The invention is best understood from the following detailed description when read in connection with the accompanying drawing. It is emphasized that, according to common practice, the various features of the drawing are not to scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included in the drawing are the following Figures:
Front elevation plate 140 includes, outer edge 144, a rear surface 146 and a front surface 148. Front elevation plate 140 may be constructed of clear or translucent glass or polymer material, such as, for example, poly carbonate. As shown, support 150 and a bottom portion of outer edge 144 may be used to support the structure of space saving fan 100 in an upright position.
The use of a translucent or clear material in the construction of front elevation plate 140 contributes to the unobtrusive appearance of space saving fan 100 when places on a desk or other work surface. As can be appreciated, objects, such as for example, pencil 180 can be seen through front elevation plate 140, thereby allowing the perceived size and obstructiveness of space saving fan 100 to be minimized.
Plug 170 may be used to connect space saving fan 100 to a power source, such as for example, a standard wall receptacle (not shown). Power cord 172 transfers power from plug 170 to air generator 120. As shown in
Although not shown, it is contemplated that switches, wires, power cords, batteries, and other such well known electrical devices will be utilized to supply and control the energy required for motorized impeller assembly 130.
Front elevation plate 140 includes opening 142, internal edge 143, outer edge 144, rear surface 146 and front surface 148. Air generator 120 may be disposed in opening 142 of front elevation plate 140 upon assembly. Air generator 120 may be attached to front elevation plate 140 using conventional means, such as for example, adhesives, screws, snap fits and the like. It is also contemplated that front elevation plate 140 may be partially or completely unitary with another component of space saving fan 100, such as for example, housing 122.
As shown support 150 may be attached to rear surface 146 of front elevation plate 140. Support 150 may be attached via conventional means, such as for example, adhesives, screws, snap fits and the like. It is also contemplated that support 150 may be removably or rotatably attached to elevation plate 140 and/or may be attached to the front surface of front elevation plate 140. As can be appreciated, removable or rotatable attachment of support 150 to front elevation plate 140 will contribute to efficient packaging and shipment of space saving fan 100.
Limiting the dimensions contribute to the space savings and utilitarian characteristics of space saving fan 100. More specifically, limiting the thickness FD of front elevation plate 140 increases the ability of the user to view around the device. The limitation of thickness FD combined with the limited thickness AGD of air generator 120 minimizes the depth of the device and further conserves space on a desk or work surface. In one embodiment, FD is less than 15% of either FW or FH.
Limiting the thickness FD of front elevation plate 140 in conjunction with the use of clear or translucent glass or polymer materials increases the ability to view object behind the front elevation plate 140 and hence the non-distracting value of elevation plate 140 (e.g., allowing the full work surface to be viewed). The ability of front elevation plate 140 to collect, reflect, defuse and/or refracting ambient light is enhanced by the limited dimension for thickness FD. Preferably, ambient light may easily able to penetrate thickness FD of front elevation plate 140. The full penetration of ambient light into front elevation plate 140 increases the illumination that the ambient light is able to effect on front elevation plate 140. Further enhancements can be achieved with the inclusion of pale tints within the clear or translucent material. The addition of tints provides an edge glow effect with subtle color intensification at edge 144. The subtle color intensification may provide a radiant glow at edge 144. These light dissemination features differentiate space saving fan 100 from conventional space saving fans and increase the non-distracting value of space saving fan 100 when compared to conventional desk fans.
Although shown in a specific profile, front elevation plate 140 is not so limited. It is contemplated that front elevation plate 140 may have a variety of shapes, for example, polygonal, elliptical, free form and the like, without departing from the spirit of the invention. It is also contemplated that outer edge 144 of front elevation plate 140 may have various surfaces textures and finishes, such as for example, serrations, waves, bevels, angles and the like.
As shown, light sources 628 may be disposed within pockets 629 and located near outside surface 625 of housing 622. As shown, the location of light sources 628 and pockets 629 coincide with internal edge 643 of light dissemination plate 640 when space saving fan 600 is completely assembled. The exemplary embodiment shows four light sources 628, the invention however is not so limited. It is contemplated that one or multiple light sources 628 may be used without departing from the invention.
It is contemplated that light sources 628 may be miniature lights, neon lights, light emitting diodes (LEDs) and the like. In a preferred embodiment, light source 628 uses LED technology. The use of LED technology has several advantages. First, the power usage is low compared to other types of light sources. Also, the life span of an LED is much greater than other light sources. In addition, the construction of the LED is simple when compared to with other conventional lighting technologies, such as for example, incandescent lights that require several components, such as, sockets. Further, the use of LEDs for light sources 628 in conjunction with light dissemination plate 640 creates a compact light emission structure that can easily be crafted into many shapes and sizes.
Although not shown it is contemplated that switches, wires, power cords, batteries, and other such well known electrical devices will be utilized to supply and control the energy required for both motorized impeller assembly 630 and light sources 628. Preferably, these electrical components are located safely behind light dissemination plate 640.
Air generator 620 may be disposed in opening 642 of light dissemination plate 640 upon assembly. As noted before, light sources 628 should align with internal edge 643 of light dissemination plate 640.
As shown, light dissemination plate 640 includes opening 642, internal edge 643, outer edge 644, rear surface 646 and front surface 648. Light dissemination plate 640 is preferably a good conductor of light. Preferably, light dissemination plate 640 is constructed of glass or a clear polymer material such as poly carbonate. Air generator 620 may be attached to light dissemination plate 640 using conventional means, such as for example, adhesives, screws, snap fits and the like. It is also contemplated that light dissemination plate 640 may be partially or completely unitary with another component of space saving fan 600, such as for example, housing 622.
As shown in
Although shown as circular in form, light dissemination plate 640 is not so limited. It is contemplated that light dissemination plate 640 may have a variety of shapes, for example, polygonal, elliptical, free form and the like without departing from the spirit of the invention. It is also contemplated that outer edge 644 of light dissemination plate 640 may have various surfaces textures and finishes, such as for example, serrations, waves, bevels, angles and the like.
Impeller 631 may be attached to rotor 633 using shaft pin 634. As shown impeller 631 includes hub 631a and blades 631b. Bearings 636 may be attached to stationary frame 635, which in turn may be fixedly attached to front grill 626. Shaft pin 634 may be rotatably disposed through bearings 636 allowing impeller 631, rotor 633 and shaft pin 634 to rotate relative to bearings 636, stationary frame 635 and the rest of the components of space saving fan 600.
When electrical power is supplied to stator coils 632a, rotor 633 rotates thereby rotating impeller 631. The rotation of impeller 631 generates air flow 800. As shown, air flow 800 enters housing 622 through rear grill 624, is accelerated by impeller 631, and exits space saving fan 600 via front grill 626. In a preferred embodiment, light dissemination plate 640 may be mounted at an angle a relative to support 650. Inclination of air stream 800 relative support surface 802 helps avoid or reduce disturbance of objects resting on support surface 802. It is also contemplated that the incline of air stream 800 may be adjustable relative to support surface 802.
In the present exemplary embodiment, stationary frame 635 is attached to front grill 626 with fasteners 660. It is also contemplated that other conventional means, such as for example, adhesives, snap fits and the like may be used. It is also considered that stationary frame 635 may be partially or completely unitary with another component of space saving fan 600, such as for example, rear grill 624 or front grill 626.
The location of stator 632, rotor 633, shaft pin 634, stationary frame 635 and bearings 636 within hub 631a of impeller 631, permits a conservation of size for motorized impeller assembly 630. This further contributes to the space saving characteristics of space saving fan 600. As can be appreciated, the diameter and or size of light dissemination plate 640 is greater than the axial thickness of air generator 620. In one embodiment, the ratio of the diameter light dissemination plate 640 to the axial thickness of air generator 620 is greater than 2 to 1.
Although not shown, it is contemplated that space saving fan 600 may also include additional features, such as for example, air filtration, heaters, clocks, oscillation, storage compartments and the like. It is also contemplated that support 650 may be an elevating structure, such as for example, a pedestal to increase the elevation of air flow 800 produced by air generator 620 above support surface 802.
As shown in
The angle of incidence is the angle between a light beam incident on a surface and the line perpendicular to the surface at the point of incidence. The optical phenomenon, internal reflection will occur within light dissemination plate 640 as light vector 900 strikes rear surface 646 and front surface 648 at an angle of incidence greater that the critical angel. The critical angle is the angle of incidence above which the internal reflection occurs. This phenomenon of reflectivity and angle of incidence is widely known and described from Fresnel's equations.
In another embodiment, rear surface 646 and front surface 648 may be coating with a reflective material. Reflective materials may further enhance the light transport and guide characteristics of the light dissemination plate 640.
As shown in
Other light exit points may be provided on, for example, the front surface 648 of the light dissemination plate 640. These points of use may include a diffuser for spreading and/or directing the light into the room and/or onto the work surface.
Although the majority of light vector 900 may exit light dissemination plate 1040 through outer edge 644, a portion of light, shown as reflected vectors 1002, may be directed at an angle θ to rear surface 646 and cause rear surface 646 to be visible through front surface 648. As shown, the reflected vectors 1002 may be directed substantially perpendicular to rear surface 646. The reflectivity of rear surface 646 may be increased or decreased with various surface treatments 1000 including the amount of texturization, type of texturization and the quantity and size of glass beads in the paint or adhesive material, etc.
Although as shown the majority of light vector 900 may exit light dissemination plate 1140 through outer edge 644, a portion of light, shown as reflected vectors 1102, may be directed at an angle θ to rear surface 646 by reflective feature 1100 and thus causing reflective feature 1100 to be visible through front surface 648. As shown, reflected vectors 1102 may be directed substantially perpendicular to rear surface 646 by reflective feature 1100. The visibility of reflective feature 1100 may be increased or decreased with various types of texturization and the amount of glass beads in filler 1104, the intensity of the light source, etc. It is also contemplated that colors may be added to reflective feature 1100 to convey different moods and contribute to its aesthetic appeal.
In the exemplary embodiment of
Referring again to
Although shown as circular or arcuate in form, light shroud 1310 is not so limited. It is contemplated that light shroud 1310 may have a variety of shapes, for example, polygonal, elliptical, free form and the like without departing from the spirit of the invention. It is also contemplated that outer edge 1312 of light shroud 1310 may have various surfaces textures and finishes, such as for example, serrations, waves, bevels, angles and the like.
In one embodiment angle al of
The location of light source 628 as shown and described in
Another advantage of the use of light shrouds 1310 as described in
Further, internal edge 643 and/or outside surface 625 of housing 622 may include a reflective material. Light vectors radiating toward this reflective material may be reflected back into the light dissemination plate 640. This feature further improves light radiation throughout light dissemination plate 640.
In one embodiment the diameter of pocket 1429 is greater than about 2 times the cross sectional width of light source 628. In another embodiment, the diameter of pocket 1429 is greater than about 0.30 inches. In yet another embodiment the diameter of pocket 1429 is between about 0.25 inches and about 0.75 inches.
The features and structure of space saving fan 100 and 600, as described in the exemplary embodiments, enhance space saving characteristics when compared to conventional desk and table fans. The physical location of the motor relative to the impeller permits greater space saving characteristics than those found in a conventional desk fan. The use of motorized impeller assembly 630 having the motor disposed substantially within hub 631 a allows further size economization, thus maximizing the available area on a table or desk for productive use. The use of front elevation plate 140 captures indirect lighting to enhance the overall appearance of space saving fan 100. Light dissemination plate 640 in conjunction with light sources 628 is capable of emitting a low level light for use on a desk. Additionally the use of front elevation plate 140 and/or light dissemination plate 640 serves to protect and isolate electrical components from direct contact by the user.
As can be appreciated the use of front elevation plate 140 and/or light dissemination plate 640 further distinguish space saving fans 100 and 600 from conventional desk top fans. Embodiments of space saving fans 100 and 600 have features that allow for a more functional, attractive and evocative presence on a desk or table top. The structural and feature innovation of space saving fan 100 and 600 also achieve the goal of re-invigorated interest on the part of the user and sale-ability on the part of the manufacturer and/or vendor.
Although the invention has been described with reference to exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the true spirit and scope of the present invention.
This Application claims the benefit of Application No. 60/794,643, filed Apr. 24, 2006, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60794643 | Apr 2006 | US |