The present disclosure relates to ice and beverage dispensing machines with wire augers and assemblies thereof.
The following U.S. patents provide background information and are incorporated by reference in their entireties:
U.S. Pat. No. 4,641,763 discloses an ice and beverage dispensing apparatus with a dual purpose liner. Ice from an ice-making source is loaded into a bin and rests upon a curved liner which is spaced above the bottom of the bin. Ice is moved through the bin and above the liner by a wire auger toward a discharge opening. Ice gravitationally feeds through openings in the liner to a cold plate which forms the bottom of the bin. The ice chills the cold plate, chilling beverages flowing through passages in the cold plate. As ice resting on the cold plate takes up heat, the ice melts. Water is drained from above the cold plate. Foamed-in-place polyurethane insulation surrounds the bin. A motor is mounted on the front of the bin. A drive connected to the motor drives the ice-moving auger and discharge equipment. A motor controller is mounted near an ice-discharge chute. Beverage-dispenser valves are connected to the front of the cold plate and are aligned with the dispenser chute.
U.S. Pat. No. 5,299,716 discloses an apparatus for dispensing both ice and chilled beverages, and more particularly an improved chilled beverage dispenser which has larger ice storage capacity and which incorporates an improved system of dispensing ice. The improved ice storage and dispensing system utilizes a circular rotating tray and a paddle wheel positioned in an intermediate cone chute to dispense ice efficiently and in a regulated flow in combination with chilled beverages.
U.S. Pat. No. 8,881,952 discloses an ice dispensing assembly that includes a hopper, a metering disk, a shelf member, and a separating wall. The hopper includes an outlet opening defined in a bottom end of the hopper, and an ice inlet defined in a top end of the hopper. The metering disk is positioned in the hopper and includes a plurality of cavities. The shelf member is arranged to at least partially shield the cavities from a supply of ice held in the hopper. The metering disk is rotatable relative to the hopper between a first position wherein at least one cavity is exposed to the supply of ice to be filled with ice, and a second position wherein the cavity is separated from the supply of ice by the separating wall and ice in the cavity is dispensed through the outlet opening.
U.S. Pat. No. 9,249,006 discloses a beverage dispenser that uses a slurry ice bath to achieve heat transfer from coils containing a beverage. The invention provides a hopper into which a slurry ice bath is created. The hopper receives ice from an ice bin via an ice chute. The ice bin contains a rotating agitator for pushing ice down the ice bin. Coils containing a beverage to be dispensed are submersed in the slurry ice bath. Ice passing through the ice chute and into the hopper floats to the surface of the water in the hopper. As the agitator rotates, it continues to push ice down the ice chute, which in turn raises the water level of the water in the hopper. The water level then reaches an equilibrium level, where the buoyant force of the ice in the water will prevent additional ice from falling through the ice chute.
U.S. Pat. No. 9,285,149 discloses an automated ice dispenser that decouples the action of agitating ice stored in an ice bin and the action of dispensing the ice and, additionally, uses a controlled action to dispense the ice. Agitation is achieved with a horizontally mounted agitator. Ice is dispensed with a horizontally mounted auger. The ice dispenser uses the force created by the auger to push the ice through an opening and out of the bin, making the dispensing more consistent and providing the ability to overcome clumping. By making the agitation action independent of the dispensing action, the incidence of clumping is reduced. Agitation is controlled by software, whereunder the agitator turns on based on the cumulative run time of the auger. Auger run time and agitation time (as well as other configurable parameters) are adjustable by DIP switches on a control board.
U.S. Pat. No. 10,288,336 discloses an ice delivery device that includes a bin for storing ice, a rotatable helical auger for delivering ice, and a rotatable agitator wheel with multiple flexible arms to help break up agglomerations of ice. The agitator wheel is mounted such that as the auger is rotated the auger successively engages arms of the agitator wheel to rotate the agitator wheel. If the agitator wheel encounters an obstruction, such as a mass of agglomerated ice, the auger displaces the flexible arm out of the plane of the agitator wheel thus permitting the auger to continue rotate to deliver ice. The agitator wheel is mounted on a pair of flexible liners, which are displaceable by agglomerated ice.
This Summary is provided to introduce a selection of concepts that are further described herein below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
According to example of the present disclosure, an ice dispensing system is provided. The system includes multiple sidewalls forming an ice bin cavity configured to store ice. The system further includes an auger drive assembly. The auger drive assembly includes a drive assembly that is coupled to one of the multiple sidewalls and has a motor configured to rotate a drive gear. The auger drive assembly further includes an auger assembly positioned within the ice bin cavity. The auger assembly includes a helical auger coupled to an auger gear. The drive gear is configured to mate with the auger gear to drive rotation of the helical auger and cause ice to be dispensed through an ice chute. The drive assembly is additionally configured to move relative to the auger assembly between a closed position and an opened position. The opened position permits removal of the auger assembly from the ice bin cavity.
According to another example of the present disclosure, an ice dispensing system is provided. The system includes multiple sidewalls forming an ice bin cavity configured to store ice, an inclined ice ramp located within the ice bin cavity and proximate a dispensing chute positioned at a front end of the ice bin cavity, and a helical auger situated above the inclined ice ramp and configured to be rotated by a motor. Rotation of the helical auger in a first direction causes ice to be driven upwardly along the inclined ice ramp and to exit the ice dispensing system through the dispensing chute. The ice dispensing system further includes a baffle positioned above the helical auger and the inclined ice ramp. The baffle slopes downwardly from a rear end of the ice bin cavity to support a portion of the ice and thereby reduce a load exerted by the ice on the helical auger.
The present disclosure includes the following Figures. The same numbers are used throughout the Figures to reference like features and like components.
In the present description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be inferred therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes only and are intended to be broadly construed.
The present disclosure generally relates to reduced footprint ice and beverage dispensing systems with easily accessible and serviceable dispensing augers. Current ice dispensing systems utilized in beverage machines often use square-shaped hoppers to store between 150 to 300 lbs of ice. A rotating agitator within the square-shaped hopper both causes the ice to be dispensed from the hopper and prevents bridging, that is, a condition in which the ice clumps together and becomes unusable. The present inventors have recognized that current ice dispensing systems have multiple disadvantages, including that the large capacity hoppers require a large footprint and that the rotating agitators do not work well with ice in nugget form, which is often preferred by consumers. An improved system with an easily serviceable wire auger that permits ice storage and dispensing of approximately 60 to 80 lbs of ice with minimal risks of bridging for all forms of ice would therefore be useful.
The dispenser 10 is connected to beverage component sources, such as a carbonator 12 that dispenses carbonated water and bag-in-box containers 13 that dispense concentrate syrups. The carbonator 12 and the bag-in-box containers 13 are positioned in cavities 11 defined by the dispenser 10. A pump/motor assembly 15 is provided to pump certain beverage components through the dispenser 10. The beverage components are conveyed through piping (not shown) to different components of the dispenser 10 including a conventional cold plate 17 and valves 16.
The conventional cold plate 17 has a plurality of channels through which the beverage components are conveyed. Note that
After the beverage components are cooled in the cold plate 17, the beverage components are further conveyed to valves 16 that receive the beverage components and selectively dispense one or more beverage components to a nozzle 14. Accordingly, the beverage components mix in the nozzle 14 or a cup to form the mixed beverage selected by the operator.
The present inventors have endeavored to decrease the overall width (see W1 on
The cold plate assembly 40 is shown to include a tank 42 positioned directly vertically below the ice hopper 18. The tank 42 receives and contains melting ice and cold water that passes through the hole 22. The tank 42 has sidewalls 43 that extend away from a base surface 44. A pair of pedestals 45, 46 extend from the base surface 44 in a vertical direction and are configured to support a cold plate 50 such that the top, bottom, and side surfaces of the cold plate 50 are spaced apart from the sidewalls 43 and/or the base surface 44. Furthermore, the heights of the pedestals 46, 47 differ such that the cold plate 50 is downwardly sloped from the front to the rear of the dispenser 10.
The cold plate 50 includes multiple channels through which the beverage components are conveyed. The cold plate 50 does not include insulation and thereby the top, bottom, and side surfaces of the cold plate 50 are exposed such that melting ice and cold water falling through the holes 22 contact the top surface of the cold plate 50. The melting ice and cold water flows due to gravity over the top surface of the cold plate 50 and into the tank 42. In certain implementations, the cold plate 50 has holes or openings 51 through which the melting ice and cold water pass into the tank 42. The melting ice and cold water collect in the tank 42 such that the bottom surface and the side surfaces of the cold plate 50 are in contact with (e.g., submerged in) the melting ice and cold water in the tank 42. Accordingly, multiple surfaces of the cold plate 50 are cooled. In comparison to conventional cold plates, the cold plate 50 depicted in
In some implementations, the ice maker 19, the ice hopper 18, and the cold plate assembly 40 are modular and stackable. Accordingly, the components can be easily replaced and assembled. In further implementations, the cold plate 50 is angled such that the outlets of the cold plate 50, through which the beverage components dispense to the valves 16, are positioned near the valves 16. By contrast, the outlets of conventional cold plates are often angled away from the valves 16. As such, the distance between conventional cold plates and the valves 16 is greater than the distance between the valves 16 and the cold plate 50 of the present disclosure. Positioning the outlets near the valves 16 reduces the distance between the cold plate 50 and valves 16 and thereby increases beverage temperature performance.
Referring now to
As depicted in the cross-sectional views of
A baffle 116 comprising a substantially plate-like member is shown to be attached to a rear sidewall 106 and positioned vertically midway within the ice bin cavity 114. The presence of the baffle 116 ensures the smooth operation of the ice dispensing system 100 by protecting a wire auger 118 situated below the baffle 116. The wire auger 118 operates to drive ice stored within the bin cavity 114 out of the ice bin structure 102 through a dispensing chute 126, as described in further detail below. The baffle 116 protects the auger 118 by supporting some of the ice within cavity 114 that would otherwise exert a direct load upon the auger 118, potentially leading to a stall condition. The baffle 116 further protects the auger 118 by sloping downwardly from the rear end to the front end of the ice bin cavity 114 and defining a pocket region 140 (depicted in
The characteristics of the baffle 116 are selected to enable the baffle 116 to perform the protective functions preventing stall detailed above, thus ensuring a good flow of ice to the auger 118 without resulting in bridging conditions. For example, the angle 134 and the height 136 of the baffle 116, both depicted in
The wire auger 118 is shown to be positioned at the bottom of the ice bin structure 102 atop an inclined ice ramp 124. The wire auger 118 is preferably helically constructed and coupled to a motor 120 located within the dispensing mechanism 104. In some implementations, the motor 120 has a 38:1 ratio to optimize the flow rate of the ice as compared with the load induced on the motor 120 due to excessive torque caused by the ice load. In other implementations, the motor 120 may have a 50:1 or 75:1 ratio to optimize the flow rate of the ice. Operation of the motor 120 causes the auger 118 to rotate in a first direction and drive ice up the ramp 124 toward the dispensing chute 126. The incline of the ramp 124, that is, the angle between the ramp 124 and a horizontal plane, may be selected based on space and other geometrical constraints, and may range from 5 to 35 degrees.
The operation of the motor 120 may be controlled through a control device (not shown) located within the dispensing mechanism 104. When a user wishes to dispense ice from the ice dispensing system 100, the user positions a cup or other container below the dispensing chute 126 and moves a dispensing lever 122 rearward, that is, toward the baffle 116. Movement of the dispensing lever 122 causes the control device within the dispensing mechanism 104 to operate the motor 120 and rotate the auger 118 in the first direction, driving the ice up the ice ramp 124 and through the dispensing chute 126 into the cup or container.
The auger 118 may also be operated in a second direction that is opposite (i.e., the reverse) of the first direction used to drive the ice up the ice ramp 124. Operation in the second direction may be useful to break up blockages if ice bridging occurs. Ice bridging or clumping may jam the auger 118 and prevent the free travel of ice up the ice ramp 124 and out through the dispensing chute 126. To combat this condition, the control device may operate the motor 120 in the second direction upon detection of a high current condition indicating a higher than expected load on the motor 120 caused by a blockage. The control device may additionally operate the motor 120 in the second direction to prevent blockages according to an agitation schedule. For example, the agitation schedule may include operation of the motor in the second direction every 1-2 hours during an overnight period because an extended period of inactivity increases the risk of bridging and blockages.
In addition to detecting high current conditions, the control device for the motor 120 may also be configured to detect low current conditions representative of a lower than expected load on the motor 120. Lower than expected load conditions may occur when the ice level within the ice bin cavity 114 is low. In various implementations, the control device may be configured to operate a low ice indicator upon detection of the low current condition to inform a user that the ice within the ice bin cavity 114 must be replenished, or that the automatic ice maker mounted within the ice bin cavity 114 is in need of service or troubleshooting. In one example implementation, the low ice indicator could include a light mounted to the exterior of the ice dispensing system 100 that is illuminated by the control device when a low current condition is detected. In another example implementation, the low ice indicator could be a message displayed on a user interface mounted on or incorporated into the ice dispensing system 100.
Referring specifically to
Still referring to
Turning now to
Ice is supplied into an ice bin cavity 308 either manually or through an automatic ice maker mounted in the ice bin structure 302. An auger (not shown) mounted using auger mounting hole 310 and situated above an ice ramp 312 drives a first portion of the ice up the ice ramp 312 and out of the bin structure 300 using a dispensing mechanism (e.g., a dispensing chute similar to dispensing chute 126, depicted in
Referring now to
The drive assembly 704 is shown to be coupled to a drive mounting plate 706. The drive mounting plate 706 is movable between a closed position that is utilized when the ice dispenser is in operation and an opened position that is utilized to provide access to the auger assembly 702 for service or repair functions. (See
An ice chute interface 710 is shown to be positioned between the drive mounting plate 706 and the ice chute 712. Gears utilized to transfer torque from the drive assembly 704 to the auger assembly 702 are mated within the ice chute interface 710. Further details are included below with reference to
As depicted in
A hopper bearing 804 is also shown to be mounted in the ice bin structure 802. The hopper bearing 804 may be coupled to the auger assembly 702 using a bearing pin 806 such that rotation of the auger assembly 702 driven by the drive assembly 704 results in rotation of the hopper bearing 804 and the bearing pin 806. In some implementations, the bearing pin 806 may include features (e.g., tapered surfaces) that ensure proper alignment of the auger assembly 702 relative to the hopper bearing 804 and the ice bin structure 802. The alignment features may be particularly important since the auger assembly 702 may be inserted into the ice bin structure 802 and blindly mated with the bearing pin 806 and the hopper bearing 804.
Turning now to
The drive assembly 704 is further shown to include a drive assembly locking component 724. The drive assembly locking component 724 acts to retain the drive assembly 704 and the drive mounting plate 706 in a closed position and inhibits rotation of the drive mounting plate into the opened or servicing position. In various implementations, the locking component 724 may be a threaded or quarter-turn fastener that is received by a mating feature (e.g., a threaded hole) formed in the ice chute 712 or another structural component (e.g., a mounting bracket) of the ice dispenser 800.
The ice chute interface component 710 and the auger gear 726 are shown to be positioned at a first end of the helical wire auger 734, and an auger bearing component 738 is shown to be positioned at a second end of the helical wire auger 734 that is opposite the first end. Advantageously, the ice chute component 710 at least partially encapsulates the auger gear 726 and forms a barrier between the mated drive gear 720 and auger gear 726 and the path of the ice driven by the auger 734. In this way, the dispensed ice is not contaminated by the gears 720, 726. The auger bearing component 738 is secured to and rotates with the helical wire auger 734 and the tensioning rod 736. The auger bearing component 738 also includes a receiving feature (e.g., a hole or recess) that enables the auger bearing component 738 to mate with the bearing pin 806, described above with reference to
Turning now to
Referring now to
Turning now to
The invention has been described in an illustrative manner. It is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than limitation. Many modifications and variations of the invention are possible in light of the above teachings. Therefore, within the scope of the appended claims, the invention may be practiced other than as specifically described.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 62/879,821 filed Jul. 29, 2019, U.S. Provisional Patent application Ser. No. 62/969,986 filed Feb. 4, 2020, and Indian Patent Application 202021020264 filed May 13, 2020, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3715119 | Shelley et al. | Feb 1973 | A |
4189063 | Matthiesen | Feb 1980 | A |
4619380 | Brooks | Oct 1986 | A |
4641763 | Landers et al. | Feb 1987 | A |
5037004 | Katz et al. | Aug 1991 | A |
5299716 | Hawkins et al. | Apr 1994 | A |
5829646 | Schroeder et al. | Nov 1998 | A |
5845815 | Vogel | Dec 1998 | A |
7575185 | Hammonds et al. | Aug 2009 | B2 |
8756950 | Brunner et al. | Jun 2014 | B2 |
8881952 | Dickson, Jr. et al. | Nov 2014 | B1 |
9249006 | Tobler | Feb 2016 | B2 |
9285149 | Bamberger et al. | Mar 2016 | B2 |
9989293 | Dickson, Jr. et al. | Jun 2018 | B1 |
10288336 | Kessler et al. | May 2019 | B2 |
20010025861 | Jaleel | Oct 2001 | A1 |
20030101735 | Teague | Jun 2003 | A1 |
20040118872 | Romanyszyn | Jun 2004 | A1 |
20100044391 | Fallon et al. | Feb 2010 | A1 |
20170268813 | Abbas et al. | Sep 2017 | A1 |
20180135762 | Mastro et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2007054166 | May 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20210033329 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62969986 | Feb 2020 | US | |
62879821 | Jul 2019 | US |