This patent application is directed to speaker design, and more specifically, to high frequency tweeter domes.
A tweeter is a high frequency speaker typically including a voice coil motor connected to a dome shaped diaphragm. As the voice coil vibrates, that movement is transferred to the tweeter's dome which vibrates the air to create an acoustic waveform. Conventional tweeters have either a soft dome or a hard dome construction. Soft domes are typically constructed from a textile material and hard domes typically consist of a thin metal, ceramic, or diamond diaphragm. Soft domes are typically free from ringing (high-frequency breakup mode resonances), but are not sufficiently rigid to follow the accelerations of a music signal at high frequencies. Hard domes are rigid and therefore can generally handle high accelerations at high frequencies, but often suffer from aggressive ringing at the upper end of their frequency spectrum.
The space frame reinforced tweeter dome described herein may be better understood by referring to the following Detailed Description in conjunction with the accompanying drawings, in which like reference numerals indicate identical or functionally similar elements:
The headings provided herein are for convenience only and do not necessarily affect the scope of the embodiments. Further, the drawings have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be expanded or reduced to help improve the understanding of the embodiments. Moreover, while the disclosed technology is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the embodiments described. On the contrary, the embodiments are intended to cover all modifications, equivalents, and alternatives falling within the scope of this disclosure.
Overview
A space frame reinforced tweeter dome is disclosed. In a representative embodiment, the tweeter dome includes a space frame and a convex diaphragm attached to the space frame. In some embodiments, the space frame includes a crown portion and at least two leg portions extending from the crown portion. In at least one embodiment, the crown portion comprises a triangular frame and the space frame includes three leg portions each extending from a corresponding vertex of the triangular frame. Each leg portion has a distal foot portion adapted for connection to a voice coil former for movement therewith. In some embodiments, the diaphragm is comprised of a soft, e.g., textile, material and the space frame is comprised of a rigid material, such as metal, for example. In some embodiments, the diaphragm is attached to the space frame with adhesive. The disclosed space frame reinforced tweeter domes are free from ringing while being sufficiently rigid to follow the enormous accelerations of a music signal at high frequencies.
General Description
Various examples of the devices introduced above will now be described in further detail. The following description provides specific details for a thorough understanding and enabling description of these examples. One skilled in the relevant art will understand, however, that the techniques and technology discussed herein may be practiced without many of these details. Likewise, one skilled in the relevant art will also understand that the technology can include many other features not described in detail herein. Additionally, some well-known structures or functions may not be shown or described in detail below so as to avoid unnecessarily obscuring the relevant description.
The terminology used below is to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of some specific examples of the embodiments. Indeed, some terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this section.
The disclosed space frame reinforced tweeter domes provide the benefits of soft domes and the benefits of hard domes. Soft domes are free from ringing (high-frequency breakup mode resonances), but are not sufficiently rigid to follow the enormous accelerations of a music signal at high frequencies. Hard domes are rigid and therefore can handle high accelerations at high frequencies, but suffer from aggressive ringing at the upper end of their frequency spectrum. The disclosed space frame reinforced tweeter domes are free from ringing while being sufficiently rigid to follow the enormous accelerations of a music signal at high frequencies.
In some embodiments, the space frame 106 is attached to the former 108 with a suitable adhesive. In other embodiments, the space frame 106 is welded, soldered, or similarly joined to the former 108. In some embodiments, the space frame 106 can be attached to the rim of the former 108. In other embodiments, the space frame 106 can be attached to the circumferential outer surface 113.
As shown in
As can be appreciated in
As can be appreciated in
With reference to
Remarks
The above description, drawings, and appendices are illustrative and are not to be construed as limiting. Numerous specific details are described to provide a thorough understanding of the disclosure. However, in some instances, well-known details are not described in order to avoid obscuring the description. Further, various modifications may be made without deviating from the scope of the embodiments.
For example, although the tweeter diaphragm disclosed herein is described in terms of a space frame reinforced dome, the space frame technology applies to frames and diaphragms having other concave or convex shapes, including for example geodesic domes. In addition, the disclosed technology can apply to inverted domes and flat diaphragms, for example. Furthermore, although the technology is described with respect to tweeters, the space frame can be applied to other types of speakers and speakers having the same or different frequency responses, for example.
Moreover, in some embodiments, the space frame can be located on the outside, or convex side of the diaphragm or dome and correspondingly attached (e.g., adhered) thereto. In such embodiments, the legs and/or foot portions of the space frame can extend through the diaphragm or dome.
As used herein, tweeter dome refers generically to the speaker's diaphragm whether it is an arcuately domed or an otherwise concave/convex diaphragm. Space frame refers to space frames, frames, and/or other structures for supporting the tweeter diaphragm or dome according to the above disclosed technology.
Reference in this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not for other embodiments.
The terms used in this specification generally have their ordinary meanings in the art, within the context of the disclosure, and in the specific context where each term is used. It will be appreciated that the same thing can be said in more than one way. Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein, and any special significance is not to be placed upon whether or not a term is elaborated or discussed herein. Synonyms for some terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification, including examples of any term discussed herein, is illustrative only and is not intended to further limit the scope and meaning of the disclosure or of any exemplified term. Likewise, the disclosure is not limited to various embodiments given in this specification. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the case of conflict, the present document, including definitions, will control.
Number | Name | Date | Kind |
---|---|---|---|
1720524 | Menkens | Jul 1929 | A |
4132872 | Inoue | Jan 1979 | A |
4761817 | Christie | Aug 1988 | A |
4764968 | Kreitmeier | Aug 1988 | A |
4817165 | Amalaha | Mar 1989 | A |
4819395 | Sugita | Apr 1989 | A |
5181355 | Skolnick | Jan 1993 | A |
6385324 | Koppen | May 2002 | B1 |
8428295 | Humphreys | Apr 2013 | B2 |
8820006 | Zook | Sep 2014 | B2 |
8942407 | Dodd | Jan 2015 | B2 |
20020061117 | Takewa | May 2002 | A1 |
20050271238 | Kobayashi | Dec 2005 | A1 |
20080013781 | Sagren | Jan 2008 | A1 |
20080124566 | Smallman | May 2008 | A1 |
20100296687 | Fujita | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
286639 | Jun 1997 | NZ |
286639 | Jun 1997 | NZ |
WO 2006042448 | Apr 2006 | WO |
WO-2006042448 | Apr 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20180103322 A1 | Apr 2018 | US |