Information
-
Patent Grant
-
6413632
-
Patent Number
6,413,632
-
Date Filed
Thursday, January 25, 200123 years ago
-
Date Issued
Tuesday, July 2, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
-
CPC
-
US Classifications
Field of Search
US
- 428 395
- 428 357
- 428 364
- 428 394
- 008 483
-
International Classifications
-
Abstract
This invention relates to a method and apparatus to produce space dyed yarns. A yarn sheet passes over a yarn-driven roll equipped with a digital sensor that tracks the position of the sheet as it then passes through a dyeing apparatus. A computer precisely controls the spray application of dyes at the desired locations on the length of the yarn sheet to produce space dyed POY and FOY yarns.
Description
This invention relates generally to an improved method and apparatus for the continuous space dyeing of yarn. More specifically, this invention relates to a method and apparatus for spraying dyes or other patterning liquids onto a moving yarn sheet in which a yarn sheet drive roll and liquid application jets are coordinated to provide for the application of several different liquids in accordance with a predetermined pattern and with precision registration, thereby providing the ability to apply such liquids to the moving yarn sheet with no unintended untreated or overlapped sections, and in which the dye that passes through the yarn sheet is collected and recirculated for reuse.
BACKGROUND OF THE INVENTION
The production of yarn having different dyes spaced along its length is termed “space dyeing.” Space-dyed yarns are desirable because they easily may be formed into textile fabrics that have an inherent random or pseudo-random pattern imparted by the patterning of the yarns comprising the fabric. While other methods of imparting a similar pattern to textile fabrics are well known, they are more difficult and require more steps than the present invention.
Several methods for space dyeing of yarns are known. Among batch-type processes (in which a predetermined quantity of yarn is treated at one time), for example, it is known to inject yarn packages with a number of different colored dyes to yield a space-dyed product. However, such batch processes are often more costly and require more product handling than continuous processes. Continuous space-dyeing processes (in which moving yarns are individually or collectively treated) are also known. Typically, dye may be applied by a series of rollers, or may be sprayed on individual yarns or yarn sheets. While generally more efficient than package dyeing techniques, these continuous dyeing processes often experience difficulties with dye mist and drips, resulting in unwanted marks and wasted dye liquor. Furthermore, dye overspray from the various colors being applied often mixes together in a single collection system and must be discarded, resulting in added costs for replacement dye as well as for waste handling and disposal.
In addition to the problems recounted above, none of these methods has been able to solve the problems of imperfect registration of the dye pattern. That is, often the yarns produced by these methods exhibit undesirable undyed areas, or areas in which an overlapping of different dyes results in undesirable colorations. Attempts to eliminate undyed areas by providing a constant overspray of dye have resulted in the use of more dye than the instant invention, resulting in a higher cost per pound of yarn, in addition to the necessity of adjusting dye formulations to compensate for the color imparted by the overspray. Such attempts also tend to exacerbate the problem of undesirable overlapping of adjacent dyed areas, and lead to space-dyed yarns in which the overall result is neither predictable nor controllable.
SUMMARY OF THE INVENTION
The present invention improves upon the methods discussed above. This invention may be used to apply any type of liquid colorant or patterning agent, including, but not limited to, acid dyes, disperse dyes, or pigments, as well as liquids other than dyes, to a moving yarn sheet. Any liquid yarn treatment agent, including, but not limited to, dye resists, water resists, finishing chemicals, or other treatments may be applied. Liquids may be applied at ambient temperature, or the temperature may be manipulated as desired or required for a particular chemical. Thickeners may be added to the liquids to alter the viscosity as desired or required. For illustrative purposes only, the invention will be described using the application of liquid dyes at ambient temperature. A yarn sheet passes over a yarn driven roll equipped with a sensor which tracks the position of the sheet as it passes through the dyeing apparatus of the instant invention.
Dyeing is controlled by a computer which is programmed to selectively activate and de-activate dye jets in accordance with pattern data in response to position data from the sensor. In this way, dyes are applied precisely at pre-specified locations along the length of the moving yarn sheet. Dyeing takes place when the computer generates a signal that causes an air valve to open, forcing dye liquor from a recirculating dye system to be formed into droplets that are sprayed onto the yarn sheet. The sensor and computer-controlled dye jets work together so that undyed areas and areas of unwanted overlap of dyes are virtually eliminated, reducing the amount of off-quality yarn produced versus conventional methods.
The invention is not limited as to the yarn that may be processed. Yarns of various sizes (deniers) and kinds, such as filament or spun, and of any fiber type, such as cotton, polyester or nylon, may be processed using the invention. The selection of jet size will vary according to the yarn size, yarn type, yarn composition, speed at which the yarn sheet is run, and pattern effects desired.
The present invention includes a dye overspray collection system that reduces the back-spatter of dye droplets or mist onto portions of the yarn sheet and reduces the quantity of dye that must be discarded due to the commingling of different color dyes. That portion of the dye sprayed in the direction of the yarn sheet that does not strike the sheet and that is not absorbed by the yarn (i.e., the overspray) is intercepted by a wire mesh screen, which reduces splatter onto the rearward-facing surface of the yarn sheet (opposite the dye jets) and allows the droplets to condense and flow down into a dye catch basin. The dye is then sent back to a dye tank, from which dye is drawn and pumped to the dye jet. A separate system is provided for each dye, thereby preventing commingling of different dyes and thereby reducing the amount of dye waste generated. This results in reduced dye costs and reduced costs in waste handling and disposal.
Yet another feature of the instant invention is a drip collection system. A drip collector is positioned under each dye jet to catch drips generated by the jets that might otherwise produce undesirable spotting on the yarn sheet. Dye caught by the drip collectors is directed into the dye catch basin and recirculated for use, as described above.
A further feature of the present invention is a vacuum exhaust system that collects dye mist (small airborne liquid particles of dye) that may be circulating near the yarn sheet,
111
thereby preventing spotting of the yarn sheet by the mist.
Still another feature is a drain which is part of the dye jet system. This drain clears air and foreign particles from the dye jet area, enabling the jet to function properly by reducing spatter and clogging.
BRIEF DESCRIPTION OF THE DRAWINGS
The above as well as other features of the invention will become more apparent from the following detailed description of the preferred embodiments of the invention, when taken together with the accompanying drawings, in which:
FIG. 1
is a side view of a space dyeing range embodying the instant invention.
FIG. 2
is a side view of the dye applicator section that is part of the range shown in
FIG. 1
, with the overspray collection system moved back for machine cleaning or threading.
FIG. 3
is the dye applicator section shown in
FIG. 2
, with the overspray collection system moved into operating position.
FIG. 4
is a partial cross-sectional view of a portion of the dye applicator section of the dye applicator section of
FIG. 3
, in which dye is sprayed onto a yarn sheet in response to pattern data, showing an array of five dyeing stations.
FIG. 5
shows a front view of a yarn sheet comprised of individual yarn ends passing over a yarn driven roll equipped with a sensor, as located near the top of the applicator section of FIG.
4
.
FIG. 6
is a cross-section of one of the five dyeing stations, and its associated overspray collector, from FIG.
4
.
FIG. 7
is a close-up, cross-sectional view of the dye application module shown in
FIG. 6
; in this Figure, dyeing is not taking place.
FIG. 7
a
is a close-up, cross-sectional view of a portion of the dye application module in which the dye streams and controlling air streams are formed.
FIG. 8
is the dye application module of
FIG. 7
, but showing the application of dye to a yarn sheet.
FIG. 9
is a perspective view in partial section, as viewed from above, of the air stream/dye stream formation module that is shown in
FIGS. 7 and 8
.
FIG. 10
is a schematic depiction of the dye flow system.
DESCRIPTION OF PREFERRED EMBODIMENTS
This invention includes, but is not necessarily limited to, embodiments having one or more of the following features. A number assigned to a certain element shown in a drawing remains consistent throughout the drawings. Referring to the Figures,
FIG. 1
shows diagrammatically a typical space dyeing range embodying the instant invention. Since dyeing multiple yarns is more practical than dyeing a single yarn at a time, the invention was designed with a creel
101
which holds a plurality of yarn packages
103
.
An individual yarn (“yarn end”)
105
from each yarn package
103
is unwound and passed through a first comb
107
which positions each yarn end
105
in uniformly spaced, parallel fashion, so that the yarns do not overlap and are properly spaced to form a yarn sheet
109
. The yarn sheet
109
enters the dye applicator section
111
of the range, which will be described below. After dyeing, the yarn sheet
109
exits the dye applicator section
111
and passes through a drying oven
113
. After exiting the drying oven
113
, the yarn sheet
109
enters a yam inspection system
115
that counts the yarn ends
105
to detect any breakage. The yarn ends
105
are then wound by a winder
117
into packages
119
. The packages
119
of dyed yarn are later fixed by an appropriate method, such as by autoclaving, then washed to remove any excess, unfixed dye, and dried. All processes and equipment prior to and following dye applicator section
111
are conventional. Although not shown, it is possible to incorporate the present invention into a continuous process of yarn drawing, dyeing, and heat setting. Such a process could be performed in the order stated, but is not restricted to that particular order.
In the preferred form of the invention POY and FOY multifilament yarns such as polyester, nylon, polypropylene and such are treated by the invention defined below to produce space dyed yarns with a minimum of handling of the yarns to produce the desired result. It is contemplated that monofilament and staple yarns can be produced as herein described, but the best results are achieved on multifilament, synthetic yarns.
As an example of the above, a single ply, 510 denier, 136 filament synthetic POY polyester yarn was processed and dyed by the below described invention to produce a space dyed POY yarn having a denier count of 472. It should be noted that the produced yarn is drawn in the range of 10-20% resulting in a reduced denier yarn having thick and thin portions therein. Another example of a processed and dyed yarn was a small ply, 170 denier, 100 filament POY polyester yarn which when processed and heat set resulted in a space dyed POY polyester single ply yarn of about 145 denier with 100 filaments. As you can see from the above, dense as well as thin yarns can be successfully dyed by the herein disclosed method and apparatus.
FOY yarns can also be readily dyed by the described process but are not drawn like the POY yarn to produce a thinner yarn with thick and thin portions in the yarn. Examples of this are single ply, 600 denier, polyester yarns with 146 filaments and a 100 denier yarn with 36 filaments. These yarns are readily dyed with excellent results. Preferably the FOY yarn was spun drawn before processing rather than FOY yarn produced by other known methods of producing FOY yarn.
Moving now to
FIG. 2
, which depicts in greater detail the dye applicator section
111
of the dyeing range shown in
FIG. 1
, individual yarn ends
105
pass through a first comb
107
of conventional design that arranges the ends into a yarn sheet
109
in which the individual yarn ends are arranged in parallel fashion in the same plane. The yarn sheet
109
passes over a yarn-driven roll
149
, here hidden by housing
121
but shown in
FIG. 4
, and then passes in front of a plurality of dyeing stations
123
, which will be described in greater detail below. Although the instant invention is described in connection with use for space dyeing, which results in yarn with different colors along its length, the invention could also be used to produce uniformly colored yarn. Accordingly, to achieve a desired effect, each dyeing station
123
could apply a different color of dyes or several stations
123
could apply the same color, or all could apply the same color. Spraying a color on top of a different color results in a blend, which may be desirable. To eliminate unintended undyed areas along the length of the yarn sheet, dyed areas should overlap slightly. The extend of such overlap necessary to avoid undyed areas may vary, depending upon machine speed, control system speed, and other factors. The number of individual dyeing stations
123
depends upon the color variety or uniformity desired.
Continuing with
FIG. 2
, an overspray collection system
125
is able to be moved laterally along a track
127
. In this view, the overspray collection system
125
is shown pushed away from the individual dyeing stations
123
to provide access for threading or cleaning the machine. The overspray collection system
125
is equipped with an exhaust
129
that, when the collection system
125
is in place (see FIG.
3
), collects and removes airborne dye mist generated by the dye application process and thereby prevents spotting of the yarn sheet
109
by the mist.
FIG. 3
shows the dye applicator section
111
described in
FIG. 2
with the overspray collection system
125
moved along its track
127
into operating position in close proximity to the individual dyeing stations
123
.
FIG. 4
depicts a partial cross-sectional view of the left portion of the dye applicator section
111
of
FIG. 3
, showing a plurality of dyeing stations
123
and an overspray collection system
125
in the operating position indicated in FIG.
3
. Having passed through comb
107
(shown in FIGS.
1
-
3
), yarn sheet
109
passes through a second comb
131
, over a first non-rotating rod
133
, and then over the top of a yarn-driven roll
149
. As depicted in
FIG. 5
, a magnetic pulser disk
151
, affixed to one end of roll
149
, turns with roll
149
. A rotary motion digital sensor
153
is associated with disk
151
. Digital sensor
153
reads the position of the disk
151
as the yarn sheet
109
rotates roll
149
. Specific rotational positions, or changes in such rotational positions, of the disk
151
correspond to discrete locations or movements along the length of yarn sheet
109
. The digital sensor
153
sends the positional information to a controller or digital computer
50
which also contains patterning data, and can coordinate the actuation of the individual dye jets at each of the dyeing stations
123
in accordance with such data, using known programming techniques. Accordingly, the dye may be directed onto the yarn sheet
109
in response to actual yarn sheet
109
movement, and not in response to an assumed substrate web speed or the passage of an arbitrary time interval. Further details relating to this technique may be found in U.S. Pat. No. 4,923,743 to Stewart, the disclosure of which is hereby incorporated by reference. Either random or pre-determined patterns may be stored in computer
50
.
Also shown in
FIG. 5
, brake
155
is necessary to keep taut the yarn ends
105
comprising yarn sheet
109
. The individual yarn ends
105
are pulled through the space dyeing range by a winder
117
(as shown in FIG.
1
), and if only the winder
117
were to stop, roll
149
would continue to turn by inertia and would continue feeding the yam ends
105
, which would then tangle. To stop the yarn ends
105
while maintaining tension, the brake
155
is applied to stop roll
149
(the yarn ends
105
simply will slide over the stopped roll), after which the winder
117
is stopped.
Again referring to
FIG. 4
, dyeing at each of the dyeing stations
123
is performed by forming a stream of dye within the dyeing station
123
, and selectively deflecting and dispersing the dye stream into the yarn sheet path in the form of droplets in accordance with externally supplied patterning information. Further details of this stream formation/deflection technique may be found in U.S. Pat. Nos. 5,211,339 and 5,367,733 to Zeiler, the disclosures of which are hereby incorporated by reference. An air pressure sensor
135
controls the pressure of air flowing to a machine air supply manifold
137
which extends across the width of the yarn sheet and serves as a source for the deflecting air used to redirect and disperse the dye stream generated by the dye jets. Each dyeing station
123
is equipped with a comb
139
to assure that yarn ends
105
remain spaced and in parallel relationship as they pass in front of that dye station. After passing in front of all dyeing stations
123
, yarn sheet
109
passes over a second non-rotating rod
141
and through a last comb
143
to assure proper separation of the yarn ends
105
before ends
105
enter drying oven
113
(see FIG.
1
).
FIG. 4
also shows water supply hose
145
which supplies water to a plurality of nozzles
147
for washing down the dyeing stations
123
and the overspray collection system
125
, which will be described in more detail hereinbelow in connection with FIG.
10
.
A cross section of a single dyeing station
123
and its associated overspray collection system is shown in FIG.
6
. As yarn sheet
109
approaches dyeing station
123
at whichan application of dye is desired, as determined by externally supplied patterning data accessible to computer
50
, computer
50
sends appropriate actuation signals through a plurality of wires
157
connected to an array of air valves
159
positioned across the path of yarn sheet
109
. Air valve array
159
is supplied with air by station air supply manifold
177
, which in turn is supplied with air by machine air supply manifold
137
(FIG.
4
). A plurality of individual air lines
161
run from a respective air valve
159
to the generally “V”-shaped dye application module
163
, a portion of which is air stream/dye stream formation module
164
, in which the dye streams and controlling air streams are formed and interact. As desired, the number of air valves
159
may be increased to provide greater flexibility in side-to-side patterning of yarn sheet
109
; ultimately, each individual air line
161
may be connected to a separately controlled air valve
159
. Dye application module
163
and air stream/dye stream formation module
164
are shown in more detail in
FIGS. 7 and 8
.
A dye pressure sensor
165
regulates the flow of dye through dyeing station
123
. Dye is supplied continuously to dye pressure sensor
165
via dye supply manifold
160
. Liquid dye is delivered to dye application module
163
via dye supply line
167
from dye supply manifold
160
. The yarn sheet
109
is shown in a vertical orientation and the dye spray
169
is shown being delivered in a horizontal orientation; this perpendicular arrangement of yarn sheet
109
and dye spray
169
results in a generally circular spray pattern. Any of these orientations may be varied, as required, so long as care is taken to avoid unintended dye contact on the yarn sheet, as may occur through dye mist settling on the yarn sheet through gravity, through the influence of a draft generated by the movement of the yarn sheet, etc.
As dye liquid is sprayed onto the yarn sheet
109
, some of the dye spray
169
passesbetween the individual yarns comprising sheet
109
. Positioned opposite module
163
and beyond the plane of yarn sheet
109
is a section of wire screen
171
that intercepts and breaks up the spray, assists in condensing or coalescing dye mist, and serves to shield the rearward side of yarn sheet
109
from back-scattered dye droplets that could be generated by the impact of unimpeded dye spray on the inside wall of collecting chamber
173
. Screen
171
prevents undesirable spotting of the yarn sheet
109
. The openings in the screen
171
must be large enough to be readily cleaned by the washdown nozzles
147
(FIG.
4
), but not so large that dye droplets can pass through them without breaking up. Mesh sizes typical of readily available screening materials (e.g., about 100 to about 600 openings per square inch) are likely to be most effective.
The screen
171
is preferably positioned at an angle to the yarn sheet
109
such that the screen is oblique to the yarn sheet rather than parallel to it—a parallel arrangement tends to result in droplets bouncing straight back from the screen surface toward the rearward side of the yarn sheet
109
. Relative screen angles (with respect to the yarn sheet) of about 25 to about 75 degrees should be satisfactory, with an angle within the range of about 40 to about 50 degrees being a preferred screen angle. It should be noted that, as the relative angle of screen
171
is increased, the effective size of the openings in relation to the size of dye droplets decreases, due to the oblique presentation angle encountered by the stream of dye droplets. Accordingly, it is possible to use screen mesh openings larger than the droplets while retaining the capability to break up the droplets. Some of the dye liquid passes through the screen
171
and strikes the back of the overspray collection chamber
173
, while the remainder of the liquid drips off of the screen
171
; in both cases, the dye liquid flows by gravity down the inside wall of overspray collection chamber
173
and into catch basin
175
for recycling (which will be described in association with
FIG. 10
, below).
FIGS. 7 and 7A
are close-up, cross-section views of a dye application module
163
in the inactive state, i.e., when the patterning data specify that no dye should be applied to yarn sheet
109
. Details of
FIGS. 7 and 7A
shall be explained with reference to
FIG. 9
, which shows, in a partial cut-away perspective view, the air stream/dye stream formation module
164
used to selectively direct and disperse the delivery of dye onto the yarn sheet
109
. When dye is not being applied to the yarn sheet
109
, air does not flow through the air lines
161
.
Liquid dye enters the stream formation module
164
through dye supply line
167
, which is operatively attached to module
164
by means of a threaded coupling
22
or similar means. The liquid dye then circulates through the stream formation module
164
by flowing first into dye chamber or trough
18
and then through jet-forming grooves
28
machined into the angled forward wall forming trough
18
, as shown in more detail in FIG.
9
. The dye flows through dye orifices
181
, and is propelled under pressure across an open area
183
until the liquid dye encounters a deflector bar
185
that directs the liquid backward and downward so that it flows into catch basin
175
.
Looking collectively at
FIGS. 7-9
, the dye channel or trough
18
, formed within stream formation module
164
, communicates with a number of dye conduits
20
along the rear
29
wall
24
of trough
18
. Dye conduits
20
are in fluid communication with threaded couplings
22
that communicate with the rear wall
24
of the stream formation module
164
. Threaded couplings
22
provide a means for connecting the dye conduits
20
to dye supply lines
167
, that in turn are connected to the dye supply manifold
160
(see FIGS.
6
and
10
).
Upper planar surface
26
of stream formation module
164
has a plurality of dye grooves
28
, each of which extends from trough
18
to the forward edge of stream formation module
164
, thereby forming an array of dye orifices
181
directed at deflector bar
185
.
The present embodiment uses one dye orifice
181
per yarn end
105
, with the dye spray
169
covering about three yarn ends
105
, but other ratios could be employed. Dye grooves
28
are longitudinally spaced along upper planar surface
26
of stream formation module
164
, preferably at uniform intervals that correspond to the level of lateral patterning detail desired. Most preferably, dye grooves
28
are spaced at uniform intervals corresponding to the spacing of each yarn end
105
comprising yarn sheet
109
. It has been found that about five to about fifteen dye grooves
28
(and yarn ends
105
) per inch are generally satisfactory, although spacings that are outside this range may also be used. To assure uniform application of dye across the width of the yarn sheet, each groove should have the same predetermined uniform cross-sectional area. The selection of dye groove
28
size will vary according to the yarn size and speed at which the yarn sheet is run, and the pattern effects desired. In one embodiment of the present invention, a square groove 0.018 inches per side was used.
Stream formation module
164
also contains individual bored air passages
10
(
FIG. 7
) positioned in spaced parallel fashion under trough
18
. Each bored air passage
10
is connected to a respective air supply line
161
via a friction-fitted tube
14
of appropriate size. At the opposite end of each bored air passage
10
is fitted a second friction-fitted tube
13
, the outside end of which forms an air orifice
12
(
FIG. 7
a
). The diameter and cross-sectional shape of these tubes depend upon several factors, including the shape and mass of the dye stream to be controlled. Accordingly, the choice of tube size and shape is somewhat discretionary. Circular tubes having an outside diameter of about 0.050 inch and inside diameter of about 0.033 inch have been used in conjunction with the square 0.018 inch dye orifice
181
described above.
Collectively, air orifices
12
are longitudinally spaced along the lower front of stream formation module
164
, preferably in one-to-one correspondence with dye grooves
28
, so that each air orifice
12
is paired and aligned with a corresponding dye orifice
181
. This arrangement allows the air streams from air orifices
12
to intersect the dye streams emerging from dye orifices
181
, and effectively deflect and disperse the resulting dye spray in the direction of yarn sheet
109
.
The upper cover plate
36
is a block of stainless steel having generally planar upper, lower, front, rear and side surfaces
36
a,
36
b,
36
c,
36
d,
and
36
e,
respectively. A series of clamping members
38
is arranged to interact with mounting surface
40
. The stream formation module
164
is assembled by placing lower surface
36
b
of upper cover plate
36
in parallel mating relationship with planar surfaces
26
of stream formation module
164
, with side surfaces
36
e
of the upper cover plate flush with the side surfaces of stream formation module
164
and with the front surface
36
c
of upper cover plate
36
flush with front surface
30
of stream formation module
164
. Threaded bolts
42
are then placed through the clearance holes
44
in the clamps
38
and are threaded into the upper fastening holes
46
. Bolts
42
are tightened to cause clamps
38
to produce a liquid-tight seal between the upper cover plate
36
and the mating surfaces of stream formation module
164
. Once assembled, module
164
provides an array of dye conduits for delivering dye and air through the module. The lower surface of upper cover plate
36
encloses dye grooves
28
to form covered dye conduits extending from trough
18
to dye orifice
181
.
The assembled module
164
is used to spray patterns on a yarn sheet
109
.
FIG. 8
is a close-up, cross-sectional view of the application of a dye spray
169
to a yarn sheet
109
.
The stream formation module
164
is attached through mounting holes
48
(see
FIG. 9
) through the rear wall of stream formation module
164
to a mounting bracket associated with dye application module
163
. As shown in
FIG. 6
, the pressurized dye source is connected to dye supply couplings
22
via dye supply manifold
160
and dye supply lines
167
. Dye can then flow in a continuous path from the dye source, into trough
18
, through the dye conduits formed by dye grooves
28
and out through dye orifices
181
. Trough
18
preferably may be fitted with boftom-located dye bypass drain holes
33
(see FIG.
9
), to which are connected fittings
189
and dye return conduits
34
. Dye return conduit
34
drains into catch basin
175
for connection to the dye recirculation system (see FIG.
10
). This bypass arrangement keeps some dye circulating in the system regardless of the output of the dye jets formed by groove
28
, and provides for the capture of dirt and other contaminants in the dye, as well as for the removal of air bubbles in the dye.
More specifically, two general dye flow streams exist in trough
18
. One stream (the supply stream) flows from the exit of each dye supply conduit
20
to the entrance of each dye conduit formed by dye groove
28
. The second flow stream (the bypass stream) flows from the exit of each dye supply conduit
20
to the entrance of each dye bypass drain hole
33
. In the undesirable event that a solid contaminant lodges itself at the entrance to a dye conduit formed by dye groove
28
, thus restricting dye flow through that groove
28
, it can easily be pushed away from the groove entrance and out of the supply stream and into the bypass stream by inserting a properly sized wire into the conduit from the orifice
181
. The solid contaminant would then exit the trough
18
by way of dye bypass drain hole
33
, through the dye return conduit
34
and into the recirculation system (see
FIG. 10
) where it will be removed through filtration.
The pressurized air source is connected to air supply fittings
14
. When air flow is desired, air can flow in a continuous path from the ultimate source of pressurized air, not shown, through station air supply manifold
177
(
FIGS. 4 and 6
) and an associate electromechanical air valve, indicated at
159
(FIG.
6
), to air lines
161
, air supply fittings
14
, air supply channels
10
, and out through air orifices
12
.
The operation of a spraying apparatus employing a module of the present invention can be described by considering the operation of a single air conduit/dye conduit pair and with reference to FIG.
7
. Dye is continuously supplied to trough
18
by dye supply lines
167
and flows out dye orifice
181
. The dye stream emanating from dye orifice
181
flows unimpeded into the surface of diverting lip or blade
185
, which collects the dye in catch basin
175
for disposal or recirculation to dye tank
191
(FIG.
10
). An air control valve
159
operatively associated with station air supply manifold
177
prevents air from flowing to air supply fifting
14
and through air orifice
12
until patterning data so demands.
When dye from the dye stream is to be applied to the yarn sheet
109
, pulses of air supplied by station air supply manifold
177
are generated by the opening and closing of the individual control valves
159
in accordance with pattern data supplied by computer
50
, and are supplied to the respective air supply fittings
14
via individual hoses
161
. As shown in the detail of
FIG. 7
a,
the dye orifice
181
and air orifice
12
are positioned such that the dye is contacted with a pressurized stream of air after it exits from the dye orifice
181
. As a result of the interaction of the higher pressure air stream (e.g., 10-20 p.s.i.g.) with the lower pressure dye stream (e.g., 2-4 p.s.i.g.), the dye stream is broken up into a spray of diverging droplets.
The combined momentum of the two streams then carries the droplets to the surface of the yarn sheet
109
. Any droplets of liquid that drip from the dye spray
169
fall into a drip collector
187
and then flow down into the catch basin
175
. The computer
50
is programmed to apply dye from a certain dyeing station
123
for a certain amount of time, which may be varied as desired to achieve a particular effect. Once the dye spray
169
has been applied for the desired amount of time, the computer
50
sends a signal to the air valve (
159
,
FIG. 6
) to close, turning off the flow of air through the appropriate hoses
161
, and the dyeing station
123
returns to the inactive state depicted in FIG.
7
. Because the dye exits the dye orifice
181
outside of the airstream envelope, aspiration of dye from the dye supply conduit is eliminated, thereby eliminating the need to create uniform aspiration across the width of the module.
FIG. 10
shows the dye flow system associated with each dyeing station
123
. A dye tank
191
supplies dye liquid to a pump
193
that pumps the dye liquid to a filter
195
that removes foreign particles from the liquid. After filtering, the dye liquid is directed to dyeing station
123
via dye supply manifold
160
. A dye pressure sensor
165
controls the amount of dye liquid that is supplied to stream formation module
164
. When dyeing is taking place, as shown, dye liquid overspray and drips enter catch basin
175
and recirculate to dye tank
191
. When dyeing is not occurring, the dye liquid is directed by a deflector bar
185
(see
FIG. 7
) into catch basin
175
, whereupon the liquid recirculates to dye tank
191
. Dye tank
191
is equipped with a dye level pressure sensor
197
that controls the amount of dye liquid in tank
191
. When the amount drops to a certain level, dye level pressure sensor
197
causes a dye supply line valve
199
to open, allowing dye liquid from an alternate supply tank (not shown) to flow via dye supply line
201
into dye tank
191
until the level of dye increases to the desired level, at which time dye level pressure sensor
197
causes valve
199
to close. The dye flow system is equipped with a clean water line
203
and valves for automatic clean up, whereby dye in the system is drained and the dyeing system is operated with clean water substituted for dye. Water line valve
205
remains closed during normal dyeing operation, but is opened during automatic clean up to allow water to flow. Dyeing station supply line valve
207
is open during normal dyeing operation to allow for dye circulation. It can be closed during part of the cleaning cycle (e.g., when flushing filter
195
), or opened to allow water to flow to dyeing station
123
for cleaning. Filter drain valve
209
is closed during normal dyeing operation and opened to drain filter
195
when necessary for cleaning. Waste disposal valve
211
remains closed during normal operation, and is opened to drain dye liquid or clean up water from the dye flow system to a waste disposal means.
Having described the principles of my invention in the form of the foregoing exemplary embodiments, it should be understood by those skilled in the art that the invention can be modified in arrangement and detail without departing from such principles, and that all such modifications falling within the spirit and scope of the following claims are intended to be protected hereunder.
Claims
- 1. A yarn consisting of: a length of single ply yarn having a continuous pattern of a plurality of space-dyed portions thereon.
- 2. The yarn of claim 1 whereon said yarn is multifilament, continuous filament synthetic yarn.
- 3. The yarn of claim 2 wherein said yarn is POY yarn.
- 4. The yarn of claim 2 wherein said yarn is FOY yarn.
- 5. The yarn of claim 1 wherein said yarn is composed of staple fibers.
US Referenced Citations (18)
Foreign Referenced Citations (2)
Number |
Date |
Country |
1958649 |
May 1971 |
DE |
49-26996 |
Jul 1974 |
JP |