and rear cord arrangement 40 on a 3D tool.
The space antenna 20 may be formed in a variety of different dimensions, but in an example, may include a 1 to 5 meter aperture, and be stowed within an antenna housing 28 as part of the satellite 22. The space antenna 20 may vary in size depending on the size of the space antenna. For example, when the space antenna 20 has a one (1) meter aperture, the extendible hoop 30, and the different front, rear and top cord arrangements 32,40,38 may be stored in a 10 centimeter by 10 centimeter by 20 centimeter antenna housing 28, while a space antenna having a 3 meter antenna aperture, on the other hand, may be stowed in a 12 U cube that is a 20 centimeters by 20 centimeters by 30 centimeters antenna housing.
The antenna feed 74 as noted before is provided in this example at the top or free end of the extendible boom 26 that forms the mast. The extendible hoop 30 may be formed from different hinge members and link members, such as described in the incorporated by reference U.S. Pat. No. 9,608,333 patent. The link members may be formed from lightweight, high strength materials, for example, carbon fiber. The extendible hoop 30 may be biased outward when the space antenna is deployed using motor or spring driven gears or other spring mechanisms.
Many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is understood that the invention is not to be limited to the specific embodiments disclosed, and that modifications and embodiments are intended to be included within the scope of the appended claims.
This invention was made with government support under Government Contract No. 65EP-STRT as part of a subcontract from the Aviation and Missile Technology Consortium (AMTC) Initiative No. AMTC-09-08-026, which has been issued by Advanced Technology International on behalf of Assured Positioning, Navigation and Timing/Space Cross-Functional Team (APNT/Space CFT). The government may have certain rights in the invention.