1. Field of the Invention
The present disclosure relates generally to a space positioning method, and more specifically, to a space positioning method by utilizing liquid crystal lens camera(s) and related space positioning apparatus.
2. Description of the Prior Art
A conventional space position method may use infrared rays or a Global Positioning System (GPS) to determine a position in space. The disadvantage of infrared rays is that they are visible to the human eye. A device with a GPS function has a high resolution and short response time; however, these devices may be extremely costly. Thus, there is a need for a cost-efficient and accurate space position method which can be used in consumer electronics.
One of the objectives of the present invention is therefore to provide a space positioning method by utilizing liquid crystal lens camera(s) and related space positioning apparatus.
According to a first aspect of the present invention, an exemplary space positioning method is disclosed. The exemplary space positioning method comprises at least the following steps: determining a plurality of distances between an object location of an object in a space and a plurality of different predetermined locations in the space by utilizing a plurality of liquid crystal (LC) lens cameras, respectively, wherein each LC lens camera is located at a predetermined location, and determines a distance between the predetermined location in the space and the object location of the object in the space; and determining a space position of the object relative to the predetermined locations according to the predetermined locations and the distances.
According to a second aspect of the present invention, an exemplary space positioning method for capturing a holographic image of an object is disclosed. The exemplary space positioning method comprises at least the following steps: capturing a plurality of image frames of the object by utilizing at least one liquid crystal (LC) lens camera located in at least one predetermined location, wherein each LC lens camera captures multiple image frames by using different focal lengths respectively; and obtaining the holographic image of the object according to the image frames captured by the LC lens cameras.
According to a third aspect of the present invention, an exemplary space positioning apparatus is disclosed. The exemplary space positioning apparatus comprises: a plurality of liquid crystal (LC) lens cameras, arranged for determining a plurality of distances between an object location of an object in a space and a plurality of different predetermined locations in the space by utilizing the LC lens cameras, respectively, wherein each LC lens camera is located at a predetermined location, and determines a distance between the predetermined location in the space and the object location of the object in the space; and a processing unit, arranged for determining a space position of the object relative to the predetermined locations according to the predetermined locations and the distances.
According to a fourth aspect of the present invention, an exemplary space positioning apparatus for capturing a holographic image of an object is disclosed. The exemplary space positioning apparatus comprises: at least one liquid crystal (LC) lens camera, located in at least one predetermined location and arranged for capturing a plurality of image frames of the object, wherein each LC lens camera captures multiple image frames by using different focal lengths respectively; and a processing unit, arranged for obtaining the holographic image of the object according to the image frames captured by the LC lens cameras.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms “include” and “comprise” are used in an open-ended fashion, and thus should be interpreted to mean “include, but not limited to . . . ”. Also, the term “couple” is intended to mean either an indirect or direct electrical connection. Accordingly, if one device is coupled to another device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
Please refer to
Please refer to
Please refer to
Step 302: Determine the first distance between the first predetermined location in the space and the object location of the object in the space by utilizing the first LC lens camera;
Step 304: Determine the second distance between the second predetermined location in the space and the object location of the object in the space by utilizing the second LC lens camera;
Step 306: Determine the third distance between the third predetermined location in the space and the object location of the object in the space by utilizing the third LC lens camera; and
Step 308: Determine a space position of the object relative to the predetermined locations according to the predetermined locations and the distances.
First of all, in step 302, the first LC lens camera 102 uses a first focus control unit 1024 in the first distance estimation unit 1022 to apply a first voltage to allow the first LC lens camera 102 to focus on the object P shown in
In step 304, the second LC lens camera 104 uses a second focus control unit 1044 in the second distance estimation unit 1042 to apply a second voltage to allow the second LC lens camera 104 to focus on the object P shown in
In step 306, the third LC lens camera 106 uses a third focus control unit 1064 in the third distance estimation unit 1062 to apply a third voltage to allow the third LC lens camera 106 to focus on the object P shown in
After the first distance d1, the second distance d2, and the third distance d3 are obtained, the processing unit 208 is able to determine the position in space of the object P relative to the coordinates of the first, second and third LC lens cameras 102, 104, 106. Through mathematical operations, the coordinate (xp, yp, zp) of the object P can be obtained in according with the coordinates (x1, y1, z1) of the first LC lens camera 102, the coordinates (x2, y2, z2) of the second LC lens camera 104, the coordinates (x3, y3, z3) of the third LC lens camera 106, and the distances d1, d2, and d3. By way of example, conventional mathematical operations may be employed to calculate the coordinates of the object P based on the available information including coordinates of the LC lens cameras and estimated distances. Those persons skilled in the art should readily understand the relevant mathematical operations, and thus the detailed descriptions are omitted here for conciseness.
It should be noted that the disclosed embodiments set forth are for illustrative purposes only, and are not meant to be limitations of the present invention. In other embodiments of the present invention, the number of the LC lens cameras may be different. For example, an alternative design may use 4 LC lens cameras. This also belongs to the scope of the present invention.
Please refer to
Please refer to
Please refer to
Step 802: Capture the first image frames of the object by utilizing the first LC lens camera;
Step 804: Capture the second image frames of the object by utilizing the second LC lens camera;
Step 806: Capture the third image frames of the object by utilizing the third LC lens camera; and
Step 808: Obtain the holographic image of the object according to the image frames captured by the LC lens cameras.
First of all, in Step 802, the first LC lens camera 402 captures the first image frames of the object H. For instance, the focal length control unit 4022 controls the capture control unit 4024 to capture the seven first image frames f11-f17 of the object H, as shown in
In Step 804, the second LC lens camera 404 captures the second image frames of the object H. For instance, the focal length control unit 4042 controls the capture control unit 4044 to capture the seven second image frames f21-f27 of the object H, as shown in
In Step 806, the third LC lens camera 406 captures the third image frames of the object H. For instance, the focal length control unit 4062 controls the capture control unit 4064 to capture the seven third image frames f31-f37 of the object H, as shown in
After the first images f11-f17, the second images f21-f27, and the third images f31-f37 are obtained, the processing unit 408 is therefore able to compute the holographic image of the object H. Since profiles of sections of the object H from different points of view are obtained, the holographic image of the object H can be re-constructed by stitching these profiles together through mathematical operations. By way of example, conventional mathematical operations may be employed to create the holographic image of the object H based on the available information including the images captured at different viewing angles. Those person skilled in the art should readily understand the relevant mathematical operations, and thus the detailed descriptions are omitted here for conciseness.
It should be noted that the disclosed embodiments set forth are for illustrative purposes only, and are not meant to be limitations of the present invention. In other embodiments of the present invention, the number of the LC lens cameras may be different. For example, an alternative design may use 4 LC lens cameras. In some other cases, the LC lens cameras may move around the object to have a full image without dead angles, or the object may itself rotate. In such cases, only one LC lens camera is needed to obtain images with full coverage of the object.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
This application claims the benefit of U.S. provisional application No. 61/694,774, filed on Aug. 30, 2012 and incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61694774 | Aug 2012 | US |