A space frame is a truss-like, lightweight rigid structure constructed from interlocking struts in a geometric pattern. Space frames usually utilize a multidirectional span, and are often used to accomplish long spans with few supports. They derive their strength from the inherent rigidity of the triangles used in the frame structure. Typically, a system of parallel axial chords is braced by multiple struts intersecting them at different angles, referred to herein as “oblique strut tubes.” These nodes, where struts are fastened together, should utilize connector structures that are strong enough not to fail under the considerable stresses involved.
Many connector designs for connecting multiple rods or struts are known to the art, e.g., as disclosed in U.S. Patent Publication No. 2007/0011983, U.S. Pat. Nos. 6,250,693, 5,820,168, 4,352,511, 6,409,228, 3,070,923, 6,056,240, 6,892,502, 1,760,883, 3,668,754, 5,350,201, 5,448,868, 3,459,234, PCT Publication No. WO 96/33787 and Japanese Patent Abstract JP 11182026.
All references identified herein are incorporated herein by reference to the extent not inconsistent herewith for purposes of written description and enablement.
The space frame connector of this invention is useful where space frames that are lightweight and easy to assemble are desired, yet strength and stability cannot be sacrificed. For example: a) space frames used for solar energy concentration devices that require accurate lightweight structures; b) space frames used for bridges; c) space frames used for architectural domes, large-span roofs, or other geometrical shapes; and d) space frames used for radio telescopes or spacecraft-launched frameworks where very lightweight structures are needed and where quick and easy assembly is important. The space frames hereof can be of any required size in accordance with the use to which the space frame is to be put. In an embodiment used for solar energy concentration, the connectors provided herein can withstand at least about 5,000 lbs of axial force, and in embodiments can withstand up to about 10,000 pounds or more than about 11,000 to about 11,500 lbs of axial force.
The design of the space frame connectors hereof is such that the mode of failure of the space frame is forced away from failure of the connector and into failure of the oblique strut tube, either from axial tension or axial compression. (For long slender members this would be considered “buckling”.) The connectors are designed based on avoidance of shear tear-out of the strut material or failure of the collar and its attachment flanges. The loads are dependent on the allowable shear strengths of the materials, the wall thickness of the strut and the dimensions of the fastener defining the bearing area of the fastener. Especially in the field of space frames for solar energy collectors, to ensure ease of manufacture, ease of assembly in the field, stability for accurate alignment of reflective surfaces, and low cost, it is important to minimize the number of components that have to be assembled in the field, as well as minimizing fabrication steps, and the need for close tolerances in manufacturing the components.
An assembly method for space frames is to weld the space frame struts together, but this often requires expensive welder labor and is extremely slow. Moreover, when aluminum components are used, there is a significant loss in strength; and in addition, field welding is prohibited by Aluminum Association Structural Welding Code D1.2.
The space frame connectors provided herein allow for a simplified assembly process, which leads to reductions in assembly labor costs and shortens the time required to bring a solar project on line, which reduces financing costs of such a projects (e.g., interest during construction).
A frequent problem in assembling space frames using struts that are square or rectangular in cross-section is that when these are manufactured by extrusion, they tend to develop twist, which makes it difficult to line up the holes in the struts correctly with the holes in the connector to which they are to be attached for attachment by means of pins or bolts. Additionally, when both ends of a square or rectangular extruded strut needs to be fitted into similarly-shaped brackets on two different connectors, the twist in the strut will make it difficult, if not impossible, to place the connector in both brackets. Use of oblique struts that are circular in cross-section and have extrusion flanges formed on the ends thereof, allows efficient fabrication and ease of assembly.
The space frame connectors provided herein are capable of supporting axial loads in compression and tension, are economic to manufacture, and simple to make and use, not requiring sophisticated tools.
In an embodiment, an advantageous method of completing the connection between the oblique struts and the axial strut is to use a close-tolerance expandable structural fastener or other fastener component, such as a spring bushing, that enforces proper alignment of mating holes in the connection. These fastener components not only inherently enforce proper alignment of the holes in the mating pieces, but are also designed such that they are capable of carrying all shear loads through the connection. Thus, the failure mode of the joint is not controlled by the connector but by the capacity of the strut. These means for enforcing proper alignment of the components of the space frame connectors hereof are sized such that they function not only to carry the shear stresses through the joint but also act as alignment pins creating an accurate interference fit between the oblique strut and the attachment flange on the axial strut.
Accordingly, provided herein is a space frame connector for attaching an oblique strut tube to an axial chord of a space frame, the space frame connector comprising a collar adapted to fit over or inside the axial chord, the collar comprising one or more attachment flanges; and a strut tube comprising an extrusion flange at the end thereof; the extrusion flange comprising first and second parallel leaves defining a slot therebetween, the slot being sized and shaped to fit over the attachment flange.
The attachment flange and extrusion flange can comprise attachment holes sized and positioned such that they can be aligned during use to receive a fastener component that passes through the aligned holes, such as an expandable structural fastener or spring bushing, bolt, pin, or other such fastener component known to the art.
The extrusion flange can be integrally formed from the end of the oblique strut tube, or can be a component of an end connector attached to the end of the oblique strut tube.
Advantageously, the collar is a sleeve that fits entirely around or within the circumference of the axial chord to provide the strength required for construction of large-scale space frames for use in supporting large-scale parabolic solar collectors. Also provided herein is a space frame connector attached to an axial chord of a space frame.
A strut tube is also provided comprising an extrusion flange at an end thereof, the extrusion flange comprising first and second parallel leaves defining a slot therebetween. Strut tubes comprising extrusion flanges at one end and/or at both ends are also provided.
Further provided is a method of making a strut tube equipped with an extrusion flange. The method comprises forming a slot in the end of the strut tube; inserting a separator component of a press tool into the slot; and operating the press tool to flatten the slotted end of the strut tube to form two parallel leaves. The method can also comprise punching attachment holes in the parallel leaves. The method can further comprise rounding the end corners of the extrusion flange by removing extraneous material therefrom. Advantageously, the end corners are cut off by the punch tool used to punch the attachment holes.
A method of attaching an oblique strut tube to an axial chord of a space frame is also provided. The method comprises providing a space frame connector as described above; sliding the leaves of the extrusion flange over an attachment flange of the collar; and securing the leaves to the attachment flange. The leaves can be secured to the attachment flange by means of a fastener component such as an expandable structural fastener, spring bushing, bolt, pin, or other such fastener component known to the art placed through aligned holes in the leaves and attachment flange,
A space frame comprising one or more space frame connectors as described above can be constructed. The space frame can be constructed by a method comprising providing an axial chord; equipping the axial chord with a collar comprising one or more attachment flanges; providing an oblique strut tube; equipping an end of the oblique strut tube with at least one extrusion flange; and attaching the oblique strut tube to the axial chord by attaching the extrusion flange to the attachment flange. The method can additionally comprise attaching multiple oblique strut tubes to an axial chord to form a node. In addition, multiple oblique strut tubes can be attached to multiple axial chords to form multiple nodes. The oblique strut tubes can be equipped with extrusion flanges at one or both ends and the ends can then be attached to separate axial chords, or one end of the oblique strut tube can be attached to another oblique strut tube and the other end can be attached to an axial chord. The space frames constructed by the foregoing methods can be used to support solar collectors by attaching one or more solar reflectors and other components known to the art, such as receiver tubes, to the space frame. Advantageously, the space frame struts and chords are tubes that are circular in cross-section.
The components for use in space frame connectors for space frames used to support large parabolic solar collectors typically have dimensions as follows: The extrusion flanges typically are between about 2 and about 4 inches wide, between about 2 and about 3 inches long, and each leaf is between about 0.0625 inches to about 0.125 inches thick. The collar is typically between about 5 inches and about 9 inches long, between about 3 inches and about 3.625 inches in outside diameter, and its wall is between about 0.1875 inches and about 0.3125 inches thick. The attachment flanges on the collars are typically between about 3 inches and about 4 inches wide, between about 5 inches and 9 inches long, and between about 0.1875 inches and about 0.50 inches thick.
The components hereof can be made by means known to the art, including extruding, casting, powder metallurgy, and machining. In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the drawings and by study of the following descriptions.
Exemplary embodiments are illustrated in referenced figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than limiting.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods that are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above-described problems with prior art connectors have been reduced or eliminated, while other embodiments are directed to other improvements.
The term “space frame connector” is defined herein to include all essential components required for attaching multiple (two or more) struts together.
The term “axial chord” has its ordinary meaning in the art of space frame construction, to refer to a strut to which multiple oblique strut tubes are attached at a single node. Typically such nodes, comprising multiple oblique strut tubes attached to said axial chord, occur at intervals along the axial chord. As many space frame connectors can be attached to each axial chord as is required by the space frame. For example, in an embodiment, such connectors are attached every twelve feet or so along the axial chord, using five or more, seven or more, or more connectors, depending on the length of the axial chord.
The term “oblique strut tube,” also referred to herein as “oblique strut” or “strut tube,” has its ordinary meaning in the art of space frame construction, to refer to a strut which attaches to an axial chord for purposes of providing strength and stability. As is accepted in the art, the oblique strut can attach to the axial chord at any angle other than 180° (if the oblique strut were attached end-to-end with the axial chord, this would be 180°). Typically, the oblique strut is attached to the axial chord at an angle between about 15° degrees and about 90°.
The term “multiple” as used herein means two or more.
The term, “extrusion flange” is defined as a flange at the end of a strut tube as described hereinafter. The extrusion flange is advantageously integrally formed from the material of the strut tube; however, as will be appreciated by those of skill in the art, this flange can also be formed separately, for example of heavier material than that of the strut tube, and attached to the end of the strut tubes by means known to the art or as disclosed herein. Strut tubes can be equipped with an extrusion flange at one end or both ends thereof. In an embodiment, the extrusion flanges can be reinforced by reinforcement pieces as described herein (see element 7 of
Collar 20 is equipped with one or more attachment flanges 22 to which strut tubes 2 can be attached to form a node where one or more strut tubes 2 are attached to an axial chord (see
Referring to
In an embodiment, expandable structural fastener 26 is placed through first attachment hole 12 in first leaf 8 of extrusion flange 6, first attachment hole 24 in attachment flange 22 of collar 20, and second attachment hole 13 in second leaf 10 of extrusion flange 6, in order to fixedly attach strut tube 2 to the axial chord 3. The leaves 8 and 10 of extrusion flange 6 are held parallel and in intimate contact with attachment flange 22 via the use of expandable structural fastener 26. Such expandable structural fasteners are commercially available, e.g., from Alcoa Fastening Systems, Pittsburgh, Pa. Expandable structural fastener 26 is designed to carry the entire shear load in the connection. The expandable structural fastener 26 also provides a fit tight enough to keep extrusion flange 6 from rotating on attachment flange 22.
After slot 4 has been formed in the end of strut tube 2 as described above, the slotted end of strut tube 2 (as shown in
The next step is to form the tube attachment holes 12 and 13 in the extrusion flange 6 by punching or drilling or other means known to the art.
After punching the flange attachment holes 12 and 13 in the flange leaves 8 and 10, it is advantageous to remove extraneous material from extrusion flange 6.
The expandable structural fastener 26 fits within tube attachment holes 12 and 13 of extrusion flange leaves 8 and 10 and attachment hole 24 of attachment flange 22 (shown in
The components of the space frame connector hereof are advantageously made of aluminum, steel, or aluminum and steel, although other metals and materials including polymeric materials known to the art to be suitable for these purposes can also be used.
The various components are made of materials having dimensions required for balancing weight and ease of manufacture with stresses, including shear forces and loads, to which each component is subject, based on engineering analyses as known to the art. For example, in a space frame for supporting large parabolic solar collectors a single module is approximately 45′ long and 22′ wide and 12′ tall, and weighs about 900 pounds. The extrusion flanges are advantageously fabricated from 6005 T5 aluminum and are typically the thickness of the strut wall (0.065″-0.125″), their thickness being typically based on the strut diameter such that for a 2.5″ diameter tube, the walls are typically 0.065″ in thickness, and for a 3″ diameter tube, the walls are typically 0.125″ in thickness. If necessary, the leaves of the extrusion flange can be reinforced with a reinforcement piece 7 shown in
The components can be made by casting, extruding, machining or other methods known to the art including fabrication using powder metallurgy (PM). The strut tubes are advantageously extruded. The collar is advantageously extruded or cast, although portions such as the attachment holes can be machined as necessary. Steel components are advantageously fabricated using traditional steel fabrication methods, but can also require secondary machining.
The space frame is designed to have a strength that forces the failure mode of the structure away from failure controlled by the connector connections, and toward buckling failure of individual struts. In light of the teachings hereof, strength requirements for components to achieve this design goal can be calculated by one skilled in the art and designed in accordance with such calculations without undue experimentation, and/or are readily determined by trial and error. The connectors hereof are also designed for compactness and sufficient stiffness to minimize any tendency of the space frame to wobble. Again, in light of the teachings hereof, these goals can be readily achieved by one skilled in the art without undue experimentation by adjusting the materials and sizes of the components hereof.
In an embodiment, a space frame assembled in accordance with the teachings hereof is designed to support a mirror with an aperture area of 14 M×6 M (84 M2), and is constructed using aluminum struts. This is compared to mirror apertures of only about 39 M2 that could be accommodated by previous space frames. This is a great increase in the aperture size of reflective mirrors that can be used for solar collectors. The assembly time per square meter has been greatly reduced, from about 10 man-hours per frame for previous space frames to about three to five man-hours per space frame for space frames provided herein. A typical solar field using the present space frames requires about half as many frames as previous solar fields, and total construction time is reduced by at least about 30%.
The walls of the 2.5″ diameter strut tube (oblique strut) are about 0.065 inches thick. The first and second leaves of the extrusion flange are each about 0.065 inches thick. The slot between these leaves is about 0.375 inches thick to accommodate the thickness of the attachment flange of the joint collar. The extrusion flanges are formed by inserting the end of the strut into a press tool equipped with a spacer about 0.375 inches thick and then pressing to form the flanges. The press tool is designed to provide a radius of curvature from the slot to the fully-round portion of the strut between about 2″ and about 5″.
The connector is assembled using a spring bushing through the aligned holes of the extrusion flanges and the attachment flange. The tear-out strength of the connection is tested and it is able to withstand 2500 pounds of force.
Another embodiment, in which the outer surfaces of the leaves of the extrusion flanges are reinforced with 0.065″ thick plates conforming to the size and shape of the leaves, is tested and found to have a tear-out strength sufficient to withstand 5000 pounds of force.
A further embodiment made using oblique struts having a 3″ diameter, oblique strut walls 0.125″ thick, and collar attachment flanges 0.375″ thick is constructed as described above. This connector, using a spring bushing, is found to have a tear-out strength of over 11,000 pounds.
A space frame is assembled in the field by providing axial chords with collars comprising attachment flanges pre-attached. Alternatively, the collars can be attached to the axial chords in the field. Oblique strut tubes are provided on which extrusion flanges have been formed by pressing and punching as described above. Each oblique strut is positioned by sliding the leaves of its extrusion flange over an attachment flange of a the collar on the axial chord to which it is to be attached, so that the tube attachment holes in the leaves of the extrusion flange line up with the attachment hole on the attachment flange of the collar. An expandable structural fastener is then passed through the aligned holes. The expandable structural fastener provides the shear strength necessary to carry the loads on the joint. The expandable structural fastener also assures that extrusion flanges remain parallel and in intimate contact with the collar flange. In an embodiment using a spring bushing, the spring bushing is inserted through the aligned holes and a fastener, such as a nut and bolt can be inserted through the spring bushing to assure that the spring bushing does not work itself loose or out of place. The nut and bolt also assures that the extrusion flanges remain parallel and in intimate contact with the attachment flange of the collar. In an embodiment, the spring bushing alone, without a nut and bolt, pin fastener, or other fastening means, can serve to attach the extrusion flanges of the struts to the attachment flange of the collar.
In an embodiment, a space frame is constructed from the bottom up, with all the oblique struts attached by the methods described as above to the lowest axial chord. The axial chords are first put in place and fitted with collars equipped with attachment flanges. Then the oblique struts are attached and rotated into place so that their opposite ends can be attached to a higher axial strut. This process is continued until the space frame is completed. This process lends itself to construction of assemblies of axial chords with oblique struts attached in either a controlled environment or at the installation site, as these assembled components can be compactly packed for transportation and erection in the field, where the oblique struts can be rotated into place and fastened to further axial chords.
While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. Plastics and other materials known to the art can also be used to form the components. In locations where some struts are more highly loaded and have significantly more stress on them than other members within the space frame it can be necessary to have some struts that are made of different materials or have special end conditions to help carry extra loading. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include these and other modifications, permutations, additions and sub-combinations as are within their true spirit and scope.
This application claims priority to U.S. Provisional Application Ser. No. 61/079,382, filed Jul. 9, 2008 and U.S. Provisional Application Ser. No. 61/091,095, filed Aug. 22, 2008, both of which are incorporated by reference herein to the extent that not inconsistent herewith.
Number | Name | Date | Kind |
---|---|---|---|
670916 | Eneas | Mar 1901 | A |
670917 | Eneas | Mar 1901 | A |
1092503 | Moore | Apr 1914 | A |
1760883 | Moss | Jun 1930 | A |
1792489 | Gilmore | Feb 1931 | A |
2955955 | Orr | Oct 1960 | A |
3070923 | Fellman | Jan 1963 | A |
3187592 | Geyer | Jun 1965 | A |
3459234 | Richter et al. | Aug 1969 | A |
3463527 | Baker | Aug 1969 | A |
3511134 | Wittren | May 1970 | A |
3548866 | Kaiser et al. | Dec 1970 | A |
3559534 | Munro | Feb 1971 | A |
3564783 | Dunne | Feb 1971 | A |
3668754 | Boast | Jun 1972 | A |
3710674 | Tabor | Jan 1973 | A |
3775226 | Windorf | Nov 1973 | A |
3861379 | Anderson | Jan 1975 | A |
3872854 | Raser | Mar 1975 | A |
3946532 | Gilb | Mar 1976 | A |
4031444 | Beck, Jr. | Jun 1977 | A |
4031879 | Parham | Jun 1977 | A |
4069635 | Gilb | Jan 1978 | A |
4069812 | O'Neill | Jan 1978 | A |
4077176 | Bauer | Mar 1978 | A |
4078549 | McKeen et al. | Mar 1978 | A |
4119365 | Powell | Oct 1978 | A |
4126993 | Grattapaglia et al. | Nov 1978 | A |
4127926 | White | Dec 1978 | A |
4141626 | Treytl et al. | Feb 1979 | A |
4146785 | Neale | Mar 1979 | A |
4158356 | Wininger | Jun 1979 | A |
4159710 | Prast | Jul 1979 | A |
4161905 | Ota | Jul 1979 | A |
4178913 | Hutchinson | Dec 1979 | A |
4191164 | Kelly | Mar 1980 | A |
4195620 | Rust | Apr 1980 | A |
4211922 | Vaerewyck et al. | Jul 1980 | A |
4226910 | Dahlen et al. | Oct 1980 | A |
4230763 | Skolnick | Oct 1980 | A |
4237864 | Kravitz | Dec 1980 | A |
4269173 | Krueger et al. | May 1981 | A |
4293192 | Bronstein | Oct 1981 | A |
4307150 | Roche | Dec 1981 | A |
4313367 | Weyer | Feb 1982 | A |
4313422 | McEntee | Feb 1982 | A |
4318394 | Alexander | Mar 1982 | A |
4328789 | Nelson | May 1982 | A |
4337560 | Slysh | Jul 1982 | A |
4343533 | Currin et al. | Aug 1982 | A |
4352511 | Ribble et al. | Oct 1982 | A |
4354484 | Malone et al. | Oct 1982 | A |
4363354 | Strickland | Dec 1982 | A |
4368962 | Hultberg | Jan 1983 | A |
4372027 | Hutchison | Feb 1983 | A |
4373514 | Lois | Feb 1983 | A |
4398802 | Auger et al. | Aug 1983 | A |
4414254 | Iwata et al. | Nov 1983 | A |
4423719 | Hutchinson | Jan 1984 | A |
4425904 | Butler | Jan 1984 | A |
4440150 | Kaehler | Apr 1984 | A |
4446262 | Okumura et al. | May 1984 | A |
4465057 | Nikkel et al. | Aug 1984 | A |
4487196 | Murphy | Dec 1984 | A |
4493872 | Funderburk et al. | Jan 1985 | A |
4500970 | Daemmer | Feb 1985 | A |
4510923 | Bronstein | Apr 1985 | A |
4523575 | Nikkel et al. | Jun 1985 | A |
4536847 | Erickson et al. | Aug 1985 | A |
4571812 | Gee | Feb 1986 | A |
4577449 | Celli | Mar 1986 | A |
4587951 | Townsend et al. | May 1986 | A |
4596238 | Bronstein | Jun 1986 | A |
4597377 | Melamed | Jul 1986 | A |
4604990 | Nikkel et al. | Aug 1986 | A |
4608964 | Russo | Sep 1986 | A |
4611575 | Powell | Sep 1986 | A |
4628692 | Pierce | Dec 1986 | A |
4645714 | Roche et al. | Feb 1987 | A |
4655021 | Franchin et al. | Apr 1987 | A |
4666263 | Petcavish | May 1987 | A |
4678292 | Miyatani et al. | Jul 1987 | A |
4684280 | Dirkin et al. | Aug 1987 | A |
4710426 | Stephens | Dec 1987 | A |
4719903 | Powell | Jan 1988 | A |
4739620 | Pierce | Apr 1988 | A |
4743095 | Dane | May 1988 | A |
4832001 | Baer | May 1989 | A |
4853283 | Skolnick | Aug 1989 | A |
4888063 | Powell | Dec 1989 | A |
4893183 | Nayar | Jan 1990 | A |
4913468 | Rattmann | Apr 1990 | A |
4933823 | Taylor | Jun 1990 | A |
5006988 | Borenstein et al. | Apr 1991 | A |
5013176 | Orbom | May 1991 | A |
5049005 | Lazare et al. | Sep 1991 | A |
5058565 | Gee et al. | Oct 1991 | A |
5063112 | Gross et al. | Nov 1991 | A |
5069964 | Tolliver et al. | Dec 1991 | A |
5071243 | Bronstein | Dec 1991 | A |
5076724 | Silber | Dec 1991 | A |
5118540 | Hutchison | Jun 1992 | A |
5136593 | Moon et al. | Aug 1992 | A |
5138838 | Crosser | Aug 1992 | A |
5205101 | Swan et al. | Apr 1993 | A |
5219264 | McClure et al. | Jun 1993 | A |
5228259 | Haddad et al. | Jul 1993 | A |
5237337 | Hutchison et al. | Aug 1993 | A |
5251064 | Tennant et al. | Oct 1993 | A |
5276600 | Takase et al. | Jan 1994 | A |
5285627 | Losel et al. | Feb 1994 | A |
5334844 | Pollard et al. | Aug 1994 | A |
5347986 | Cordy | Sep 1994 | A |
5350201 | Bynum | Sep 1994 | A |
5361172 | Schissel et al. | Nov 1994 | A |
5367174 | Bazile et al. | Nov 1994 | A |
5398462 | Berlin et al. | Mar 1995 | A |
5404868 | Sankrithi | Apr 1995 | A |
5444972 | Moore | Aug 1995 | A |
5446356 | Kim | Aug 1995 | A |
5448868 | Lalvani | Sep 1995 | A |
5484634 | Schutze | Jan 1996 | A |
5531216 | Nicklas et al. | Jul 1996 | A |
5542409 | Sampayo | Aug 1996 | A |
5673684 | Myles, III et al. | Oct 1997 | A |
5681642 | Sugisaki et al. | Oct 1997 | A |
5706798 | Steinorth | Jan 1998 | A |
5787877 | Nicklas et al. | Aug 1998 | A |
5793934 | Bauer | Aug 1998 | A |
5804942 | Jeong | Sep 1998 | A |
5806553 | Sidwell | Sep 1998 | A |
5819008 | Asama et al. | Oct 1998 | A |
5820168 | De Giacomoni | Oct 1998 | A |
5846659 | Lower et al. | Dec 1998 | A |
5851309 | Kousa | Dec 1998 | A |
5857322 | Cohn | Jan 1999 | A |
5896488 | Jeong | Apr 1999 | A |
5899199 | Mills | May 1999 | A |
5929530 | Stone | Jul 1999 | A |
5938364 | Hayden | Aug 1999 | A |
5956917 | Reynolds | Sep 1999 | A |
5964216 | Hoffschmidt et al. | Oct 1999 | A |
5982481 | Stone et al. | Nov 1999 | A |
6000211 | Bellac et al. | Dec 1999 | A |
6041274 | Onishi et al. | Mar 2000 | A |
6056240 | Hagenlocher | May 2000 | A |
6065267 | Fisher | May 2000 | A |
6111638 | Chou et al. | Aug 2000 | A |
6123067 | Warrick | Sep 2000 | A |
6131565 | Mills | Oct 2000 | A |
6169414 | Yoshino et al. | Jan 2001 | B1 |
6205739 | Newlin | Mar 2001 | B1 |
6234166 | Katsir et al. | May 2001 | B1 |
6237337 | Bronicki et al. | May 2001 | B1 |
6250693 | Gensert et al. | Jun 2001 | B1 |
6279312 | Hennecke | Aug 2001 | B1 |
6292752 | Franke et al. | Sep 2001 | B1 |
6317229 | Otterson | Nov 2001 | B1 |
6321539 | Bronicki et al. | Nov 2001 | B1 |
6349521 | McKeon et al. | Feb 2002 | B1 |
6359212 | Hall et al. | Mar 2002 | B1 |
6409228 | Fadini et al. | Jun 2002 | B1 |
6433867 | Esquivel | Aug 2002 | B1 |
6469466 | Suzuki | Oct 2002 | B1 |
6470271 | Matsunaga | Oct 2002 | B2 |
6484506 | Bellac et al. | Nov 2002 | B1 |
6625983 | Kawasaki | Sep 2003 | B2 |
6639421 | Yoshino et al. | Oct 2003 | B1 |
6662801 | Hayden et al. | Dec 2003 | B2 |
6675546 | Coles | Jan 2004 | B2 |
6680693 | Urban et al. | Jan 2004 | B2 |
6688303 | Davenport et al. | Feb 2004 | B2 |
6694738 | Bronicki et al. | Feb 2004 | B2 |
6708455 | Niiduma | Mar 2004 | B1 |
6740381 | Day et al. | May 2004 | B2 |
6772062 | Lasky et al. | Aug 2004 | B2 |
6772671 | Asano et al. | Aug 2004 | B2 |
6792759 | Rollins, III | Sep 2004 | B2 |
6827911 | Gering | Dec 2004 | B1 |
6837010 | Powell et al. | Jan 2005 | B2 |
6848796 | Tagirov | Feb 2005 | B2 |
6862864 | O'Banion et al. | Mar 2005 | B2 |
6892502 | Hubbell et al. | May 2005 | B1 |
6989924 | Jorgensen et al. | Jan 2006 | B1 |
7055519 | Litwin et al. | Jun 2006 | B2 |
7065927 | Powell et al. | Jun 2006 | B2 |
7104064 | Hon | Sep 2006 | B2 |
7155309 | Peless et al. | Dec 2006 | B2 |
7163241 | Liu et al. | Jan 2007 | B2 |
7197856 | Coles | Apr 2007 | B2 |
7228230 | Hirokawa | Jun 2007 | B2 |
7281381 | Johnson | Oct 2007 | B2 |
7291056 | Ohishi et al. | Nov 2007 | B2 |
7349759 | Peless et al. | Mar 2008 | B2 |
7393577 | Day et al. | Jul 2008 | B2 |
7530201 | Reynolds et al. | May 2009 | B2 |
7578109 | Reynolds et al. | Aug 2009 | B2 |
7587862 | Reynolds et al. | Sep 2009 | B2 |
7612937 | Jorgensen et al. | Nov 2009 | B2 |
7883288 | Jorna | Feb 2011 | B2 |
8069632 | Li | Dec 2011 | B2 |
20030163966 | Reynolds et al. | Sep 2003 | A1 |
20040033105 | North | Feb 2004 | A1 |
20040074180 | Barmakian et al. | Apr 2004 | A1 |
20040074202 | Barmakian et al. | Apr 2004 | A1 |
20040128940 | LaForge | Jul 2004 | A1 |
20040168383 | Reynolds et al. | Sep 2004 | A1 |
20040244376 | Litwin et al. | Dec 2004 | A1 |
20050034437 | McMurty et al. | Feb 2005 | A1 |
20050050836 | Barmakian | Mar 2005 | A1 |
20050252153 | Barmakian et al. | Nov 2005 | A1 |
20060048800 | Rast et al. | Mar 2006 | A1 |
20060053726 | Reynolds et al. | Mar 2006 | A1 |
20060174622 | Skowronski | Aug 2006 | A1 |
20060181765 | Jorgensen et al. | Aug 2006 | A1 |
20060225729 | Litwin | Oct 2006 | A1 |
20060229773 | Peretz | Oct 2006 | A1 |
20060260314 | Kincaid et al. | Nov 2006 | A1 |
20060277843 | Livingston et al. | Dec 2006 | A1 |
20070011983 | Reynolds et al. | Jan 2007 | A1 |
20080046130 | Faivre et al. | Feb 2008 | A1 |
20080050579 | Kirkman et al. | Feb 2008 | A1 |
20080072516 | Reynolds et al. | Mar 2008 | A1 |
20080127595 | Reynolds et al. | Jun 2008 | A1 |
20080127647 | Leitner | Jun 2008 | A1 |
20080168981 | Cummings et al. | Jul 2008 | A1 |
20080204352 | Reynolds et al. | Aug 2008 | A1 |
20080226846 | Hill | Sep 2008 | A1 |
20080247069 | Bronstein | Oct 2008 | A1 |
20080283113 | Conger | Nov 2008 | A1 |
20080308094 | Johnston | Dec 2008 | A1 |
20090000613 | Edwards et al. | Jan 2009 | A1 |
20090095283 | Curtis et al. | Apr 2009 | A1 |
20090101195 | Reynolds et al. | Apr 2009 | A1 |
20090188488 | Kraft et al. | Jul 2009 | A1 |
20090205637 | Moore et al. | Aug 2009 | A1 |
20090260753 | Selig et al. | Oct 2009 | A1 |
20100000570 | Mertins et al. | Jan 2010 | A1 |
20100032016 | Gee et al. | Feb 2010 | A1 |
20100043776 | Gee | Feb 2010 | A1 |
20100071683 | Selig et al. | Mar 2010 | A1 |
20100199972 | Brost | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
0321919 | Apr 2006 | AT |
0448369 | Nov 2009 | AT |
4995099 | Jan 2001 | AU |
7300713 | Apr 2008 | AU |
8311746 | Apr 2009 | AU |
721243 | Nov 1965 | CA |
2664192 | Apr 2008 | CA |
1376228 | Oct 2002 | CN |
1170993 | Oct 2004 | CN |
101529027 | Sep 2009 | CN |
43 17 279 | Dec 1994 | DE |
203 14 172 | Dec 2003 | DE |
69930635 | Dec 2006 | DE |
602007003164 | Dec 2009 | DE |
0314199 | Sep 1991 | EP |
1 522 742 | Apr 2005 | EP |
1 801 517 | Dec 2005 | EP |
1 764 565 | Feb 2006 | EP |
1200683 | Mar 2006 | EP |
1 754 942 | Feb 2007 | EP |
1903155 | Nov 2009 | EP |
2123834 | Nov 2009 | EP |
2128352 | Dec 2009 | EP |
2154301 | Feb 2010 | EP |
2 667 092 | Mar 1992 | FR |
287 023 | Mar 1928 | GB |
0197541 | Dec 2009 | IL |
58150831 | Sep 1983 | JP |
59012952 | Jan 1984 | JP |
59072401 | Apr 1984 | JP |
62011744 | Jan 1987 | JP |
2262037 | Oct 1990 | JP |
4333254 | Nov 1992 | JP |
06003194 | Jan 1994 | JP |
11182026 | Jul 1999 | JP |
2001077384 | Mar 2001 | JP |
2002063807 | Feb 2002 | JP |
2003194419 | Jul 2003 | JP |
2003229009 | Aug 2003 | JP |
2009003087 | May 2009 | MX |
WO 8002604 | Nov 1980 | WO |
WO 9218715 | Oct 1992 | WO |
WO 9633787 | Oct 1996 | WO |
WO 0007818 | Feb 2000 | WO |
WO 0104430 | Jan 2001 | WO |
WO 02082037 | Oct 2002 | WO |
WO 2004099682 | Nov 2004 | WO |
WO 2005003645 | Jan 2005 | WO |
WO 2005003646 | Jan 2005 | WO |
WO 2005003647 | Jan 2005 | WO |
WO 2005078360 | Aug 2005 | WO |
WO 2005108959 | Nov 2005 | WO |
WO 2008058528 | Mar 2008 | WO |
WO 2008039233 | Apr 2008 | WO |
WO 2008039233 | Dec 2008 | WO |
WO 2009052220 | Apr 2009 | WO |
WO 2009052520 | Apr 2009 | WO |
WO 2009105291 | Aug 2009 | WO |
WO 2010006056 | Jan 2010 | WO |
WO 2010006193 | Jan 2010 | WO |
WO 2010022280 | Feb 2010 | WO |
WO 2010083292 | Jul 2010 | WO |
Entry |
---|
“Truss Connection,” YouTube, Jul. 4, 2007 http://www.youtube.com/watch?v=FtoQJONKRm0. |
“National Renewable Energy Laboratory, USA Rough: Near-Term Component/Subsystem Development, Task I-B-1: Space Frame Design, Draft Detailed Report” (Aug. 25, 2005), prepared by Gossamer Space Frames. |
International Search Report and Written Opinion mailed Aug. 27, 2009 for corresponding International Application No. PCT/US09/50144. |
U.S. Appl. No. 61/079,382, filed Jul. 9, 2008, Farr et al. |
U.S. Appl. No. 61/029,466, filed Feb. 18, 2009, Gee et al. |
Automation Direct (downloaded Aug. 23, 2010) “GS2 Series Specifications” Drives/Motors/Motion vol. 13, e13-22 http://www.automationdirect.com/adc/Shopping/Catalog/Drives/GS2—(115—-z-—230—-z-—460—-z-—575—VAC—V-z-Hz—Control)/GS2—Drive—Units—(115—-z-—230—-z-—460—-z-—575—VAC)/GS2-11P0. |
Baccaro, S., et al. (2003), “Quality control facilities for large optical reflectors at ENEA-Casaccia for physics application,” Nuclear Physics B (Proc. Suppl.) 125:272-276. |
Dersch et al. (2004) “Trough Integration into Power Plants—A Study on the Performance and Economy of Integrated Solar Combined Cycle Systems,” Energy 29:947-959. |
Eckart [Hydraulik • Pneumatik] (downloaded Aug. 23, 2010) “Produkte mit starkem Profil” http://www.eckart-gmbh.de/. |
El-Sayed, M. (2005) “Solar Supported Steam Production for Power Generation in Egypt,” Energy Policy 33:1251-1259. |
El-Wakil, M.M. (1984) “Combined Cycles: General,” In; Powerplant Technology, New York: McGraw-Hill Hardcover, pp. 341-351. |
Feuermann, D., et al. (2002), “Solar Fiber-Optic Mini-Dish Concentrators: First Experimental Results and Field Experience,” Solar Energy 72(6):459-472. |
Flagsol (2006) “ISCCS—Integrated Solar Combined Cycle System,” http://www.flagsol.com/ISCCS—tech.htm, Downloaded Sep. 9, 2006. |
Horn et al. (2004) “Economic Analysis of Integrated Solar Combined Cycle Power Plants; A Sample Case: The Economic Feasibility of an ISCCS Power Plant in Egypt,” Energy 29:935-945. |
Hosseini et al. (2005) “Technical and Economic Assessment of the Integrated Solar Combined Cycle Power Plants in Iran,” Renewable Energy 30:1541-1555. |
HELAC Corporation (Apr. 2007) “Helical, Hydraulic Rotary Actuators, T20 Series,” Product Manual. |
HELAC Corporation, (2003) “Helical, Hydraulic Rotary Actuators, L20 Series,” Product Manual. |
HELAC Corporation (2004) “Helical, Hydraulic Rotary Actuators, L30 Series,” Product Manual. |
HELAC Corporation (Jun. 2001) “Sprayer Steers Clear of the Ordinary,” Hydraulics and Pneumatics http://www.hydraulicspneumatics.com. |
Kaminski, J. et al. (2006), “Full-Field Shape Measurement of Specular Surfaces,” in Fringe, 2005, The 5th International Workshop on Automatic Processing of Fringe Patterns, pp. 372-379. |
Kelly et al. (2001) “Optimization Studies for Integrated Solar Combined Cycle Systems,” Proceedings of Solar Forum 2001, Solar Energy: The Power to Choose, Apr. 21-25, Washington, DC. |
Lietner et al. (2002) “Brighter than a Hundred Suns,” U.S. Department of Energy/NREL publication, p. 10 of 144-06P spec. |
Mulholland, G.W. and Germer, T.A. (2003), “Modeling, Measurement and Standards for Wafer Inspection,” Proc. Government Microcircuits Applications and Critical Technologies Conference, “Countering Asymmetric Threats,” Tampa, FL, published on ScatterWorks, In. website. |
NOVATEC BioSol AG Presentation Nov. 7, 2007. http://www.menarec.org/resources/NOVATEC-BioSol—20071107.pdf. |
NOVATEC BioSol AG Presentation Nov. 26, 2007. Hotel Intercontinental Germany-Frankfurt. http://www.rural-electrification.com/cms/upload/pdf/Presentations—Jordanian—Delegation—Visit/07—NOVATEC-BioSol—20071126.pdf. |
Product Literature for Portable Specular Reflectometer Model 15R, Devices and Services Company, http://devicesandservices.com/prod02.htm, last modified May 25, 2007. |
Ulmer, S et al. (2006), “Slope Measurements of Parabolic Dish Concentrators Using Color-coded Targets,” SolarPACES2006 A7-S5:1-8. |
(Dec. 19, 2007) “Aquaflector.” http://www.aquaflector.com/index.html. |
(Dec. 19, 2007) “Aquaflector.” http://www.aquaflector.com/rationale.html. |
(Dec. 19, 2007) “Aquaflector.” http://www.aquaflector.com/technology.html. |
(Dec. 19, 2007) “Aquaflector.” http://www.aquaflector.com/contact.html. |
International Search Report dated Jun. 1, 2010 for International Application No. PCT/US2010/021020. |
International Search Report dated Feb. 20, 2009 for International Application No. PCT/US09/30872. |
International Search Report corresponding to International Application No. PCT/US06/62046, Mailed Jul. 17, 2008. |
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US09/49945, Mailed Sep. 2, 2009. |
International Search Report and Written Opinion, Corresponding to International Application No. PCT/US2009/054531, Mailed Oct. 30, 2009. |
(Mar. 20, 2008) “Precision Actuator Puts New Spin on Solar Power,” Machine Design 24: http://machinedesign.com/article/precision-actuator-puts-new-spin-on-solar-power-0320. |
First Office Action issued from the State Intellectual Property Office of China on Jan. 4, 2012, for Chinese Patent Application No. 200980126634.9. |
Second Office Action issued from the State Intellectual Property Office of China on Oct. 18, 2012, for Chinese Patent Application No. 200980126634.9. |
Third Office Action issued from the State Intellectual Property Office of China on Jun. 18, 2013, for Chinese Patent Application No. 200980126634.9. |
Extended European Search Report issued from the European Patent Office on Jan. 13, 2014, for European Patent Application No. 09795206.3. |
Number | Date | Country | |
---|---|---|---|
20100005752 A1 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
61091095 | Aug 2008 | US | |
61079382 | Jul 2008 | US |