Space savings reporting for storage system supporting snapshot and clones

Information

  • Patent Grant
  • 10929022
  • Patent Number
    10,929,022
  • Date Filed
    Monday, April 25, 2016
    8 years ago
  • Date Issued
    Tuesday, February 23, 2021
    4 years ago
Abstract
A technique efficiently determines accurate storage space savings reported to a host coupled to a reference-counted storage system that employs de-duplication and compression, wherein the storage space savings relate to snapshots and/or clones supported by the storage system. The snapshot/clone may be represented as an independent volume, and embodied as a respective read-only copy (snapshot) or read-write copy (clone) of a parent volume. Metadata is illustratively organized as one or more multi-level dense trees, wherein each level of each dense tree includes volume metadata entries for storing the metadata. The metadata is illustratively embodied as mappings from LBAs of a LUN to extent keys. Space adjustment counters, such as clone space adjustment (CSA) and diverged space adjustment (DSA) counters, may be employed when determining the storage space savings. The CSA counter is equal to the sum of mapped storage space across all levels of a dense tree. The DSA counter for the clone and for the snapshot equals the total mapped storage space in the level. The storage space savings may be determined by computing a value equal to the addition of the CSA counter to the total amount of data and metadata written to the LUN minus the DSA counters and, thereafter, dividing the value by the total amount of de-duplicated and compressed data for the LUN that is physically stored.
Description
BACKGROUND
Technical Field

The present disclosure relates to storage systems and, more specifically, to space savings reporting for snapshots and/or clones supported by a storage system.


BACKGROUND INFORMATION

A storage system typically includes one or more storage devices into which information may be entered, and from which information may be obtained, as desired by a host coupled to the storage system. The storage system may implement a high-level module, such as a file system, to logically organize the information stored on the devices as storage containers, such as volumes. Each volume may be implemented as a set of data structures, including data blocks that store data for the volumes and metadata blocks that describe the data of the volumes. For example, the metadata may describe, e.g., identify, storage locations on the devices for the data. The storage system may also be configured for de-duplication of data to reduce an amount of storage capacity consumed by previously stored data.


Management of the volumes may include creation of snapshots (read-only) and/or clones (read-write) of the volumes taken at points in time and accessed by one or more clients or hosts of the storage system. Data and metadata may be shared between volumes (e.g., parent and snapshot/clone) by allowing reference counting of that metadata and data. Typically, when either of the sharing volumes diverges, e.g., the parent volume receives new data via a write request that occurs subsequent to the creation of the snapshot/clone, a copy-on-write (COW) operation of the previously shared metadata is performed for the snapshot/clone, while the parent volume generates additional metadata for the new data. For volumes that support de-duplication of data, divergence of the sharing volumes (e.g., between parent and snapshot) may not consume additional space on the storage devices even though reference counts for the data are acquired as a result of the COW of the data. As a result, storage space savings attributable to de-duplication may be significantly skewed. As such, it is desirable to report accurate space savings to the host for a storage system that supports data de-duplication for snapshots and clones.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the embodiments herein may be better understood by referring to the following description in conjunction with the accompanying drawings in which like reference numerals indicate identically or functionally similar elements, of which:



FIG. 1 is a block diagram of a plurality of nodes interconnected as a cluster;



FIG. 2 is a block diagram of a node;



FIG. 3 is a block diagram of a storage input/output (I/O) stack of the node;



FIG. 4 illustrates a write path of the storage I/O stack;



FIG. 5 illustrates a read path of the storage I/O stack;



FIG. 6 is a block diagram of a volume metadata entry;



FIG. 7 is a block diagram of a dense tree metadata structure;



FIG. 8 is a block diagram of a top level of the dense tree metadata structure;



FIG. 9 illustrates mapping between levels of the dense tree metadata structure;



FIG. 10 illustrates a workflow for inserting a volume metadata entry into the dense tree metadata structure in accordance with a write request;



FIG. 11 illustrates merging between levels of the dense tree metadata structure;



FIG. 12 is a block diagram of a dense tree metadata structure shared between a parent volume and snapshot/clone; and



FIG. 13 illustrates diverging of the snapshot/clone from the parent volume.





OVERVIEW

The embodiments described herein are directed to a technique for efficient determination of accurate storage space savings reported to a host coupled to a reference-counted storage system that employs de-duplication and compression, wherein the storage space savings relate to snapshots and/or clones supported by the storage system. Illustratively, the snapshot/clone may be represented as an independent volume, and embodied as a respective read-only copy (snapshot) or read-write copy (clone) of a parent volume. Metadata managed by a volume layer of a storage input/output (I/O) stack executing on the storage system is illustratively organized as one or more multi-level dense tree metadata structures (dense trees), wherein each level of each dense tree includes volume metadata entries for storing the (volume) metadata. The volume metadata is illustratively embodied as mappings from logical block addresses (LBAs) of a logical unit (LUN) accessible by a host to extent keys maintained by an extent store layer of the storage I/O stack. Each extent key is a unique identifier associated with a storage location on storage devices, such as solid state drives (SSDs), for an extent, which is a variable length block of data that may be aggregated from one or more write requests directed to a LBA range of the LUN (e.g., parent volume). The snapshot/clone may be derived from a dense tree of the parent volume (parent dense tree) by sharing portions (e.g., a level or volume metadata entries) of the parent dense tree with a dense tree of the snapshot/clone (snapshot/clone dense tree). Illustratively, creation of a snapshot/clone may include copying an in-core portion and a level of the parent dense tree to the snapshot/clone dense tree using a copy-on-write (COW) operation.


When the snapshot/clone diverges from the parent volume, reference counts that are acquired (e.g., increase in a reference count value) on the extent keys as a result of the COW of the level may skew the storage space savings (e.g., savings from de-duplicated and compressed data) of storage space consumed on the SSDs by the snapshot/clone. As described herein, the technique enables accurate reporting of the storage space savings to the host for each writeable volume (e.g., clone), wherein data may be arbitrarily shared among the writable volume and one or more derived snapshots. Further, as used herein, the storage space savings represents a ratio of logical (user) data in a writeable volume (e.g., clone) that is shared with the volumes (e.g., parent volume and one or more derived snapshots) versus an actual amount of storage space consumed by the data on SSD. The actual amount of storage space consumed by the volume may include data as well as metadata. Notably, space savings is not applicable for snapshots, which are created for data protection and thus consume storage space.


In an embodiment, an amount of logical data of a volume shared with other volumes may be determined by subtracting an amount of de-duplicated data resulting from metadata infrastructure to support the divergence of data from snapshots and clones of the volume from a total amount of logical data in that volume, wherein the total amount of logical data in the writable volume (e.g., clone) may be determined from an initial amount of data in the volume and an amount of data written (e.g., bytes written) after the volume is created. Amounts of initial and diverged data may be calculated from the mapped storage space provided by the volume metadata mappings from LBA ranges to extent keys.


Illustratively, space adjustment counters may be employed when determining the storage space savings, such as a clone space adjustment (CSA) counter, indicating an initial amount logical data in a clone shared with a parent volume, and a one or more diverged space adjustment (DSA) counters indicating an amount of de-duplicated data in the clone resulting from divergence from the parent, and an amount of data in the clone diverging from one or more snapshots derived from the clone. The CSA counter is determined at clone creation and is equal to the sum of mapped storage space across all levels of a dense tree in the parent shared with the created clone. Accordingly, the total amount logical data in the volume may be determined by adding the CSA counter to an amount of data written (e.g., bytes written) after the clone is created. A separate DSA counter is provided for the clone and each snapshot derived from the clone. The DSA counter for the clone (DSAc) and respectively for each derived snapshot (DSAs) sharing data with the clone are applied during the COW operation for a level of the clone and equals the total mapped storage space in that level. According to the technique, the storage space savings may be determined by computing a value equal to the addition of the CSA counter to the total amount of data and metadata written to the LUN (writable volume) minus the DSA counters and, thereafter, dividing the value by the total amount of data (including de-duplicated and compressed data) for the LUN that is physically stored on the SSDs. The computed space savings may then be reported to the host in an accurate manner wherein the space savings of the clone (as opposed to the snapshot) are accounted for as deduplication savings by the storage system.


DESCRIPTION

Storage Cluster



FIG. 1 is a block diagram of a plurality of nodes 200 interconnected as a cluster 100 and configured to provide storage service relating to the organization of information on storage devices. The nodes 200 may be interconnected by a cluster interconnect fabric 110 and include functional components that cooperate to provide a distributed storage architecture of the cluster 100, which may be deployed in a storage area network (SAN). As described herein, the components of each node 200 include hardware and software functionality that enable the node to connect to one or more hosts 120 over a computer network 130, as well as to one or more storage arrays 150 of storage devices over a storage interconnect 140, to thereby render the storage service in accordance with the distributed storage architecture.


Each host 120 may be embodied as a general-purpose computer configured to interact with any node 200 in accordance with a client/server model of information delivery. That is, the client (host) may request the services of the node, and the node may return the results of the services requested by the host, by exchanging packets over the network 130. The host may issue packets including file-based access protocols, such as the Network File System (NFS) protocol over the Transmission Control Protocol/Internet Protocol (TCP/IP), when accessing information on the node in the form of storage containers such as files and directories. However, in an embodiment, the host 120 illustratively issues packets including block-based access protocols, such as the Small Computer Systems Interface (SCSI) protocol encapsulated over TCP (iSCSI) and SCSI encapsulated over FC (FCP), when accessing information in the form of storage containers such as logical units (LUNs). Notably, any of the nodes 200 may service a request directed to a storage container stored on the cluster 100.



FIG. 2 is a block diagram of a node 200 that is illustratively embodied as a storage system having one or more central processing units (CPUs) 210 coupled to a memory 220 via a memory bus 215. The CPU 210 is also coupled to a network adapter 230, storage controllers 240, a cluster interconnect interface 250 and a non-volatile random access memory (NVRAM 280) via a system interconnect 270. The network adapter 230 may include one or more ports adapted to couple the node 200 to the host(s) 120 over computer network 130, which may include point-to-point links, wide area networks, virtual private networks implemented over a public network (Internet) or a local area network. The network adapter 230 thus includes the mechanical, electrical and signaling circuitry needed to connect the node to the network 130, which illustratively embodies an Ethernet or Fibre Channel (FC) network.


The memory 220 may include memory locations that are addressable by the CPU 210 for storing software programs and data structures associated with the embodiments described herein. The CPU 210 may, in turn, include processing elements and/or logic circuitry configured to execute the software programs, such as a storage input/output (I/O) stack 300, and manipulate the data structures. Illustratively, the storage I/O stack 300 may be implemented as a set of user mode processes that may be decomposed into a plurality of threads. An operating system kernel 224, portions of which are typically resident in memory 220 (in-core) and executed by the processing elements (i.e., CPU 210), functionally organizes the node by, inter alia, invoking operations in support of the storage service implemented by the node and, in particular, the storage I/O stack 300. A suitable operating system kernel 224 may include a general-purpose operating system, such as the UNIX® series or Microsoft Windows® series of operating systems, or an operating system with configurable functionality such as microkernels and embedded kernels. However, in an embodiment described herein, the operating system kernel is illustratively the Linux® operating system. It will be apparent to those skilled in the art that other processing and memory means, including various computer readable media, may be used to store and execute program instructions pertaining to the embodiments herein.


Each storage controller 240 cooperates with the storage I/O stack 300 executing on the node 200 to access information requested by the host 120. The information is preferably stored on storage devices such as solid state drives (SSDs) 260, illustratively embodied as flash storage devices, of storage array 150. In an embodiment, the flash storage devices may be based on NAND flash components, e.g., single-layer-cell (SLC) flash, multi-layer-cell (MLC) flash or triple-layer-cell (TLC) flash, although it will be understood to those skilled in the art that other non-volatile, solid-state electronic devices (e.g., drives based on storage class memory components) may be advantageously used with the embodiments described herein. Accordingly, the storage devices may or may not be block-oriented (i.e., accessed as blocks). The storage controller 240 includes one or more ports having I/O interface circuitry that couples to the SSDs 260 over the storage interconnect 140, illustratively embodied as a serial attached SCSI (SAS) topology. Alternatively, other point-to-point I/O interconnect arrangements, such as a conventional serial ATA (SATA) topology or a PCI topology, may be used. The system interconnect 270 may also couple the node 200 to a local service storage device 248, such as an SSD, configured to locally store cluster-related configuration information, e.g., as cluster database (DB) 244, which may be replicated to the other nodes 200 in the cluster 100.


The cluster interconnect interface 250 may include one or more ports adapted to couple the node 200 to the other node(s) of the cluster 100. In an embodiment, Infiniband may be used as the clustering protocol and interconnect fabric media, although it will be apparent to those skilled in the art that other types of protocols and interconnects may be utilized within the embodiments described herein. The NVRAM 280 may include a back-up battery or other built-in last-state retention capability (e.g., non-volatile semiconductor memory such as storage class memory) that is capable of maintaining data in light of a failure to the node and cluster environment. Illustratively, a portion of the NVRAM 280 may be configured as one or more non-volatile logs (NVLogs 285) configured to temporarily record (“log”) I/O requests, such as write requests, received from the host 120.


Storage I/O Stack FIG. 3 is a block diagram of the storage I/O stack 300 that may be advantageously used with one or more embodiments described herein. The storage I/O stack 300 includes a plurality of software modules or layers that cooperate with other functional components of the nodes 200 to provide the distributed storage architecture of the cluster 100. In an embodiment, the distributed storage architecture presents an abstraction of a single storage container, i.e., all of the storage arrays 150 of the nodes 200 for the entire cluster 100 organized as one large pool of storage. In other words, the architecture consolidates storage, i.e., the SSDs 260 of the arrays 150, throughout the cluster (retrievable via cluster-wide keys) to enable storage of the LUNs. Both storage capacity and performance may then be subsequently scaled by adding nodes 200 to the cluster 100.


Illustratively, the storage I/O stack 300 includes an administration layer 310, a protocol layer 320, a persistence layer 330, a volume layer 340, an extent store layer 350, a Redundant Array of Independent Disks (RAID) layer 360, a storage layer 365, and a NVRAM (storing NVLogs) “layer” interconnected with a messaging kernel 370. The messaging kernel 370 may provide a message-based (or event-based) scheduling model (e.g., asynchronous scheduling) that employs messages as fundamental units of work exchanged (i.e., passed) among the layers. Suitable message-passing mechanisms provided by the messaging kernel to transfer information between the layers of the storage I/O stack 300 may include, e.g., for intra-node communication: i) messages that execute on a pool of threads, ii) messages that execute on a single thread progressing as an operation through the storage I/O stack, iii) messages using an Inter Process Communication (IPC) mechanism and, e.g., for inter-node communication: messages using a Remote Procedure Call (RPC) mechanism in accordance with a function shipping implementation. Alternatively, the I/O stack may be implemented using a thread-based or stack-based execution model. In one or more embodiments, the messaging kernel 370 allocates processing resources from the operating system kernel 224 to execute the messages. Each storage I/O stack layer may be implemented as one or more instances (i.e., processes) executing one or more threads (e.g., in kernel or user space) that process the messages passed between the layers such that the messages provide synchronization for blocking and non-blocking operation of the layers.


In an embodiment, the protocol layer 320 may communicate with the host 120 over the network 130 by exchanging discrete frames or packets configured as I/O requests according to pre-defined protocols, such as iSCSI and FCP. An I/O request, e.g., a read or write request, may be directed to a LUN and may include I/O parameters such as, inter alia, a LUN identifier (ID), a logical block address (LB A) of the LUN, a length (i.e., amount of data) and, in the case of a write request, write data. The protocol layer 320 receives the I/O request and forwards it to the persistence layer 330, which records the request into a persistent write-back cache 380, illustratively embodied as a log whose contents can be replaced randomly, e.g., under some random access replacement policy rather than only in log fashion, and returns an acknowledgement to the host 120 via the protocol layer 320. In an embodiment only I/O requests that modify the LUN, e.g., write requests, are logged. Notably, the I/O request may be logged at the node receiving the I/O request, or in an alternative embodiment in accordance with the function shipping implementation, the I/O request may be logged at another node.


Illustratively, dedicated logs may be maintained by the various layers of the storage I/O stack 300. For example, a dedicated log 335 may be maintained by the persistence layer 330 to record the I/O parameters of an I/O request as equivalent internal, i.e., storage I/O stack, parameters, e.g., volume ID, offset, and length. In the case of a write request, the persistence layer 330 may also cooperate with the NVRAM 280 to implement the write-back cache 380 configured to store the write data associated with the write request. Notably, the write data for the write request may be physically stored in the log 355 such that the cache 380 contains the reference to the associated write data. That is, the write-back cache may be structured as a log. In an embodiment, a copy of the write-back cache may be also maintained in the memory 220 to facilitate direct memory access to the storage controllers. In other embodiments, caching may be performed at the host 120 or at a receiving node in accordance with a protocol that maintains coherency between the write data stored at the cache and the cluster.


In an embodiment, the administration layer 310 may apportion the LUN into multiple volumes, each of which may be partitioned into multiple regions (e.g., allotted as disjoint block address ranges), with each region having one or more segments stored as multiple stripes on the array 150. A plurality of volumes distributed among the nodes 200 may thus service a single LUN, i.e., each volume within the LUN services a different LBA range (i.e., offset and length, hereinafter offset and range) or set of ranges within the LUN. Accordingly, the protocol layer 320 may implement a volume mapping technique to identify a volume to which the I/O request is directed (i.e., the volume servicing the offset range indicated by the parameters of the I/O request). Illustratively, the cluster database 244 may be configured to maintain one or more associations (e.g., key-value pairs) for each of the multiple volumes, e.g., an association between the LUN ID and a volume, as well as an association between the volume and a node ID for a node managing the volume. The administration layer 310 may also cooperate with the database 244 to create (or delete) one or more volumes associated with the LUN (e.g., creating a volume ID/LUN key-value pair in the database 244). Using the LUN ID and LBA (or LBA range), the volume mapping technique may provide a volume ID (e.g., using appropriate associations in the cluster database 244) that identifies the volume and node servicing the volume destined for the request, as well as translate the LBA (or LBA range) into an offset and length within the volume. Specifically, the volume ID is used to determine a volume layer instance that manages volume metadata associated with the LBA or LBA range. As noted, the protocol layer may pass the I/O request (i.e., volume ID, offset and length) to the persistence layer 330, which may use the function shipping (e.g., inter-node) implementation to forward the I/O request to the appropriate volume layer instance executing on a node in the cluster based on the volume ID.


In an embodiment, the volume layer 340 may manage the volume metadata by, e.g., maintaining states of host-visible containers, such as ranges of LUNs, and performing data management functions, such as creation of snapshots and clones, for the LUNs in cooperation with the administration layer 310. The volume metadata is illustratively embodied as in-core mappings from LUN addresses (i.e., LBAs) to durable extent keys, which are unique cluster-wide IDs associated with SSD storage locations for extents within an extent key space of the cluster-wide storage container. That is, an extent key may be used to retrieve the data of the extent at an SSD storage location associated with the extent key. Alternatively, there may be multiple storage containers in the cluster wherein each container has its own extent key space, e.g., where the host provides distribution of extents among the storage containers and cluster-wide (across containers) de-duplication is infrequent. An extent is a variable length block of data that provides a unit of storage on the SSDs and that need not be aligned on any specific boundary, i.e., it may be byte aligned. Accordingly, an extent may be an aggregation of write data from a plurality of write requests to maintain such alignment. Illustratively, the volume layer 340 may record the forwarded request (e.g., information or parameters characterizing the request), as well as changes to the volume metadata, in dedicated log 345 maintained by the volume layer 340. Subsequently, the contents of the volume layer log 345 may be written to the storage array 150 in accordance with retirement of log entries, while a checkpoint (e.g., synchronization) operation stores in-core metadata on the array 150. That is, the checkpoint operation (checkpoint) ensures that a consistent state of metadata, as processed in-core, is committed to (stored on) the storage array 150; whereas the retirement of log entries ensures that the entries accumulated in the volume layer log 345 synchronize with the metadata checkpoints committed to the storage array 150 by, e.g., retiring those accumulated log entries prior to the checkpoint. In one or more embodiments, the checkpoint and retirement of log entries may be data driven, periodic or both.


In an embodiment, the extent store layer 350 is responsible for storing extents on the SSDs 260 (i.e., on the storage array 150) and for providing the extent keys to the volume layer 340 (e.g., in response to a forwarded write request). The extent store layer 350 is also responsible for retrieving data (e.g., an existing extent) using an extent key (e.g., in response to a forwarded read request). In an alternative embodiment, the extent store layer 350 is responsible for performing de-duplication and compression on the extents prior to storage. The extent store layer 350 may maintain in-core mappings (e.g., embodied as hash tables) of extent keys to SSD storage locations (e.g., offset on an SSD 260 of array 150). The extent store layer 350 may also maintain a dedicated log 355 of entries that accumulate requested “put” and “delete” operations (i.e., write requests and delete requests for extents issued from other layers to the extent store layer 350), where these operations change the in-core mappings (i.e., hash table entries). Subsequently, the in-core mappings and contents of the extent store layer log 355 may be written to the storage array 150 in accordance with a “fuzzy” checkpoint 390 (i.e., checkpoint with incremental changes that span multiple log files) in which selected in-core mappings, less than the total, are committed to the array 150 at various intervals (e.g., driven by an amount of change to the in-core mappings, size thresholds of log 355, or periodically). Notably, the accumulated entries in log 355 may be retired once all in-core mappings have been committed and then, illustratively, for those entries prior to the first interval.


In an embodiment, the RAID layer 360 may organize the SSDs 260 within the storage array 150 as one or more RAID groups (e.g., sets of SSDs) that enhance the reliability and integrity of extent storage on the array by writing data “stripes” having redundant information, i.e., appropriate parity information with respect to the striped data, across a given number of SSDs 260 of each RAID group. The RAID layer 360 may also store a number of stripes (e.g., stripes of sufficient depth), e.g., in accordance with a plurality of contiguous range write operations, so as to reduce data relocation (i.e., internal flash block management) that may occur within the SSDs as a result of the operations. In an embodiment, the storage layer 365 implements storage I/O drivers that may communicate directly with hardware (e.g., the storage controllers and cluster interface) cooperating with the operating system kernel 224, such as a Linux virtual function I/O (VFIO) driver.


Write Path



FIG. 4 illustrates an I/O (e.g., write) path 400 of the storage I/O stack 300 for processing an I/O request, e.g., a SCSI write request 410. The write request 410 may be issued by host 120 and directed to a LUN stored on the storage arrays 150 of the cluster 100. Illustratively, the protocol layer 320 receives and processes the write request by decoding 420 (e.g., parsing and extracting) fields of the request, e.g., LUN ID, LBA and length (shown at 413), as well as write data 414. The protocol layer 320 may use the results 422 from decoding 420 for a volume mapping technique 430 (described above) that translates the LUN ID and LBA range (i.e., equivalent offset and length) of the write request to an appropriate volume layer instance, i.e., volume ID (volume 445), in the cluster 100 that is responsible for managing volume metadata for the LBA range. In an alternative embodiment, the persistence layer 330 may implement the above described volume mapping technique 430. The protocol layer then passes the results 432, e.g., volume ID, offset, length (as well as write data), to the persistence layer 330, which records the request in the persistence layer log 335 and returns an acknowledgement to the host 120 via the protocol layer 320. As described herein, the persistence layer 330 may aggregate and organize write data 414 from one or more write requests into a new extent 470 and perform a hash computation, i.e., a hash function, on the new extent to generate a hash value 472 in accordance with an extent hashing technique 474.


The persistence layer 330 may then pass the write request with aggregated write data including, e.g., the volume ID, offset and length, as parameters 434 to the appropriate volume layer instance. In an embodiment, message passing of the parameters 434 (received by the persistence layer) may be redirected to another node via the function shipping mechanism, e.g., RPC, for inter-node communication. Alternatively, message passing of the parameters 434 may be via the IPC mechanism, e.g., message threads, for intra-node communication.


In one or more embodiments, a bucket mapping technique 476 is provided that translates the hash value 472 to an instance of an appropriate extent store layer (e.g., extent store instance 478) that is responsible for storing the new extent 470. Note that the bucket mapping technique may be implemented in any layer of the storage I/O stack above the extent store layer. In an embodiment, for example, the bucket mapping technique may be implemented in the persistence layer 330, the volume layer 340, or a layer that manages cluster-wide information, such as a cluster layer (not shown). Accordingly, the persistence layer 330, the volume layer 340, or the cluster layer may contain computer executable instructions executed by the CPU 210 to perform operations that implement the bucket mapping technique 476 described herein. The persistence layer 330 may then pass the hash value 472 and the new extent 470 to the appropriate volume layer instance and onto the appropriate extent store instance via an extent store put operation. The extent hashing technique 474 may embody an approximately uniform hash function to ensure that any random extent to be written may have an approximately equal chance of falling into any extent store instance 478, i.e., hash buckets are evenly distributed across extent store instances of the cluster 100 based on available resources. As a result, the bucket mapping technique 476 provides load-balancing of write operations (and, by symmetry, read operations) across nodes 200 of the cluster, while also leveling flash wear in the SSDs 260 of the cluster.


In response to the put operation, the extent store instance may process the hash value 472 to perform an extent metadata selection technique 480 that (i) selects an appropriate hash table 482 (e.g., hash table 482a) from a set of hash tables (illustratively in-core) within the extent store instance 478, and (ii) extracts a hash table index 484 from the hash value 472 to index into the selected hash table and lookup a table entry having an extent key 618 identifying a storage location 490 on SSD 260 for the extent. Accordingly, the persistence layer 330, the volume layer 340, or the cluster layer may contain computer executable instructions executed by the CPU 210 to perform operations that implement the extent metadata selection technique 480 described herein. If a table entry with a matching extent key is found, then the SSD location 490 mapped from the extent key 618 is used to retrieve an existing extent (not shown) from SSD. The existing extent is then compared with the new extent 470 to determine whether their data is identical. If the data is identical, the new extent 470 is already stored on SSD 260 and a de-duplication opportunity (denoted de-duplication 452) exists such that there is no need to write another copy of the data. Accordingly, a reference count (not shown) in the table entry for the existing extent is incremented and the extent key 618 of the existing extent is passed to the appropriate volume layer instance for storage within an entry (denoted as volume metadata entry 600) of a dense tree metadata structure (e.g., dense tree 700a), such that the extent key 618 is associated an offset range 440 (e.g., offset range 440a) of the volume 445.


However, if the data of the existing extent is not identical to the data of the new extent 470, a collision occurs and a deterministic algorithm is invoked to sequentially generate as many new candidate extent keys (not shown) mapping to the same bucket as needed to either provide de-duplication 452 or produce an extent key that is not already stored within the extent store instance. Notably, another hash table (e.g. hash table 482n) may be selected by a new candidate extent key in accordance with the extent metadata selection technique 480. In the event that no de-duplication opportunity exists (i.e., the extent is not already stored) the new extent 470 is compressed in accordance with compression technique 454 and passed to the RAID layer 360, which processes the new extent 470 for storage on SSD 260 within one or more stripes 464 of RAID group 466. The extent store instance may cooperate with the RAID layer 360 to identify a storage segment 460 (i.e., a portion of the storage array 150) and a location on SSD 260 within the segment 460 in which to store the new extent 470. Illustratively, the identified storage segment is a segment with a large contiguous free space having, e.g., location 490 on SSD 260b for storing the extent 470.


In an embodiment, the RAID layer 360 then writes the stripes 464 across the RAID group 466, illustratively as one or more full write stripe 462. The RAID layer 360 may write a series of stripes 464 of sufficient depth to reduce data relocation that may occur within the flash-based SSDs 260 (i.e., flash block management). The extent store instance then (i) loads the SSD location 490 of the new extent 470 into the selected hash table 482n (i.e., as selected by the new candidate extent key) and (ii) passes a new extent key (denoted as extent key 618) to the appropriate volume layer instance for storage within an entry (also denoted as volume metadata entry 600) of a dense tree 700 managed by that volume layer instance, and (iii) records a change to extent metadata of the selected hash table in the extent store layer log 355. Illustratively, the volume layer instance selects dense tree 700a spanning an offset range 440a of the volume 445 that encompasses the offset range of the write request. As noted, the volume 445 (e.g., an offset space of the volume) is partitioned into multiple regions (e.g., allotted as disjoint offset ranges); in an embodiment, each region is represented by a dense tree 700. The volume layer instance then inserts the volume metadata entry 600 into the dense tree 700a and records a change corresponding to the volume metadata entry in the volume layer log 345. Accordingly, the I/O (write) request is sufficiently stored on SSD 260 of the cluster.


Read Path



FIG. 5 illustrates an I/O (e.g., read) path 500 of the storage I/O stack 300 for processing an I/O request, e.g., a SCSI read request 510. The read request 510 may be issued by host 120 and received at the protocol layer 320 of a node 200 in the cluster 100. Illustratively, the protocol layer 320 processes the read request by decoding 420 (e.g., parsing and extracting) fields of the request, e.g., LUN ID, LBA, and length (shown at 513), and uses the results 522, e.g., LUN ID, offset, and length, for the volume mapping technique 430. That is, the protocol layer 320 may implement the volume mapping technique 430 (described above) to translate the LUN ID and LBA range (i.e., equivalent offset and length) of the read request to an appropriate volume layer instance, i.e., volume ID (volume 445), in the cluster 100 that is responsible for managing volume metadata for the LBA (i.e., offset) range. The protocol layer then passes the results 532 to the persistence layer 330, which may search the write cache 380 to determine whether some or all of the read request can be service from its cache data. If the entire request cannot be serviced from the cached data, the persistence layer 330 may then pass the remaining portion of the request including, e.g., the volume ID, offset and length, as parameters 534 to the appropriate volume layer instance in accordance with the function shipping mechanism (e.g., RPC, for inter-node communication) or the IPC mechanism (e.g., message threads, for intra-node communication).


The volume layer instance may process the read request to access a dense tree metadata structure (e.g., dense tree 700a) associated with a region (e.g., offset range 440a) of a volume 445 that encompasses the requested offset range (specified by parameters 532). The volume layer instance may further process the read request to search for (lookup) one or more volume metadata entries 600 of the dense tree 700a to obtain one or more extent keys 618 associated with one or more extents 470 within the requested offset range. As described further herein, each dense tree 700 may be embodied as multiple levels of a search structure with possibly overlapping offset range entries at each level. The entries, i.e., volume metadata entries 600, provide mappings from host-accessible LUN addresses, i.e., LBAs, to durable extent keys. The various levels of the dense tree may have volume metadata entries 600 for the same offset, in which case the higher level has the newer entry and is used to service the read request. A top level of the dense tree 700 is illustratively resident in-core and a page cache 448 may be used to access lower levels of the tree. If the requested range or portion thereof is not present in the top level, a metadata page associated with an index entry at the next lower tree level is accessed. The metadata page (i.e., in the page cache 448) at the next level is then searched (e.g., a binary search) to find any overlapping entries. This process is then iterated until one or more volume metadata entries 600 of a level are found to ensure that the extent key(s) 618 for the entire requested read range are found. If no metadata entries exist for the entire or portions of the requested read range, then the missing portion(s) are zero filled.


Once found, each extent key 618 is processed by the volume layer 340 to, e.g., implement the bucket mapping technique 476 that translates the extent key to an appropriate extent store instance 478 responsible for storing the requested extent 470. Note that, in an embodiment, each extent key 618 may be substantially identical to the hash value 472 associated with the extent 470, i.e., the hash value as calculated during the write request for the extent, such that the bucket mapping 476 and extent metadata selection 480 techniques may be used for both write and read path operations. Note also that the extent key 618 may be derived from the hash value 472. The volume layer 340 may then pass the extent key 618 (i.e., the hash value from a previous write request for the extent) to the appropriate extent store instance 478 (via an extent store get operation), which performs an extent key-to-SSD mapping to determine the location on SSD 260 for the extent.


In response to the get operation, the extent store instance may process the extent key 618 (i.e., hash value 472) to perform the extent metadata selection technique 480 that (i) selects an appropriate hash table (e.g., hash table 482a) from a set of hash tables within the extent store instance 478, and (ii) extracts a hash table index 484 from the extent key 618 (i.e., hash value 472) to index into the selected hash table and lookup a table entry having a matching extent key 618 that identifies a storage location 490 on SSD 260 for the extent 470. That is, the SSD location 490 mapped to the extent key 618 may be used to retrieve the existing extent (denoted as extent 470) from SSD 260 (e.g., SSD 260b). The extent store instance then cooperates with the RAID layer 360 to access the extent on SSD 260b and retrieve the data contents in accordance with the read request. Illustratively, the RAID layer 360 may read the extent in accordance with an extent read operation 468 and pass the extent 470 to the extent store instance. The extent store instance may then decompress the extent 470 in accordance with a decompression technique 456, although it will be understood to those skilled in the art that decompression can be performed at any layer of the storage I/O stack 300. The extent 470 may be stored in a buffer (not shown) in memory 220 and a reference to that buffer may be passed back through the layers of the storage I/O stack. The persistence layer may then load the extent into a read cache 580 (or other staging mechanism) and may extract appropriate read data 512 from the read cache 580 for the LBA range of the read request 510. Thereafter, the protocol layer 320 may create a SCSI read response 514, including the read data 512, and return the read response to the host 120.


Dense Tree Volume Metadata


As noted, a host-accessible LUN may be apportioned into multiple volumes, each of which may be partitioned into one or more regions, wherein each region is associated with a disjoint offset range, i.e., a LBA range, owned by an instance of the volume layer 340 executing on a node 200. For example, assuming a maximum volume size of 64 terabytes (TB) and a region size of 16 gigabytes (GB), a volume may have up to 4096 regions (i.e., 16 GB×4096=64 TB). In an embodiment, region 1 may be associated with an offset range of, e.g., 0-16 GB, region 2 may be associated with an offset range of 16 GB-32 GB, and so forth. Ownership of a region denotes that the volume layer instance manages metadata, i.e., volume metadata, for the region, such that I/O requests destined to a LBA range within the region are directed to the owning volume layer instance. Thus, each volume layer instance manages volume metadata for, and handles I/O requests to, one or more regions. A basis for metadata scale-out in the distributed storage architecture of the cluster 100 includes partitioning of a volume into regions and distributing of region ownership across volume layer instances of the cluster.


Volume metadata, as well as data storage, in the distributed storage architecture is illustratively extent based. The volume metadata of a region that is managed by the volume layer instance is illustratively embodied as in memory (in-core) and on SSD (on-flash) volume metadata configured to provide mappings from host-accessible LUN addresses, i.e., LBAs, of the region to durable extent keys. In other words, the volume metadata maps LBA ranges of the LUN to data of the LUN (via extent keys) within the respective LBA range. In an embodiment, the volume layer organizes the volume metadata (embodied as volume metadata entries 600) as a data structure, i.e., a dense tree metadata structure (dense tree 700), which maps an offset range within the region to one or more extent keys. That is, the LUN data (user data) stored as extents (accessible via extent keys) is associated with LUN LBA ranges represented as volume metadata (also stored as extents).



FIG. 6 is a block diagram of a volume metadata entry 600 of the dense tree metadata structure. Each volume metadata entry 600 of the dense tree 700 may be a descriptor that embodies one of a plurality of types, including a data entry (D) 610, an index entry (I) 620, and a hole entry (H) 630. The data entry (D) 610 is configured to map (offset, length) to an extent key for an extent (user data) and includes the following content: type 612, offset 614, length 616 and extent key 618. The index entry (I) 620 is configured to map (offset, length) to a page key (e.g., an extent key) of a metadata page (stored as an extent), i.e., a page containing one or more volume metadata entries, at a next lower level of the dense tree; accordingly, the index entry 620 includes the following content: type 622, offset 624, length 626 and page key 628. Illustratively, the index entry 620 manifests as a pointer from a higher level to a lower level, i.e., the index entry 620 essentially serves as linkage between the different levels of the dense tree. The hole entry (H) 630 represents absent data as a result of a hole punching operation at (offset, length) and includes the following content: type 632, offset 634, and length 636.



FIG. 7 is a block diagram of the dense tree metadata structure that may be advantageously used with one or more embodiments described herein. The dense tree metadata structure 700 is configured to provide mappings of logical offsets within a LUN (or volume) to extent keys managed by one or more extent store instances. Illustratively, the dense tree metadata structure is organized as a multi-level dense tree 700, where a top level 800 represents recent volume metadata changes and subsequent descending levels represent older changes. Specifically, a higher level of the dense tree 700 is updated first and, when that level fills, an adjacent lower level is updated, e.g., via a merge operation. A latest version of the changes may be searched starting at the top level of the dense tree and working down to the descending levels. Each level of the dense tree 700 includes fixed size records or entries, i.e., volume metadata entries 600, for storing the volume metadata. A volume metadata process 710 illustratively maintains the top level 800 of the dense tree in memory (in-core) as a balanced tree that enables indexing by offsets. The volume metadata process 710 also maintains a fixed sized (e.g., 4 KB) in-core buffer as a staging area (i.e., an in-core staging buffer 715) for volume metadata entries 600 inserted into the balanced tree (i.e., top level 800). Each level of the dense tree is further maintained on-flash as a packed array of volume metadata entries, wherein the entries are stored as extents illustratively organized as fixed sized (e.g., 4 KB) metadata pages 720. Notably, the staging buffer 715 is de-staged to SSD upon a trigger, e.g., the staging buffer full. In an embodiment, each metadata page 720 has a unique identifier (ID) which guarantees that no two metadata pages can have the same content, however, in accordance with the improved COW technique described herein, such a guarantee is relaxed in that multiple references to a same page are allowed. That is, no duplicate pages are stored, but a metadata page may be referenced multiple times.


In an embodiment, the multi-level dense tree 700 includes three (3) levels, although it will be apparent to those skilled in the art that additional levels N of the dense tree may be included depending on parameters (e.g., size) of the dense tree configuration. Illustratively, the top level 800 of the tree is maintained in-core as level 0 and the lower levels are maintained on-flash as levels 1 and 2. In addition, copies of the volume metadata entries 600 stored in staging buffer 715 may also be maintained on-flash as, e.g., a level 0 linked list. A leaf level, e.g., level 2, of the dense tree contains data entries 610, whereas a non-leaf level, e.g., level 0 or 1, may contain both data entries 610 and index entries 620. Each index entry (I) 620 at level N of the tree is configured to point to (reference) a metadata page 720 at level N+1 of the tree. Each level of the dense tree 600 also includes a header (e.g., level 0 header 730, level 1 header 740 and level 2 header 750) that contains per level information, such as reference counts associated with the extents. Each upper level header contains a header key (an extent key for the header, e.g., header key 732 of level 0 header 730) to a corresponding lower level header. A region key 762 to a root, e.g., level 0 header 730 (and top level 800), of the dense tree 700 is illustratively stored on-flash and maintained in a volume root extent, e.g., a volume superblock 760. Notably, the volume superblock 760 contains region keys to the roots of the dense tree metadata structures for all regions in a volume.



FIG. 8 is a block diagram of the top level 800 of the dense tree metadata structure. As noted, the top level (level 0) of the dense tree 700 is maintained in-core as a balanced tree, which is illustratively embodied as a B+ tree data structure. However, it will be apparent to those skilled in the art that other data structures, such as AVL trees, Red-Black trees, and heaps (partially sorted trees), may be advantageously used with the embodiments described herein. The B+ tree (top level 800) includes a root node 810, one or more internal nodes 820 and a plurality of leaf nodes (leaves) 830. The volume metadata stored on the tree is preferably organized in a manner that is efficient both to search in order to service read requests and to traverse (walk) in ascending order of offset to accomplish merges to lower levels of the tree. The B+ tree has certain properties that satisfy these requirements, including storage of all data (i.e., volume metadata entries 600) in leaves 830 and storage of the leaves as sequentially accessible, e.g., as one or more linked lists. Both of these properties make sequential read requests for write data (i.e., extents) and read operations for dense tree merge more efficient. Also, since it has a much higher fan-out than a binary search tree, the illustrative B+ tree results in more efficient lookup operations. As an optimization, the leaves 830 of the B+ tree may be stored in a page cache 448, making access of data more efficient than other trees. In addition, resolution of overlapping offset entries in the B+ tree optimizes read requests of extents. Accordingly, the larger the fraction of the B+ tree (i.e., volume metadata) maintained in-core, the less loading (reading) or metadata from SSD is required so as to reduce read amplification.



FIG. 9 illustrates mappings 900 between levels of the dense tree metadata structure. Each level of the dense tree 700 includes one or more metadata pages 720, each of which contains multiple volume metadata entries 600. In an embodiment, each volume metadata entry 600 has a fixed size, e.g., 12 bytes, such that a predetermined number of entries may be packed into each metadata page 720. As noted, the data entry (D) 610 is a map of (offset, length) to an address of (user) data which is retrievable using extent key 618 (i.e., from an extent store instance). The (offset, length) illustratively specifies an offset range of a LUN. The index entry (I) 620 is a map of (offset, length) to a page key 628 of a metadata page 720 at the next lower level. Illustratively, the offset in the index entry (I) 620 is the same as the offset of the first entry in the metadata page 720 at the next lower level. The length 626 in the index entry 620 is illustratively the cumulative length of all entries in the metadata page 720 at the next lower level (including gaps between entries).


For example, the metadata page 720 of level 1 includes an index entry “I(2K,10K)” that specifies a starting offset 2K and an ending offset 12K (i.e., 2K+10K=12K); the index entry (I) illustratively points to a metadata page 720 of level 2 covering the specified range. An aggregate view of the data entries (D) packed in the metadata page 720 of level 2 covers the mapping from the smallest offset (e.g., 2K) to the largest offset (e.g., 12K). Thus, each level of the dense tree 700 may be viewed as an overlay of an underlying level. For instance the data entry “D(0,4K)” of level 1 overlaps 2K of the underlying metadata in the page of level 2 (i.e., the range 2K,4K).


In one or more embodiments, operations for volume metadata managed by the volume layer 340 include insertion of volume metadata entries, such as data entries 610, into the dense tree 700 for write requests. As noted, each dense tree 700 may be embodied as multiple levels of a search structure with possibly overlapping offset range entries at each level, wherein each level is a packed array of entries (e.g., sorted by offset) and where leaf entries have an LBA range (offset, length) and extent key. FIG. 10 illustrates a workflow 1000 for inserting a volume metadata entry into the dense tree metadata structure in accordance with a write request. In an embodiment, volume metadata updates (changes) to the dense tree 700 occur first at the top level of the tree, such that a complete, top-level description of the changes is maintained in memory 220. Operationally, the volume metadata process 710 applies the region key 762 to access the dense tree 700 (i.e., top level 800) of an appropriate region (e.g., LBA range 440 as determined from the parameters 432 derived from the write request 410). Upon completion of a write request, the volume metadata process 710 creates a volume metadata entry, e.g., a new data entry 610, to record a mapping of offset/length-to-extent key (i.e., LBA range-to-user data). Illustratively, the new data entry 610 includes an extent key 618 (i.e., from the extent store layer 350) associated with data (i.e., extent 470) of the write request 410, as well as offset 614 and length 616 (i.e., from the write parameters 432) and type 612 (i.e., data entry D).


The volume metadata process 710 then updates the volume metadata by inserting (adding) the data entry D into the level 0 staging buffer 715, as well as into the top level 800 of dense tree 700 and the volume layer log 345. In the case of an overwrite operation, the overwritten extent and its mapping should be deleted. The deletion process is similar to that of hole punching (un-map). When the level 0 is full, i.e., no more entries can be stored, the volume metadata entries 600 from the level 0 in-core are merged to lower levels (maintained on SSD), i.e., level 0 merges to level 1 which may then merge to level 2 and so on (e.g., a single entry added at level 0 may trigger a merger cascade). Note, any entries remaining in the staging buffer 715 after level 0 is full also may be merged to lower levels. The level 0 staging buffer is then emptied to allow space for new entries 600.


Dense Tree Volume Metadata Checkpointing


When a level of the dense tree 700 is full, volume metadata entries 600 of the level are merged with the next lower level of the dense tree. As part of the merge, new index entries 620 are created in the level to point to new lower level metadata pages 720, i.e., data entries from the level are merged (and pushed) to the lower level so that they may be “replaced” with an index reference in the level. The top level 800 (i.e., level 0) of the dense tree 700 is illustratively maintained in-core such that a merge operation to level 1 facilitates a checkpoint to SSD 260. The lower levels (i.e., levels 1 and/or 2) of the dense tree are illustratively maintained on-flash and updated (e.g., merged) as a batch operation (i.e., processing the entries of one level with those of a lower level) when the higher levels are full. The merge operation illustratively includes a sort, e.g., a 2-way merge sort operation. A parameter of the dense tree 700 is the ratio K of the size of level N−1 to the size of level N. Illustratively, the size of the array at level N is K times larger than the size of the array at level N−1, i.e., sizeof(level N)=K*sizeof(level N−1). After K merges from level N−1, level N becomes full (i.e., all entries from a new, fully-populated level N−1 are merged with level N, iterated K times.)



FIG. 11 illustrates merging 1100 between levels, e.g., levels 0 and 1, of the dense tree metadata structure. In an embodiment, a merge operation is triggered when level 0 is full. When performing the merge operation, the dense tree metadata structure transitions to a “merge” dense tree structure (shown at 1120) that merges, while an alternate “active” dense tree structure (shown at 1150) is utilized to accept incoming data. Accordingly, two in-core level 0 staging buffers 1130, 1160 are illustratively maintained for concurrent merge and active (write) operations, respectively. In other words, an active staging buffer 1160 and active top level 1170 of active dense tree 1150 handle in-progress data flow (i.e, active user read and write requests), while a merge staging buffer 1130 and merge top level 1140 of merge dense tree 1120 handle consistency of the data during a merge operation. That is, a “double buffer” arrangement may be used to maintain consistency of data (i.e., entries in the level 0 of the dense tree) while processing active operations.


During the merge operation, the merge staging buffer 1130, as well as the top level 1140 and lower level array (e.g., merge level 1) are read-only and are not modified. The active staging buffer 1160 is configured to accept the incoming (user) data, i.e., the volume metadata entries received from new put operations are loaded into the active staging buffer 1160 and added to the top level 1170 of the active dense tree 1150. Illustratively, merging from level 0 to level 1 within the merge dense tree 1120 results in creation of a new active level 1 for the active dense tree 1150, i.e., the resulting merged level 1 from the merge dense tree is inserted as a new level 1 into the active dense tree. A new index entry I is computed to reference the new active level 1 and the new index 777 entry I is loaded into the active staging buffer 1160 (as well as in the active top level 1170). Upon completion of the merge, the region key 762 of volume superblock 760 is updated to reference (point to) the root, e.g., active top level 1170 and active level 0 header (not shown), of the active dense tree 1150, thereby deleting (i.e., rendering inactive) merge level 0 and merge level 1 of the merge dense tree 1120. The merge staging buffer 1130 thus becomes an empty inactive buffer until the next merge. The merge data structures (i.e., the merge dense tree 1120 including staging buffer 1130) may be maintained in-core and “swapped” as the active data structures at the next merge (i.e., “double buffered”).


Snapshot and/or Clones


As noted, the LUN ID and LBA (or LBA range) of an I/O request are used to identify a volume (e.g., of a LUN) to which the request is directed, as well as the volume layer (instance) that manages the volume and volume metadata associated with the LBA range. Management of the volume and volume metadata may include data management functions, such as creation of snapshots and/or clones, for the LUN. Illustratively, the snapshots/clones may be represented as independent volumes accessible by host 120 as LUNs, and embodied as respective read-only copies, i.e., snapshots, and read-write copies, i.e., clones, of the volume (hereinafter “parent volume”) associated with the LBA range. The volume layer 340 may interact with other layers of the storage I/O stack 300, e.g., the persistence layer 330 and the administration layer 310, to manage both administration aspects, e.g., snapshot/clone creation, of the snapshot and clone volumes, as well as the volume metadata, i.e., in-core mappings from LBAs to extent keys, for those volumes. Accordingly, the administration layer 310, persistence layer 330, and volume layer 340 contain computer executable instructions executed by the CPU 210 to perform operations that create and manage the snapshots and clones described herein.


In one or more embodiments, the volume metadata managed by the volume layer, i.e., parent volume metadata and snapshot/clone metadata, is illustratively organized as one or more multi-level dense tree metadata structures, wherein each level of the dense tree metadata structure (dense tree) includes volume metadata entries for storing the metadata. Each snapshot/clone may be derived from a dense tree of the parent volume (parent dense tree) to thereby enable fast and efficient snapshot/clone creation in terms of time and consumption of metadata storage space. To that end, portions (e.g., levels or volume metadata entries) of the parent dense tree may be shared with the snapshot/clone to support time and space efficiency of the snapshot/clone, i.e., portions of the parent volume divergent from the snapshot/clone volume are not shared. Illustratively, the parent volume and clone may be considered “active,” in that each actively processes (i.e., accepts) additional I/O requests which modify or add (user) data to the respective volume; whereas a snapshot is read-only and, thus, does not modify volume (user) data, but may still process non-modifying I/O requests (e.g., read requests).



FIG. 12 is a block diagram of a dense tree metadata structure shared between a parent volume and a snapshot/clone. In an embodiment, creation of a snapshot/clone may include copying an in-core portion of the parent dense tree to a dense tree of the snapshot/clone (snapshot/clone dense tree). That is, the in-core level 0 staging buffer and in-core top level of the parent dense tree may be copied to create the in-core portion of the snapshot/clone dense tree, i.e., parent staging buffer 1160 may be copied to create snapshot/clone staging buffer 1130, and top level 800a (shown at 1170) may be copied to create snapshot/clone top level 800b (shown at 1140). Note that although the parent volume layer log 345a may be copied to create snapshot/clone volume layer log 345b, the volume metadata entries of the parent volume log 345a recorded (i.e., logged) after initiation of snapshot/clone creation may not be copied to the log 345b, as those entries may be directed to the parent volume and not to the snapshot/clone. Lower levels of the parent dense tree residing on SSDs may be initially shared between the parent volume and snapshot/clone. As the parent volume and snapshot/clone diverge, the levels may split to accommodate new data. That is, as new volume metadata entries are written to a level of the parent dense tree, that level is copied (i.e., split) to the snapshot/clone dense tree so that the parent dense tree may diverge from its old (now copied to the snapshot/clone) dense tree structure.


A reference counter may be maintained for each level of the dense tree, illustratively within a respective level header (reference counters 734, 744, 754) to track sharing of levels between the volumes (i.e., between the parent volume and snapshot/clone). Illustratively, the reference counter may increment when levels are shared and decremented when levels are split (e.g., copied). For example, a reference count value of 1 may indicate an unshared level (i.e., portion) between the volumes (i.e., has only one reference). In an embodiment, volume metadata entries of a dense tree do not store data, but only reference data (as extents) stored on the storage array 150 (e.g., on SSDs 260). Consequently, more than one level of a dense tree may reference the same extent (data) even when the level reference counter is 1. This may result from a split (i.e., copy) of a dense tree level brought about by creation of the snapshot/clone. Accordingly, a separate reference count is maintained for each extent in the extent store layer to track sharing of extents among volumes. In accordance with the improved COW technique described herein, the sharing of levels as a whole is refined to permit sharing of individual metadata pages, thereby avoiding copying an entire level when a page of that level diverges between the parent volume and the snapshot/clone.


In an embodiment, the reference counter 734 for level 0 (in a level-0 header) may be incremented, illustratively from value 1 to 2, to indicate that the level 0 array contents are shared by the parent volume and snapshot/clone. Illustratively, the volume superblock of the parent volume (parent volume superblock 760a) and a volume superblock of the snapshot/clone (snapshot/clone volume superblock 760b) may be updated to point to the level-0 header, e.g., via region key 762a,b. Notably, the copies of the in-core data structures may be rendered in conjunction with the merge operation (described with reference to FIG. 11) such that the “merge dense tree 1120” copy of in-core data structures (e.g., the top level 1140 and staging buffer 1130) may become the in-core data structures of the snapshot/clone dense tree by not deleting (i.e., maintaining as active rather than rendering inactive) those copied in-core data structures. In addition, the snapshot/clone volume superblock 760b may be created by the volume layer 340 in response to an administrative operation initiated by the administration layer 310.


Over time, the snapshot/clone may split or diverge from the parent volume when either modifies the level 0 array as a result of new I/O operations, e.g., a write request. FIG. 13 illustrates diverging of the snapshot/clone from the parent volume. In an embodiment, divergence as a result of modification to the level 0 array 1205a of the parent volume illustratively involves creation of a copy of the on-flash level 0 array for the snapshot/clone (array 1205b), as well as creation of a copy of the level 0 header 730a for the snapshot/clone (header 730b). As a result, the on-flash level 1 array 1210 becomes a shared data structure between the parent volume and snapshot/clone. Accordingly, the reference counters for the parent volume and snapshot/clone level 0 arrays may be decremented (i.e., ref count 734a and 734b of the parent volume and snapshot/clone level 0 headers 730a, 730b, respectively), because each level 0 array now has one less reference (e.g., the volume superblocks 760a and 760b each reference separate level 0 arrays 1205a and 1205b). In addition, the reference counter 744 for the shared level 1 array may be incremented (e.g., the level 1 array is referenced by the two separate level 0 arrays, 1205a and 1205b). Notably, a reference counter 754 in the header 750 for the next level, i.e., level 2, need not be incremented because no change in references from level 1 to level 2 have been made, i.e., the single level 1 array 1210 still references level 2 array 1220.


Similarly, over time, level N (e.g., levels 1 or 2) of the snapshot/clone may diverge from the parent volume when that level is modified, for example, as a result of a merge operation. In the case of level 1, a copy of the shared level 1 array may be created for the snapshot/clone such that the on-flash level 2 array becomes a shared data structure between the level 1 array of the parent volume and a level 1 array of the snapshot/clone (not shown). Reference counters 744 for the parent volume level 1 array and the snapshot/clone level 1 array (not shown) may be decremented, while the reference counter 754 for the shared level 2 array may be incremented. Note that this technique may be repeated for each dense tree level that diverges from the parent volume, i.e., a copy of the lowest (leaf) level (e.g., level 2) of the parent volume array may be created for the snapshot/clone. Note also that as long as the reference counter is greater than 1, the data contents of the array are pinned (cannot be deleted).


Nevertheless, the extents for each data entry in the parent volume and the snapshot/clone (e.g., the level 0 array 1205a,b) may still have two references (i.e., the parent volume and snapshot/clone) even if the reference count 734a,b of the level 0 header 730a,b is 1. That is, even though the level 0 arrays (1205a and 1205b) may have separate volume layer references (i.e., volume superblocks 760a and 760b), the underlying extents 470 may be shared and, thus, may be referenced by more than one volume (i.e., the parent volume and snapshot/clone). Note that the parent volume and snapshot/clone each reference (initially) the same extents 470 in the data entries, i.e., via extent key 618 in data entry 610, of their respective level 0 arrays 1205a,b. Accordingly, a reference counter associated with each extent 470 may be incremented to track multiple (volume) references to the extent, i.e., to prevent inappropriate deletion of the extent. Illustratively, a reference counter associated with each extent key 618 may be embodied as an extent store (ES) reference count (refcount) 1330 stored in an entry of an appropriate hash table 482 serviced by an extent store process 1320. Incrementing of the ES refcount 1330 for each extent key (e.g., in a data entry 610) in level 0 of the parent volume may be a long running operation, e.g., level 0 of the parent volume may contain thousands of data entries. This operation may illustratively be performed in the background through a refcount log 1310, which may be stored persistently on SSD.


Illustratively, extent keys 618 obtained from the data entries 610 of level 0 of the parent volume may be queued, i.e., recorded, by the volume metadata process 710 (i.e., the volume layer instance servicing the parent volume) on the refcount log 1310 as entries 1315. Extent store process 1320 (i.e., the extent store layer instance servicing the extents) may receive each entry 1315 and increment the refcount 1330 of the hash table entry containing the appropriate the extent key. That is, the extent store process/instance 1320 may index (e.g., search using the extent metadata selection technique 480) the hash tables 482a-n to find an entry having the extent key in the ref count log entry 1315. Once the hash table entry is found, the refcount 1330 of that entry may be incremented (e.g., refcnt+1). Notably, the extent store instance may process the ref count log entries 1315 at a different priority (i.e., higher or lower) than “put” and “get” operations from user I/O requests directed to that instance.


Efficient Copy-On-Write The embodiments described herein also improve efficiency of a copy-on-write operation used to create the snapshot and/or clone. As noted, creation of the snapshot/clone may include copying the in-core portion of the parent dense tree to the snapshot/clone dense tree. Subsequently, the snapshot/clone may split or diverge from the parent volume when either modifies the level 0 array as a result of new I/O operations, e.g., a write request. Divergence as a result of modification to the level 0 array of the parent volume illustratively involves creation of a copy of the level 0 array for the snapshot/clone, as well as creation of a copy of the level 0 header for the snapshot/clone. In the embodiment previously described above, reference counts are maintained for each level (in the level header) of the dense tree as a whole, which requires copying an entire level when any page of that level diverges between the parent volume and the snapshot/clone. In addition, as noted above, a reference count 1330 for each extent may be incremented in deferred fashion via the refcount log 1310. Notably, the refcount log also may be illustratively used to defer increment of the level 0 reference count 734. Copying of the in-core portion and level (e.g., level 0 array) involves the copy-on-write (COW) operation and it is desirable to provide an efficient COW operation for the shared dense tree.


To improve the efficiency of the COW operation, the technique allows the use of reference count operations, e.g., make-reference (mkref) and un-reference (unref) operations, on the metadata pages (specifically to the metadata page keys of the metadata pages) stored in the in-core portion and on-flash level 0 array so as to allow sharing of those metadata pages individually between the parent volume and the snapshot/clone, which, in turn, avoids copying those metadata pages. Such reference count operations may be similarly extended to other levels (e.g., level 1 and 2) of the dense tree. As noted, the volume metadata entries 600 may be organized as metadata pages 720 (e.g., stored as extents 470) having associated metadata page keys 628 (e.g., embodied as extent keys 618). Each metadata page may be rendered distinct or “unique” from other metadata pages in the extent store layer 350 through the use of a unique value in the metadata page. The unique value is illustratively embodied as a multi-component uniqifier contained in a header of each metadata page 720 and configured to render the page unique across all levels of a dense tree (region), across all regions and across all volumes in the volume layer. An exemplary embodiment of a uniqifier is described in commonly-owned U.S. patent application Ser. No. 14/483,012, titled Low-Overhead Restartable Merge Operation With Efficient Crash Recovery, by D'Sa et al., filed on Sep. 10, 2014.


The snapshot/clone may be created by sharing the “unique” metadata pages 720 of the parent dense tree with the snapshot/clone through the use of reference counting of the pages at the extent store layer 350 of the storage I/O stack 300. Illustratively, such reference counting (sharing) may occur by incrementing the refcount 1330 on all shared metadata pages via the mkref operations inserted into the refcount log 1310 for the metadata page keys (extent keys 618) of the pages. Similarly, when deleting a LUN (e.g., a snapshot and/or clone), shared metadata pages may be un-referenced (i.e., refcount 1330 decremented) via unref operations inserted into the refcount log. Notably, reference counting (increment or decrement) may occur in a deferred manner and not in-line with the COW operation, i.e., the refcount log 1310 is processed as a background operation and, thus, does not consume latency within the COW operation. Lower levels of the parent dense tree residing on SSDs may also be similarly shared between the parent volume and snapshot/clone. Changes to the parent or snapshot/clone propagate from the in-core portion of the dense tree to the lower levels by periodic merger with the in-core portion such that new “merged” versions of the lower levels are written to the storage devices. Note that changes may also propagate between the lower levels (e.g., between level 1 and level 2) on the storage devices. Note further that extents keys associated with data entries of the shared metadata pages may also be reference counted (e.g., incremented for snapshot/clone create and decremented for snapshot/clone delete) in the above-described manner.


Storage Space Savings Reporting


The embodiments described herein are directed to a technique for efficient determination of accurate storage space savings reported to a host coupled to a reference-counted storage system that employs de-duplication and compression, wherein the storage space savings relate to snapshots and/or clones supported by the storage system. As noted, the snapshot/clone may be represented as an independent volume, and embodied as a respective read-only copy (snapshot) or read-write copy (clone) of a parent volume. The snapshot/clone may be derived from a dense tree of the parent volume (parent dense tree) by sharing portions (e.g., level or volume metadata entries) of the parent dense tree with a dense tree of the snapshot/clone (snapshot/clone dense tree). Illustratively, creation of a snapshot/clone may include copying an in-core portion and a level of the parent dense tree to the snapshot/clone dense tree using a COW operation. When the snapshot/clone diverges from the parent volume, reference counts that are acquired (e.g., increase in a reference count value) on the extent keys as a result of the COW of the level may skew the storage space savings (e.g., savings from de-duplicated and compressed data) of storage space consumed on the SSDs by the snapshot/clones. As described herein, the technique enables accurate reporting of the storage space savings to the host for each writeable volume (e.g., clone), wherein data may be arbitrarily shared among the writable volume and one or more derived snapshots.


As used herein, the storage space savings represents a ratio of logical (user) data in a writeable volume (e.g., clone) that is shared with the volumes (e.g., parent volume and one or more derived snapshots) versus an actual amount of storage space consumed by the data on SSD. For example, a newly create clone from a parent volume initially has a 100% space savings, because it shares all of its logically available data with the parent volume, i.e., a single instance of the data is stored on SSD, but is logically available in two volumes, the parent volume and clone. However, the actual amount of storage space consumed by a volume may include data as well as metadata, so the newly created clone may have initially less than 100% space savings, because the dense tree top level 800 of the volume is shared with the newly created clone prior to reference count increases from COW operations. Note that space savings are not applicable for snapshots, which are created for data protection and thus consume storage space.


As noted, upon creation, a clone may not consume any storage space on SSD for (user) data; however, the storage space savings are substantial (e.g., doubled or 100% space savings) because the created clone does not initially consume any physical storage space on SSD for data, but provides additional logically writable storage space. A clone is substantially space efficient since data is not copied from the parent volume (i.e., the data is initially shared) and only changes to the data (i.e., divergence from the parent volume) need be tracked and maintained in the clone. From a host perspective, the clone is a copy of the parent volume (e.g., a file system or LUN) yet from the backend perspective of the storage system (i.e., the storage I/O stack) the clone is storage space efficient because of the initial sharing of data and metadata (i.e., metadata pages) extents. The divergent data (i.e., changes to the data) from the parent volume reduces space savings of the clone. For example, writing 10% new data to a clone may reduce the clone space savings to 90% when the new data is unique (i.e., not de-duplicated in the extent store). The de-duplicated data need not be in the parent volume, but may reside in any unrelated volumes provisioned from the extent store.


One or more snapshots derived from (i.e., children of) the clone may also retain data as the clone diverges. The data retained in the snapshots also reduces the clone space savings. However, during divergence of data from the parent volume by the clone, metadata structures (e.g., levels of the dense tree) may be duplicated at a granularity that results in substantially increased amount of duplicated shared data. For example, as illustrated in FIG. 13, metadata pages 1210 shared between the clone and parent volume may be duplicated so that the clone and parent volume each contain a copy of level 1. For a storage I/O stack that performs in-line de-duplication, the data (i.e., extents) associated with level 1 may be de-duplicated such that a reference count associated with the data is increased. As a result, the divergence of the clone from the parent volume creates an increase in de-duplicated data as well as divergent data. The de-duplicated data accruing from metadata overhead to facilitate the divergence may inflate space savings by incorrectly including that de-duplicated data which arises from the infrastructure (i.e., metadata) needed to support the divergence between the clone and parent volume. In addition, various sources that effectively reduce the amount of shared data in a clone skew storage space savings of the clone. Accordingly, it is desirable to accurately report the storage space savings to the host for clones (e.g., writable volume).


In an embodiment, an amount of logical data of a volume shared with other volumes may be determined by subtracting an amount of de-duplicated data resulting from metadata infrastructure to support the divergence of data from snapshots and clones of the volume from a total amount of logical data in that volume. The total amount logical data in the writable volume (e.g., clone) may be determined from an initial amount of data in the volume and an amount of data written (e.g., bytes written) after the volume is created. The amounts of initial and diverged data may be calculated from the mapped storage space provided by the volume metadata mappings from LBA ranges to extent keys. Illustratively, space adjustment counters may be employed when determining the storage space savings, such as clone space adjustment (CSA) counter, indicating an initial amount logical data in a clone shared with a parent volume, and one or more diverged space adjustment (DSA) counters indicating an amount of de-duplicated data in the clone resulting from the divergence from the parent volume and an amount of data in the clone diverging from one or more snapshots derived from the clone. The CSA counter may be employed when determining the storage space savings for clones and is applied at clone creation.


According to the technique, the CSA counter is equal to the sum of mapped storage space (e.g., LUN offset ranges captured in dense tree entries) across all levels of the parent dense tree (i.e., the amount of data written for the parent volume). Illustratively, the mapped storage space may be provided by the volume metadata mappings from LBAs of the LUN to extent keys. For example, assume a 1 GB parent volume (LUN) is created, but only 500 megabytes (MB) are stored/written to SSD. The CSA is thus 500 MBs, i.e., the mapped space actually written on SSD (consumed logical offset space of the LUN). Note that the data actually written (physically stored on SSD) takes into account the data as written after compression and deduplication.


As the clone diverges by, e.g., new data written to the parent volume or clone, a COW operation is performed and references on metadata that are shared are increased (e.g., incremented). For example assume blocks (extents) A, B and C are shared between a parent volume dense tree and a clone dense tree, and now the clone dense tree diverges with extent D being written to the clone. The clone still shares extents A, B and C with the parent volume, but extent D is only present in the clone. As noted previously, reference counts are embodied as make reference requests (mkrefs) that are increased (e.g., incremented) and associated with the shared extents (e.g., refcount 1330 associated with extent key 618 in hash table 482). At the extent store layer, the incremented reference counts (mkrefs) indicate an increase in the consumed logical storage space that was accounted for by the CSA when creating the clone. Therefore, a negative adjustment is needed for the mkrefs that occur as a result of the divergence. This negative adjustment is embodied as a DSA counter and, in accordance with the technique, a separate DSA counter is provided for each clone and for each of the one or more derived snapshots of the respective clone. The DSA counter for the clone (DSAc) is applied during the COW operation for a level and equals the total mapped storage space in the level shared with the parent volume. Depending upon the amount of divergence, the DSAc includes the effect of the mkrefs that contribute to the consumed space of the parent volume (LUN), which reduce the storage space savings.


As for a snapshot, there is no adjustment (similar to the CSA counter) at the time of snapshot creation as data in the snapshot (child) is shared with the clone (parent) or the parent volume (parent of the clone). At the time of divergence of the clone that results in a COW operation, assume there is one extent changed on a level of the dense tree. As a result, the entire level is diverged and many extents on the level are still shared with only the one extent being new for the parent volume or clone. Accordingly, the reference counts on the shared extents are incremented (rather than incrementing the reference count of the level header block) so mkrefs are generated at the volume layer for incremented reference counts of the shared extents that result in an equal increase in an amount of data written for the clone, i.e., each mkref for a shared extent increases the amount of data written for the clone by a size (uncompressed) of the shared extent. As such, the logical storage space associated with these mkrefs needs to be negated and, thus, the DSAs may be applied to negate that effect (for snapshots). Illustratively, the DSA counter for the snapshot (DSAs) is applied during the COW operation for a level and equals the total mapped storage space in the level. That is, the DSAs adjustment negates the effect of any duplicated data occurring from divergence at the extent store layer.


According to the technique, the storage space savings may be determined by computing a value equal to the addition of the CSA counter to the total amount of data and metadata written to the LUN (writable volume) minus the DSA counters and, thereafter, dividing the value by the total amount of data (including de-duplicated and compressed data) for the LUN that is physically stored on the SSDs:

Space Savings=(Total_Written+CSA−DSAc−DSAs)/Physical Stored

wherein the Physical Stored (i.e., the total amount of data for the LUN including de-co duplicated and compressed data) is maintained by the extent store layer, and wherein the Total_Written (i.e., total amount of data and metadata written to the LUN) is maintained by the extent store layer and equals the sum of all put operations (data and metadata) capacity+mkref operation (metadata) capacity−unref operation (data and metadata) capacity.


In an embodiment, the metadata may be organized at the volume layer as a dense tree having multiple (e.g., three) levels: L0, L1 and L2. The space savings technique is directed to duplication of the metadata which occurs when the dense tree diverges (creating two dense trees) level-by-level. In a reference counted file system (similar to the storage I/O stack) a reference count increase (e.g., increment) request (mkref) is generated at the volume layer for every duplication of metadata during divergence. The process of actually incrementing the reference count at the extent store layer increases the numerator of the storage space savings computation as it appears that the logical storage space of the volume increases. The DSA adjustment therefore compensates for the storage space increase that occurs when the mkrefs are processed at the extent store layer. This adjustment occurs for divergence at each level of the dense tree. Essentially, the DSA compensates for mkrefs to shared metadata extents (i.e., a mkref adjustment to commonality between snapshot/clone and parent volume).


As used herein, divergence may include (user) data divergence and dense tree (metadata) divergence; such divergence occurs when a portion of the snapshot/clone dense tree is created. The mkref adjustment (i.e., DSA) is applied for dense tree divergence, which is not a one-for-one adjustment for data divergence. User data divergence is the result of the storage space savings computation reported to (and realized by) the host, whereas the metadata dense tree divergence is the subject of the DSA adjustment. Note that there is commonality between the metadata dense tree divergence and the user data divergence since the dense tree diverges as the data diverges at the common extent store layer. The total amount of metadata written needs to be adjusted for the common metadata present in the dense trees.


As an example, assume the amount of data represented in the parent volume dense tree equals 1 TB at L0, 10 TB at L1 and 100 TB at L2 for total of 111 TB. The storage space savings for the parent volume (without a clone) thus equals the Total_Written divided by Physical Stored which, in this example, equals 1. At clone creation, the storage space savings increases such that (Total_Written+CSA)/Physical Stored=(111 TB+111 TB)/111 TB=2. Now assume a write request occurs to the clone and causes L0 of the dense tree to diverge. This results in L0 metadata being duplicated in the new clone dense tree. Before the write request, the superblock 760b of the clone pointed to the same metadata dense tree as the parent volume. After the write request, the superblock 760b of the clone points to the new L0 of the new clone dense tree. At clone creation, the parent and clone superblocks 760a,b point to the same dense tree and the reference counts are incremented at the level of the dense tree as a whole (e.g., L0 level header block).


During divergence, the reference counts of all metadata extents are incremented for the copied L0. That is, subsequent to the new incoming writes (and the dense tree diverging), the reference counts are incremented for individual extents in the copied level. These individual reference count increments are affected by mkrefs from the volume layer to the extent store layer. These mkrefs are reflected in the numerator of the storage space savings space computation; to compensate for these mkrefs, a negative DSAc is applied to the numerator which corresponds to the mapped space of a level that was diverged. Therefore, the commonality of storage space between a clone (or snapshot) and its parent volume (active file system) is removed or negated from the computation. Note that the mkrefs are internal metadata duplication that results from infrastructure needed to create the clone and are not “user data” deduplication, which is provided by the space savings computation. The computed space savings may then be reported to the host in an accurate manner wherein the space savings of the clone (as opposed to the snapshot) are accounted for as deduplication savings by the storage system.


Advantageously, the space savings technique described herein is applicable to any reference-counted file system having a global extent store layer configured for inline deduplication. That is, the global extent store layer stores both metadata used to describe and keep track of clones and snapshots, and the user data. Such configuration requires removal of the metadata (and not the user data) from the space savings calculation.


The foregoing description has been directed to specific embodiments. It will be apparent, however, that other variations and modifications may be made to the described embodiments, with the attainment of some or all of their advantages. For instance, it is expressly contemplated that the components and/or elements described herein can be implemented as software encoded on a tangible (non-transitory) computer-readable medium (e.g., disks, electronic memory, and/or CDs) having program instructions executing on a computer, hardware, firmware, or a combination thereof. Accordingly this description is to be taken only by way of example and not to otherwise limit the scope of the embodiments herein. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the embodiments herein.

Claims
  • 1. A method comprising: receiving a write request from a host directed towards a clone of a logical unit (LUN), the write request having a first data and representing a first address range of the clone of the LUN (clone LUN), the write request processed at a storage system attached to a storage array;associating a first metadata with the first data;in response to receiving the write request, diverging the clone LUN from a parent of the LUN (parent LUN) by associating the first metadata with the clone LUN and copying a second metadata associated with the parent LUN, the second metadata associated with a second data shared between the parent LUN and the clone LUN;associating the second metadata with the clone LUN;calculating an amount of space savings from the clone LUN based on a total amount of data and metadata written to the parent LUN;de-duplicating the second data by copying and associating the second metadata with the clone LUN, wherein the calculated amount of space savings is overcounted by a size of the second metadata;adjusting the calculated amount of space savings such that the adjusted calculated amount of space savings decreases by the size of the second metadata; andreporting the adjusted calculated amount of space savings from the clone LUN to the host.
  • 2. The method of claim 1 wherein the adjusted amount of space savings is computed using an amount of space determined from sizes of the first and second metadata.
  • 3. The method of claim 1 wherein the data and metadata are written as extents in a same extent store.
  • 4. The method of claim 1 wherein the adjusting the amount of space savings employs a clone space adjustment counter indicating an initial amount of logical data in the clone shared with the parent LUN and a diverged space adjustment counter indicating an amount of de-duplicated data in the clone resulting from diverging the clone LUN from the parent LUN.
  • 5. The method of claim 1 further comprising: decreasing the amount of space savings by a portion of a mapped space of the parent LUN.
  • 6. The method of claim 1 further comprising: de-duplicating a plurality of extents stored on the storage array, the extents referenced by mappings of a total mapped space of the parent LUN.
  • 7. The method of claim 1 wherein the amount of space savings is computed using a total mapped space of the clone LUN.
  • 8. The method of claim 1 wherein the amount of space savings is a ratio having a denominator including sizes of the first and second data as stored on the storage array.
  • 9. The method of claim 1 wherein the first data is stored compressed on the storage array.
  • 10. The method of claim 1 wherein a tree hierarchy of metadata represents a total mapped space of the clone LUN, wherein the tree hierarchy is arbitrarily shared among snapshots of the clone LUN, and wherein the amount of space savings is reduced by a mapped space of metadata copied from the snapshots as the clone LUN diverges from the snapshots.
  • 11. A system comprising: a storage system having a processor;a storage array coupled to the storage system and having one or more storage devices;a storage I/O stack executing on the processor of the storage system, the storage I/O stack configured to: receive a write request from a host directed towards a clone of a logical unit (LUN), the write request having a first data and representing a first address range of the clone LUN;associate a first metadata with the first data;in response to receiving the write request, diverge the clone LUN from a parent LUN by associating the first metadata with the clone LUN and copying a second metadata associated with the parent LUN and a second data shared between the parent LUN and the clone LUN;associate the second metadata with the clone LUN;calculate an amount of space savings from the clone LUN based on a total amount of data and metadata written to the parent LUN;de-duplicate the second data by copying and associating the second metadata with the clone LUN, wherein the calculated amount of space savings is overcounted by a size of the second metadata;adjust the calculated amount of space savings such that the adjusted calculated amount of space savings decreases by the size of the second metadata; andreport the adjusted calculated amount of space savings from the clone LUN to host.
  • 12. The system of claim 11 wherein the adjusted amount of space savings is computed using an amount of mapped space determined from sizes of the first and second metadata.
  • 13. The system of claim 11 wherein the data and metadata are written as extents to a same extent store.
  • 14. The system of claim 11 wherein the storage I/O stack configured to adjust the amount of space savings is further configured to employ a clone space adjustment counter indicating an initial amount of logical data in the clone shared with the parent LUN and a diverged space adjustment counter indicating an amount of de-duplicated data in the clone resulting from diverging the clone LUN from the parent LUN.
  • 15. The system of claim 11 wherein the storage I/O stack is further configured to: decrease the amount of space savings by a portion of a mapped space of the parent LUN.
  • 16. The system of claim 11 wherein the storage I/O stack is further configured to: de-duplicate a plurality of extents stored on the one or more storage devices, the extents referenced by mappings representing a total mapped space of the parent LUN.
  • 17. The system of claim 11 wherein the amount of space savings is computed using a total mapped space of the clone LUN.
  • 18. The system of claim 11 wherein the amount of space savings is a ratio having a denominator including sizes of the first and second data as stored on the one or more storage devices.
  • 19. The system of claim 11 wherein the first data is stored compressed on the storage array.
  • 20. A non-transitory computer readable medium containing executable program instructions for execution by a processor of a storage system attached to a storage array, the program instructions configured to: receive a write request from a host directed towards a clone of a logical unit (LUN), the write request having a first data representing a first address range of the clone LUN;associate a first metadata with the first data;in response to receiving the write request, diverge the clone LUN from a parent LUN by associating the first metadata with the clone LUN and copying a second metadata associated with the parent LUN, the first metadata having a first mapping of the first address range to the first data, the second metadata having a second mapping of a second address range of the parent LUN to a second data shared between the parent LUN and the clone LUN;associate the second metadata with the clone LUN;calculating an amount of space savings from the clone LUN based on a total amount of data and metadata written to the parent LUN;de-duplicate the second data by copying and associating the second metadata with the clone LUN, wherein the calculated amount of space savings is overcounted by a size of the second metadata;adjust the calculated amount of space savings such that the adjusted calculated amount of space savings decreases by the size of the second metadata; andreport the adjusted calculated amount of space savings from the clone LUN to the host.
US Referenced Citations (786)
Number Name Date Kind
5138697 Yamamoto et al. Aug 1992 A
5375216 Moyer et al. Dec 1994 A
5459857 Ludlam et al. Oct 1995 A
5511190 Sharma et al. Apr 1996 A
5542089 Lindsay et al. Jul 1996 A
5592432 Vishlitzky et al. Jan 1997 A
5603001 Sukegawa et al. Feb 1997 A
5611073 Malpure et al. Mar 1997 A
5734859 Yorimitsu et al. Mar 1998 A
5734898 He Mar 1998 A
5751993 Ofek et al. May 1998 A
5860082 Smith et al. Jan 1999 A
5864698 Krau et al. Jan 1999 A
5890161 Helland et al. Mar 1999 A
5937425 Ban Aug 1999 A
5974421 Krishnaswamy et al. Oct 1999 A
5991862 Ruane Nov 1999 A
6047283 Braun et al. Apr 2000 A
6067541 Raju et al. May 2000 A
6081900 Subramaniam et al. Jun 2000 A
6219800 Johnson et al. Apr 2001 B1
6257756 Zarubinsky et al. Jul 2001 B1
6275898 Dekoning Aug 2001 B1
6347337 Shah et al. Feb 2002 B1
6363385 Kedem et al. Mar 2002 B1
6385699 Bozman et al. May 2002 B1
6397307 Ohran May 2002 B2
6434555 Frolund et al. Aug 2002 B1
6434662 Greene et al. Aug 2002 B1
6526478 Kirby Feb 2003 B1
6553384 Frey et al. Apr 2003 B1
6560196 Wei May 2003 B1
6567817 Vanleer et al. May 2003 B1
6578158 Deitz et al. Jun 2003 B1
6604155 Chong, Jr. Aug 2003 B1
6609176 Mizuno Aug 2003 B1
6681389 Engel et al. Jan 2004 B1
6704839 Butterworth et al. Mar 2004 B2
6728843 Pong et al. Apr 2004 B1
6741698 Jensen May 2004 B1
6779003 Midgley et al. Aug 2004 B1
6795890 Sugai et al. Sep 2004 B1
6895500 Rothberg May 2005 B1
6904470 Ofer et al. Jun 2005 B1
6912645 Dorward et al. Jun 2005 B2
6917898 Kirubalaratnam et al. Jul 2005 B1
6928521 Burton et al. Aug 2005 B1
6928526 Zhu et al. Aug 2005 B1
6961865 Ganesh et al. Nov 2005 B1
7003565 Hind et al. Feb 2006 B2
7028218 Schwarm et al. Apr 2006 B2
7039694 Kampe et al. May 2006 B2
7047358 Lee et al. May 2006 B2
7055058 Lee et al. May 2006 B2
7065619 Zhu et al. Jun 2006 B1
7093086 Van Aug 2006 B1
7110913 Monroe et al. Sep 2006 B2
7152142 Guha et al. Dec 2006 B1
7167951 Blades et al. Jan 2007 B2
7174379 Agarwal et al. Feb 2007 B2
7177853 Ezra et al. Feb 2007 B1
7188149 Kishimoto et al. Mar 2007 B2
7191357 Holland et al. Mar 2007 B2
7219260 De et al. May 2007 B1
7249150 Watanabe et al. Jul 2007 B1
7251663 Smith Jul 2007 B1
7257690 Baird Aug 2007 B1
7305579 Williams Dec 2007 B2
7325059 Barach et al. Jan 2008 B2
7334094 Fair Feb 2008 B2
7334095 Fair et al. Feb 2008 B1
7366865 Lakshmanamurthy, Sr. et al. Apr 2008 B2
7370048 Loeb May 2008 B2
7373345 Carpentier et al. May 2008 B2
7394944 Boskovic et al. Jul 2008 B2
7395283 Atzmony et al. Jul 2008 B1
7395352 Lam et al. Jul 2008 B1
7415653 Bonwick et al. Aug 2008 B1
7451167 Bali et al. Nov 2008 B2
7454592 Shah et al. Nov 2008 B1
7457864 Chambliss et al. Nov 2008 B2
7464125 Orszag et al. Dec 2008 B1
7519725 Alvarez et al. Apr 2009 B2
7526685 Maso et al. Apr 2009 B2
7529780 Braginsky et al. May 2009 B1
7529830 Fujii May 2009 B2
7543100 Singhal et al. Jun 2009 B2
7543178 McNeill et al. Jun 2009 B2
7562101 Jernigan, IV et al. Jul 2009 B1
7562203 Scott et al. Jul 2009 B2
7603391 Federwisch et al. Oct 2009 B1
7603529 MacHardy et al. Oct 2009 B1
7624112 Ganesh et al. Nov 2009 B2
7644087 Barkai et al. Jan 2010 B2
7668885 Wittke et al. Feb 2010 B2
7680837 Yamato Mar 2010 B2
7681076 Sarma Mar 2010 B1
7689716 Short et al. Mar 2010 B2
7701948 Rabje et al. Apr 2010 B2
7730153 Gole et al. Jun 2010 B1
7739614 Hackworth Jun 2010 B1
7743035 Chen et al. Jun 2010 B2
7757056 Fair Jul 2010 B1
7797279 Starling et al. Sep 2010 B1
7805266 Dasu et al. Sep 2010 B1
7805583 Todd et al. Sep 2010 B1
7814064 Vingralek Oct 2010 B2
7817562 Kemeny Oct 2010 B1
7818525 Frost et al. Oct 2010 B1
7831736 Thompson Nov 2010 B1
7831769 Wen et al. Nov 2010 B1
7849098 Scales et al. Dec 2010 B1
7849281 Malhotra et al. Dec 2010 B2
7873619 Faibish et al. Jan 2011 B1
7899791 Gole Mar 2011 B1
7917726 Hummel et al. Mar 2011 B2
7921169 Jacobs et al. Apr 2011 B2
7921325 Kondo et al. Apr 2011 B2
7949693 Mason et al. May 2011 B1
7953878 Trimble May 2011 B1
7962709 Agrawal Jun 2011 B2
7987167 Kazar et al. Jul 2011 B1
7996636 Prakash Aug 2011 B1
8055745 Atluri Nov 2011 B2
8060797 Hida et al. Nov 2011 B2
8074019 Gupta et al. Dec 2011 B2
8078918 Diggs et al. Dec 2011 B2
8082390 Fan et al. Dec 2011 B1
8086585 Brashers et al. Dec 2011 B1
8089969 Rabie et al. Jan 2012 B2
8090908 Bolen et al. Jan 2012 B1
8099396 Novick et al. Jan 2012 B1
8099554 Solomon et al. Jan 2012 B1
8122213 Cherian et al. Feb 2012 B2
8127182 Sivaperuman et al. Feb 2012 B2
8131926 Lubbers et al. Mar 2012 B2
8140821 Raizen et al. Mar 2012 B1
8140860 Haswell Mar 2012 B2
8145838 Miller et al. Mar 2012 B1
8156016 Zhang Apr 2012 B2
8156290 Vanninen et al. Apr 2012 B1
8156306 Raizen et al. Apr 2012 B1
8184807 Kato et al. May 2012 B2
8205065 Matze Jun 2012 B2
8209587 Taylor et al. Jun 2012 B1
8214868 Hamilton et al. Jul 2012 B2
8224935 Bandopadhyay et al. Jul 2012 B1
8225135 Barrall et al. Jul 2012 B2
8244978 Kegel et al. Aug 2012 B2
8250116 Mazzagatti et al. Aug 2012 B2
8261085 Fernandez Sep 2012 B1
8312231 Li et al. Nov 2012 B1
8327103 Can et al. Dec 2012 B1
8341457 Spry et al. Dec 2012 B2
8369217 Bostica et al. Feb 2013 B2
8417987 Goel et al. Apr 2013 B1
8429096 Soundararajan et al. Apr 2013 B1
8429282 Ahuja et al. Apr 2013 B1
8452929 Bennett May 2013 B2
8463825 Harty et al. Jun 2013 B1
8468368 Gladwin et al. Jun 2013 B2
8484439 Frailong et al. Jul 2013 B1
8489811 Corbett et al. Jul 2013 B1
8495417 Jernigan, IV et al. Jul 2013 B2
8510265 Boone et al. Aug 2013 B1
8515965 Mital et al. Aug 2013 B2
8520855 Kohno et al. Aug 2013 B1
8533410 Corbett et al. Sep 2013 B1
8539008 Faith et al. Sep 2013 B2
8543611 Mirtich et al. Sep 2013 B1
8549154 Colrain et al. Oct 2013 B2
8555019 Montgomery et al. Oct 2013 B2
8560879 Goel Oct 2013 B1
8566508 Borchers et al. Oct 2013 B2
8566617 Clifford Oct 2013 B1
8572091 Sivasubramanian et al. Oct 2013 B1
8577850 Genda et al. Nov 2013 B1
8583865 Sade et al. Nov 2013 B1
8589550 Faibish et al. Nov 2013 B1
8589625 Colgrove et al. Nov 2013 B2
8595434 Northcutt et al. Nov 2013 B2
8595595 Grcanac et al. Nov 2013 B1
8600949 Periyagaram et al. Dec 2013 B2
8645664 Colgrove et al. Feb 2014 B1
8645698 Yi et al. Feb 2014 B2
8671265 Wright Mar 2014 B2
8706692 Luthra et al. Apr 2014 B1
8706701 Stefanov et al. Apr 2014 B1
8712963 Douglis et al. Apr 2014 B1
8732426 Colgrove et al. May 2014 B2
8745338 Yadav et al. Jun 2014 B1
8751763 Ramarao Jun 2014 B1
8762654 Yang et al. Jun 2014 B1
8775868 Colgrove et al. Jul 2014 B2
8782439 Resch Jul 2014 B2
8787580 Hodges et al. Jul 2014 B2
8799571 Desroches et al. Aug 2014 B1
8799601 Chen et al. Aug 2014 B1
8799705 Hallak et al. Aug 2014 B2
8806115 Patel et al. Aug 2014 B1
8806160 Colgrove et al. Aug 2014 B2
8812450 Kesavan Aug 2014 B1
8824686 Ishii et al. Sep 2014 B1
8826023 Harmer et al. Sep 2014 B1
8832363 Sundaram et al. Sep 2014 B1
8832373 Colgrove et al. Sep 2014 B2
8843711 Yadav et al. Sep 2014 B1
8849764 Long et al. Sep 2014 B1
8850108 Hayes et al. Sep 2014 B1
8850216 Mikhailov et al. Sep 2014 B1
8855318 Patnala et al. Oct 2014 B1
8856593 Eckhardt et al. Oct 2014 B2
8868868 Maheshwari et al. Oct 2014 B1
8874842 Kimmel et al. Oct 2014 B1
8880787 Kimmel et al. Nov 2014 B1
8880788 Sundaram et al. Nov 2014 B1
8892818 Zheng et al. Nov 2014 B1
8904137 Zhang et al. Dec 2014 B1
8904231 Coatney et al. Dec 2014 B2
8922928 Powell Dec 2014 B2
8930778 Cohen Jan 2015 B2
8943032 Xu et al. Jan 2015 B1
8943282 Armangau et al. Jan 2015 B1
8949568 Wei et al. Feb 2015 B2
8977781 Yokoi et al. Mar 2015 B1
8996468 Mattox Mar 2015 B1
8996535 Kimmel et al. Mar 2015 B1
8996790 Segal et al. Mar 2015 B1
8996797 Zheng et al. Mar 2015 B1
9003162 Lomet et al. Apr 2015 B2
9009449 Chou et al. Apr 2015 B2
9021303 Desouter et al. Apr 2015 B1
9026694 Davidson et al. May 2015 B1
9037544 Zheng et al. May 2015 B1
9047211 Wood et al. Jun 2015 B2
9058119 Ray, III et al. Jun 2015 B1
9092142 Nashimoto et al. Jul 2015 B2
9152684 Zheng et al. Oct 2015 B2
9170746 Sundaram et al. Oct 2015 B2
9195939 Goyal et al. Nov 2015 B1
9201742 Bulkowski et al. Dec 2015 B2
9201804 Egyed Dec 2015 B1
9225801 McMullen et al. Dec 2015 B1
9229642 Shu et al. Jan 2016 B2
9256549 Kimmel et al. Feb 2016 B2
9268502 Zheng et al. Feb 2016 B2
9274901 Veerla, Sr. et al. Mar 2016 B2
9286413 Coates et al. Mar 2016 B1
9298417 Muddu et al. Mar 2016 B1
9367241 Sundaram et al. Jun 2016 B2
9378043 Zhang et al. Jun 2016 B1
9389958 Sundaram et al. Jul 2016 B2
9405568 Garg et al. Aug 2016 B2
9405783 Kimmel et al. Aug 2016 B2
9411620 Wang et al. Aug 2016 B2
9413680 Kusters et al. Aug 2016 B1
9459856 Curzi et al. Oct 2016 B2
9460009 Taylor et al. Oct 2016 B1
9471680 Elsner et al. Oct 2016 B2
9483349 Sundaram et al. Nov 2016 B2
9537827 McMullen et al. Jan 2017 B1
9572091 Lee et al. Feb 2017 B2
9606874 Moore et al. Mar 2017 B2
9639293 Guo et al. May 2017 B2
9639546 Gorski et al. May 2017 B1
9652405 Shain et al. May 2017 B1
9690703 Jess et al. Jun 2017 B1
9779123 Sen et al. Oct 2017 B2
9785525 Watanabe et al. Oct 2017 B2
9798497 Schick et al. Oct 2017 B1
9817858 Eisenreich et al. Nov 2017 B2
9846642 Choi et al. Dec 2017 B2
9852076 Garg et al. Dec 2017 B1
9953351 Sivasubramanian et al. Apr 2018 B1
9954946 Shetty et al. Apr 2018 B2
10216966 McClanahan et al. Feb 2019 B2
10516582 Wright et al. Dec 2019 B2
10565230 Zheng et al. Feb 2020 B2
20010056543 Isomura et al. Dec 2001 A1
20020073068 Guha Jun 2002 A1
20020073354 Schroiff et al. Jun 2002 A1
20020091897 Chiu et al. Jul 2002 A1
20020116569 Kim et al. Aug 2002 A1
20020156891 Ulrich et al. Oct 2002 A1
20020158898 Hsieh et al. Oct 2002 A1
20020174419 Alvarez et al. Nov 2002 A1
20020175938 Hackworth Nov 2002 A1
20020188711 Meyer et al. Dec 2002 A1
20030005147 Enns et al. Jan 2003 A1
20030084251 Gaither et al. May 2003 A1
20030105928 Ash et al. Jun 2003 A1
20030115204 Greenblatt et al. Jun 2003 A1
20030115282 Rose Jun 2003 A1
20030120869 Lee et al. Jun 2003 A1
20030126118 Burton et al. Jul 2003 A1
20030126143 Roussopoulos et al. Jul 2003 A1
20030135729 Mason et al. Jul 2003 A1
20030145041 Dunham et al. Jul 2003 A1
20030159007 Sawdon et al. Aug 2003 A1
20030163628 Lin et al. Aug 2003 A1
20030172059 Andrei Sep 2003 A1
20030182312 Chen et al. Sep 2003 A1
20030182322 Manley et al. Sep 2003 A1
20030191916 McBrearty et al. Oct 2003 A1
20030195895 Nowicki et al. Oct 2003 A1
20030200388 Hetrick Oct 2003 A1
20030212872 Patterson et al. Nov 2003 A1
20030223445 Lodha Dec 2003 A1
20040003173 Yao et al. Jan 2004 A1
20040030703 Bourbonnais et al. Feb 2004 A1
20040052254 Hooper Mar 2004 A1
20040054656 Leung et al. Mar 2004 A1
20040107281 Bose et al. Jun 2004 A1
20040133590 Henderson et al. Jul 2004 A1
20040133622 Clubb et al. Jul 2004 A1
20040133742 Vasudevan et al. Jul 2004 A1
20040153544 Kelliher et al. Aug 2004 A1
20040153863 Klotz et al. Aug 2004 A1
20040158549 Matena et al. Aug 2004 A1
20040186858 McGovern et al. Sep 2004 A1
20040205166 Demoney Oct 2004 A1
20040210794 Frey et al. Oct 2004 A1
20040215792 Koning et al. Oct 2004 A1
20040267836 Armangau et al. Dec 2004 A1
20040267932 Voellm et al. Dec 2004 A1
20050010653 McCanne Jan 2005 A1
20050027817 Novik et al. Feb 2005 A1
20050039156 Catthoor et al. Feb 2005 A1
20050043834 Rotariu et al. Feb 2005 A1
20050044244 Warwick et al. Feb 2005 A1
20050076113 Klotz et al. Apr 2005 A1
20050076115 Andrews et al. Apr 2005 A1
20050080923 Elzur Apr 2005 A1
20050091261 Wu et al. Apr 2005 A1
20050108472 Kanai et al. May 2005 A1
20050119996 Dhata; Hideo et al. Jun 2005 A1
20050128951 Chawla et al. Jun 2005 A1
20050144514 Ulrich et al. Jun 2005 A1
20050177770 Coatney et al. Aug 2005 A1
20050203930 Bukowski et al. Sep 2005 A1
20050216503 Charlot et al. Sep 2005 A1
20050228885 Vvinfield; Colin P et al. Oct 2005 A1
20050246362 Borland Nov 2005 A1
20050246398 Barzilai et al. Nov 2005 A1
20060004957 Hand et al. Jan 2006 A1
20060071845 Stroili et al. Apr 2006 A1
20060072555 St; Hilaire Kenneth R et al. Apr 2006 A1
20060072593 Grippo et al. Apr 2006 A1
20060074977 Kothuri et al. Apr 2006 A1
20060075467 Sanda et al. Apr 2006 A1
20060085166 Ochi et al. Apr 2006 A1
20060101091 Carbajales et al. May 2006 A1
20060101202 Mannen et al. May 2006 A1
20060112155 Earl et al. May 2006 A1
20060129676 Modi et al. Jun 2006 A1
20060136718 Moreillon Jun 2006 A1
20060156059 Kitamura Jul 2006 A1
20060165074 Modi et al. Jul 2006 A1
20060206671 Aiello et al. Sep 2006 A1
20060232826 Bar-El Oct 2006 A1
20060253749 Alderegula et al. Nov 2006 A1
20060282662 Whitcomb Dec 2006 A1
20060288151 McKenney Dec 2006 A1
20070016617 Lomet Jan 2007 A1
20070033376 Sinclair et al. Feb 2007 A1
20070033433 Pecone et al. Feb 2007 A1
20070061572 Imai et al. Mar 2007 A1
20070064604 Chen et al. Mar 2007 A1
20070083482 Rathi et al. Apr 2007 A1
20070083722 Per et al. Apr 2007 A1
20070088702 Fridella et al. Apr 2007 A1
20070094452 Fachan Apr 2007 A1
20070106706 Ahrens et al. May 2007 A1
20070109592 Parvathaneni May 2007 A1
20070112723 Alvarez et al. May 2007 A1
20070112955 Clemm et al. May 2007 A1
20070136269 Yamakabe et al. Jun 2007 A1
20070143359 Uppala et al. Jun 2007 A1
20070186066 Desai et al. Aug 2007 A1
20070186127 Desai et al. Aug 2007 A1
20070208537 Savoor et al. Sep 2007 A1
20070208918 Harbin et al. Sep 2007 A1
20070234106 Lecrone et al. Oct 2007 A1
20070245041 Hua et al. Oct 2007 A1
20070255530 Wolff Nov 2007 A1
20070266037 Terry et al. Nov 2007 A1
20070300013 Kitamura Dec 2007 A1
20080019359 Droux et al. Jan 2008 A1
20080065639 Choudhary et al. Mar 2008 A1
20080071939 Tanaka et al. Mar 2008 A1
20080104264 Duerk et al. May 2008 A1
20080126695 Berg May 2008 A1
20080127211 Belsey et al. May 2008 A1
20080155190 Ash et al. Jun 2008 A1
20080162079 Astigarraga et al. Jul 2008 A1
20080162990 Wang et al. Jul 2008 A1
20080165899 Rahman et al. Jul 2008 A1
20080168226 Wang et al. Jul 2008 A1
20080184063 Abdulvahid Jul 2008 A1
20080201535 Hara Aug 2008 A1
20080212938 Sato et al. Sep 2008 A1
20080228691 Shavit et al. Sep 2008 A1
20080244158 Funatsu et al. Oct 2008 A1
20080244354 Wu et al. Oct 2008 A1
20080250270 Bennett Oct 2008 A1
20080270719 Cochran et al. Oct 2008 A1
20090019449 Choi et al. Jan 2009 A1
20090031083 Willis et al. Jan 2009 A1
20090037500 Kirshenbaum Feb 2009 A1
20090037654 Allison et al. Feb 2009 A1
20090043878 Ni Feb 2009 A1
20090083478 Kunimatsu et al. Mar 2009 A1
20090097654 Blake Apr 2009 A1
20090132770 Lin et al. May 2009 A1
20090144497 Withers Jun 2009 A1
20090150537 Fanson Jun 2009 A1
20090157870 Nakadai Jun 2009 A1
20090193206 Ishii et al. Jul 2009 A1
20090204636 Li Aug 2009 A1
20090210611 Mizushima Aug 2009 A1
20090210618 Bates et al. Aug 2009 A1
20090225657 Haggar et al. Sep 2009 A1
20090235022 Bates et al. Sep 2009 A1
20090235110 Kurokawa et al. Sep 2009 A1
20090249001 Narayanan et al. Oct 2009 A1
20090249019 Wu et al. Oct 2009 A1
20090271412 Lacapra et al. Oct 2009 A1
20090276567 Burkey Nov 2009 A1
20090276771 Nickolov et al. Nov 2009 A1
20090285476 Choe et al. Nov 2009 A1
20090299940 Hayes et al. Dec 2009 A1
20090307290 Barsness et al. Dec 2009 A1
20090313451 Inoue et al. Dec 2009 A1
20090313503 Atluri et al. Dec 2009 A1
20090327604 Sato et al. Dec 2009 A1
20100011037 Kazar Jan 2010 A1
20100023726 Aviles Jan 2010 A1
20100030981 Cook Feb 2010 A1
20100031000 Flynn et al. Feb 2010 A1
20100031315 Feng et al. Feb 2010 A1
20100042790 Mondal et al. Feb 2010 A1
20100057792 Ylonen Mar 2010 A1
20100070701 Iyigun et al. Mar 2010 A1
20100077101 Wang et al. Mar 2010 A1
20100077380 Baker et al. Mar 2010 A1
20100082648 Potapov et al. Apr 2010 A1
20100082790 Hussaini et al. Apr 2010 A1
20100088296 Periyagaram Apr 2010 A1
20100122148 Flynn et al. May 2010 A1
20100124196 Bonar et al. May 2010 A1
20100161569 Schreter, IV Jun 2010 A1
20100161574 Davidson et al. Jun 2010 A1
20100161850 Otsuka Jun 2010 A1
20100169415 Leggette et al. Jul 2010 A1
20100174677 Zahavi et al. Jul 2010 A1
20100174714 Asmundsson et al. Jul 2010 A1
20100191713 Lomet et al. Jul 2010 A1
20100199009 Koide Aug 2010 A1
20100199040 Schnapp et al. Aug 2010 A1
20100205353 Miyamoto et al. Aug 2010 A1
20100205390 Arakawa Aug 2010 A1
20100217953 Beaman et al. Aug 2010 A1
20100223385 Gulley et al. Sep 2010 A1
20100228795 Hahn et al. Sep 2010 A1
20100228999 Maheshwari et al. Sep 2010 A1
20100250497 Redlich et al. Sep 2010 A1
20100250712 Ellison et al. Sep 2010 A1
20100262812 Lopez et al. Oct 2010 A1
20100268983 Raghunandan Oct 2010 A1
20100269044 Ivanyi et al. Oct 2010 A1
20100280998 Goebel et al. Nov 2010 A1
20100281080 Rajaram et al. Nov 2010 A1
20100293147 Snow et al. Nov 2010 A1
20100306468 Shionoya Dec 2010 A1
20100309933 Stark et al. Dec 2010 A1
20110004707 Spry et al. Jan 2011 A1
20110022778 Schibilla et al. Jan 2011 A1
20110035548 Kimmel et al. Feb 2011 A1
20110060876 Liu Mar 2011 A1
20110066808 Flynn et al. Mar 2011 A1
20110072008 Mandal et al. Mar 2011 A1
20110078496 Jeddeloh Mar 2011 A1
20110087929 Koshiyama Apr 2011 A1
20110093674 Frame et al. Apr 2011 A1
20110099342 Ozdemir Apr 2011 A1
20110099419 Lucas et al. Apr 2011 A1
20110119412 Orfitelli May 2011 A1
20110119668 Calder et al. May 2011 A1
20110126045 Bennett et al. May 2011 A1
20110153603 Adiba et al. Jun 2011 A1
20110153719 Santoro et al. Jun 2011 A1
20110153972 Laberge Jun 2011 A1
20110154103 Bulusu et al. Jun 2011 A1
20110161293 Vermeulen et al. Jun 2011 A1
20110161725 Allen et al. Jun 2011 A1
20110173401 Usgaonkar Jul 2011 A1
20110191389 Okamoto Aug 2011 A1
20110191522 Condict et al. Aug 2011 A1
20110196842 Timashev et al. Aug 2011 A1
20110213928 Grube et al. Sep 2011 A1
20110219106 Wright Sep 2011 A1
20110231624 Fukutomi et al. Sep 2011 A1
20110238857 Certain et al. Sep 2011 A1
20110246733 Usgaonkar et al. Oct 2011 A1
20110246821 Eleftheriou et al. Oct 2011 A1
20110283048 Feldman et al. Nov 2011 A1
20110286123 Montgomery et al. Nov 2011 A1
20110289565 Resch et al. Nov 2011 A1
20110296133 Flynn et al. Dec 2011 A1
20110302572 Kuncoro et al. Dec 2011 A1
20110307530 Patterson Dec 2011 A1
20110311051 Resch et al. Dec 2011 A1
20110314346 Vas et al. Dec 2011 A1
20120003940 Hirano et al. Jan 2012 A1
20120011176 Aizman Jan 2012 A1
20120011340 Flynn et al. Jan 2012 A1
20120016840 Lin et al. Jan 2012 A1
20120047115 Subramanya et al. Feb 2012 A1
20120054746 Vaghani et al. Mar 2012 A1
20120063306 Sultan et al. Mar 2012 A1
20120066204 Ball et al. Mar 2012 A1
20120072656 Archak et al. Mar 2012 A1
20120072680 Kimura et al. Mar 2012 A1
20120078856 Linde Mar 2012 A1
20120084506 Colgrove et al. Apr 2012 A1
20120109895 Zwilling et al. May 2012 A1
20120124282 Frank et al. May 2012 A1
20120136834 Zhao May 2012 A1
20120143877 Kumar et al. Jun 2012 A1
20120150869 Wang et al. Jun 2012 A1
20120150930 Jin et al. Jun 2012 A1
20120151118 Flynn et al. Jun 2012 A1
20120166715 Frost et al. Jun 2012 A1
20120166749 Eleftheriou et al. Jun 2012 A1
20120185437 Pavlov et al. Jul 2012 A1
20120197844 Wang et al. Aug 2012 A1
20120210095 Nellans et al. Aug 2012 A1
20120221828 Fang et al. Aug 2012 A1
20120226668 Dhamankar et al. Sep 2012 A1
20120226841 Nguyen et al. Sep 2012 A1
20120239869 Chiueh et al. Sep 2012 A1
20120240126 Dice et al. Sep 2012 A1
20120243687 Li et al. Sep 2012 A1
20120246129 Rothschild et al. Sep 2012 A1
20120246392 Cheon Sep 2012 A1
20120271868 Fukatani et al. Oct 2012 A1
20120290629 Beaverson et al. Nov 2012 A1
20120290788 Klemm et al. Nov 2012 A1
20120303876 Benhase et al. Nov 2012 A1
20120310890 Dodd et al. Dec 2012 A1
20120311246 McWilliams et al. Dec 2012 A1
20120311290 White Dec 2012 A1
20120311292 Maniwa et al. Dec 2012 A1
20120311568 Jansen Dec 2012 A1
20120317084 Liu Dec 2012 A1
20120317338 Yi et al. Dec 2012 A1
20120317353 Webman et al. Dec 2012 A1
20120317395 Segev et al. Dec 2012 A1
20120323860 Yasa et al. Dec 2012 A1
20120324150 Moshayedi et al. Dec 2012 A1
20120331471 Ramalingam et al. Dec 2012 A1
20130007097 Sambe et al. Jan 2013 A1
20130007370 Parikh et al. Jan 2013 A1
20130010966 Li et al. Jan 2013 A1
20130013654 Lacapra et al. Jan 2013 A1
20130018722 Libby Jan 2013 A1
20130018854 Condict Jan 2013 A1
20130019057 Stephens et al. Jan 2013 A1
20130024641 Talagala et al. Jan 2013 A1
20130042065 Kasten et al. Feb 2013 A1
20130054927 Raj Feb 2013 A1
20130055358 Short et al. Feb 2013 A1
20130060992 Cho et al. Mar 2013 A1
20130061169 Pearcy et al. Mar 2013 A1
20130073519 Lewis et al. Mar 2013 A1
20130073821 Flynn et al. Mar 2013 A1
20130080679 Bert Mar 2013 A1
20130080720 Nakamura et al. Mar 2013 A1
20130083639 Wharton et al. Apr 2013 A1
20130086006 Colgrove et al. Apr 2013 A1
20130086270 Nishikawa et al. Apr 2013 A1
20130086336 Canepa et al. Apr 2013 A1
20130110783 Wertheimer et al. May 2013 A1
20130110845 Dua May 2013 A1
20130111374 Hamilton et al. May 2013 A1
20130124776 Hallak et al. May 2013 A1
20130138616 Gupta et al. May 2013 A1
20130138862 Motwani et al. May 2013 A1
20130148504 Ungureanu Jun 2013 A1
20130159512 Groves et al. Jun 2013 A1
20130159815 Jung et al. Jun 2013 A1
20130166724 Bairavasundaram et al. Jun 2013 A1
20130166727 Wright et al. Jun 2013 A1
20130166861 Takano et al. Jun 2013 A1
20130185403 Vachharajani et al. Jul 2013 A1
20130185719 Kar et al. Jul 2013 A1
20130198480 Jones et al. Aug 2013 A1
20130204902 Wang et al. Aug 2013 A1
20130219048 Arvidsson et al. Aug 2013 A1
20130219214 Samanta et al. Aug 2013 A1
20130226877 Nagai et al. Aug 2013 A1
20130227111 Wright et al. Aug 2013 A1
20130227195 Beaverson et al. Aug 2013 A1
20130227201 Talagala et al. Aug 2013 A1
20130227236 Flynn et al. Aug 2013 A1
20130232240 Purusothaman et al. Sep 2013 A1
20130232261 Wright et al. Sep 2013 A1
20130238832 Dronamraju et al. Sep 2013 A1
20130238876 Fiske et al. Sep 2013 A1
20130238932 Resch Sep 2013 A1
20130262404 Daga Oct 2013 A1
20130262412 Hawton et al. Oct 2013 A1
20130262746 Srinivasan Oct 2013 A1
20130262762 Igashira et al. Oct 2013 A1
20130262805 Zheng et al. Oct 2013 A1
20130268497 Baldwin et al. Oct 2013 A1
20130275656 Talagala et al. Oct 2013 A1
20130290249 Merriman et al. Oct 2013 A1
20130290263 Beaverson et al. Oct 2013 A1
20130298170 Elarabawy et al. Nov 2013 A1
20130304998 Palmer et al. Nov 2013 A1
20130305002 Hallak et al. Nov 2013 A1
20130311740 Watanabe et al. Nov 2013 A1
20130325828 Larson et al. Dec 2013 A1
20130326546 Bavishi et al. Dec 2013 A1
20130332688 Corbett et al. Dec 2013 A1
20130339629 Alexander et al. Dec 2013 A1
20130346700 Tomlinson et al. Dec 2013 A1
20130346720 Colgrove et al. Dec 2013 A1
20130346810 Kimmel et al. Dec 2013 A1
20140006353 Chen et al. Jan 2014 A1
20140013068 Yamato et al. Jan 2014 A1
20140025986 Kalyanaraman et al. Jan 2014 A1
20140052764 Michael et al. Feb 2014 A1
20140059309 Brown et al. Feb 2014 A1
20140068184 Edwards et al. Mar 2014 A1
20140081906 Geddam et al. Mar 2014 A1
20140081918 Srivas et al. Mar 2014 A1
20140082255 Powell Mar 2014 A1
20140082273 Segev Mar 2014 A1
20140089264 Talagala et al. Mar 2014 A1
20140089683 Miller et al. Mar 2014 A1
20140095758 Smith et al. Apr 2014 A1
20140095803 Kim et al. Apr 2014 A1
20140101115 Ko et al. Apr 2014 A1
20140101298 Shukla et al. Apr 2014 A1
20140108350 Marsden Apr 2014 A1
20140108797 Johnson et al. Apr 2014 A1
20140108863 Nowoczynski et al. Apr 2014 A1
20140129830 Raudaschl May 2014 A1
20140143207 Brewer et al. May 2014 A1
20140143213 Tal et al. May 2014 A1
20140149355 Gupta et al. May 2014 A1
20140149647 Guo et al. May 2014 A1
20140164715 Weiner et al. Jun 2014 A1
20140172811 Green Jun 2014 A1
20140181370 Cohen et al. Jun 2014 A1
20140185615 Ayoub et al. Jul 2014 A1
20140195199 Uluyol Jul 2014 A1
20140195480 Talagala et al. Jul 2014 A1
20140195492 Wilding et al. Jul 2014 A1
20140195564 Talagala et al. Jul 2014 A1
20140208003 Cohen et al. Jul 2014 A1
20140215129 Kuzmin et al. Jul 2014 A1
20140215147 Pan Jul 2014 A1
20140215170 Scarpino et al. Jul 2014 A1
20140215262 Li et al. Jul 2014 A1
20140223029 Bhaskar et al. Aug 2014 A1
20140223089 Kang et al. Aug 2014 A1
20140244962 Arges et al. Aug 2014 A1
20140250440 Carter et al. Sep 2014 A1
20140258681 Prasky et al. Sep 2014 A1
20140259000 Desanti et al. Sep 2014 A1
20140279917 Minh et al. Sep 2014 A1
20140279931 Gupta et al. Sep 2014 A1
20140281017 Apte Sep 2014 A1
20140281055 Davda et al. Sep 2014 A1
20140281123 Weber Sep 2014 A1
20140281131 Joshi et al. Sep 2014 A1
20140283118 Anderson et al. Sep 2014 A1
20140289476 Nayak Sep 2014 A1
20140297980 Yamazaki Oct 2014 A1
20140304548 Steffan et al. Oct 2014 A1
20140310231 Sampathkumaran et al. Oct 2014 A1
20140310373 Aviles et al. Oct 2014 A1
20140317093 Sun et al. Oct 2014 A1
20140325117 Canepa et al. Oct 2014 A1
20140325147 Nayak Oct 2014 A1
20140344216 Abercrombie Nov 2014 A1
20140344222 Morris et al. Nov 2014 A1
20140344539 Gordon et al. Nov 2014 A1
20140372384 Long et al. Dec 2014 A1
20140379965 Gole et al. Dec 2014 A1
20140379990 Pan et al. Dec 2014 A1
20140379991 Lomet et al. Dec 2014 A1
20140380092 Kim et al. Dec 2014 A1
20150019792 Swanson et al. Jan 2015 A1
20150032928 Andrews et al. Jan 2015 A1
20150039745 Degioanni et al. Feb 2015 A1
20150039852 Sen et al. Feb 2015 A1
20150040052 Noel et al. Feb 2015 A1
20150052315 Ghai et al. Feb 2015 A1
20150058577 Earl Feb 2015 A1
20150066852 Beard et al. Mar 2015 A1
20150085665 Kompella et al. Mar 2015 A1
20150085695 Ryckbosch et al. Mar 2015 A1
20150089138 Tao et al. Mar 2015 A1
20150089285 Lim et al. Mar 2015 A1
20150095555 Asnaashari et al. Apr 2015 A1
20150106556 Yu et al. Apr 2015 A1
20150112939 Cantwell et al. Apr 2015 A1
20150120754 Chase et al. Apr 2015 A1
20150121021 Nakamura et al. Apr 2015 A1
20150127922 Camp et al. May 2015 A1
20150134926 Yang et al. May 2015 A1
20150169414 Lalsangi et al. Jun 2015 A1
20150172111 Lalsangi et al. Jun 2015 A1
20150186270 Peng et al. Jul 2015 A1
20150193338 Sundaram et al. Jul 2015 A1
20150199415 Bourbonnais et al. Jul 2015 A1
20150213032 Powell et al. Jul 2015 A1
20150220402 Cantwell et al. Aug 2015 A1
20150234709 Koarashi Aug 2015 A1
20150236926 Wright et al. Aug 2015 A1
20150242478 Cantwell et al. Aug 2015 A1
20150244795 Cantwell et al. Aug 2015 A1
20150253992 Ishiguro et al. Sep 2015 A1
20150254013 Chun Sep 2015 A1
20150261446 Lee Sep 2015 A1
20150261792 Attarde Sep 2015 A1
20150269201 Caso et al. Sep 2015 A1
20150286438 Simionescu et al. Oct 2015 A1
20150288671 Chan et al. Oct 2015 A1
20150293817 Subramanian et al. Oct 2015 A1
20150301964 Brinicombe et al. Oct 2015 A1
20150324236 Gopalan et al. Nov 2015 A1
20150324264 Chinnakkonda Vidyapoornachary et al. Nov 2015 A1
20150339194 Kalos et al. Nov 2015 A1
20150355985 Holtz et al. Dec 2015 A1
20150363328 Candelaria Dec 2015 A1
20150370715 Samanta et al. Dec 2015 A1
20150378613 Koseki Dec 2015 A1
20160004733 Cao et al. Jan 2016 A1
20160011984 Speer et al. Jan 2016 A1
20160014184 Rehan et al. Jan 2016 A1
20160014229 Seedorf et al. Jan 2016 A1
20160026552 Holden et al. Jan 2016 A1
20160034358 Hayasaka et al. Feb 2016 A1
20160048342 Jia et al. Feb 2016 A1
20160070480 Babu, Sr. et al. Mar 2016 A1
20160070490 Koarashi et al. Mar 2016 A1
20160070618 Pundir et al. Mar 2016 A1
20160070644 D'Sa et al. Mar 2016 A1
20160070714 D'Sa et al. Mar 2016 A1
20160077744 Pundir et al. Mar 2016 A1
20160092125 Cowling et al. Mar 2016 A1
20160099844 Colgrove et al. Apr 2016 A1
20160139838 D'Sa et al. May 2016 A1
20160139849 Chaw et al. May 2016 A1
20160149763 Ingram et al. May 2016 A1
20160149766 Borowiec et al. May 2016 A1
20160154834 Friedman, III et al. Jun 2016 A1
20160179410 Haas et al. Jun 2016 A1
20160188370 Razin et al. Jun 2016 A1
20160188430 Nitta et al. Jun 2016 A1
20160203043 Nazari et al. Jul 2016 A1
20160283139 Brooker et al. Sep 2016 A1
20160350192 Doherty et al. Dec 2016 A1
20160371021 Goldberg et al. Dec 2016 A1
20170003892 Sekido et al. Jan 2017 A1
20170017413 Aston et al. Jan 2017 A1
20170031769 Zheng et al. Feb 2017 A1
20170031774 Bolen et al. Feb 2017 A1
20170041288 Stotski et al. Feb 2017 A1
20170046257 Babu, Sr. et al. Feb 2017 A1
20170068599 Chiu et al. Mar 2017 A1
20170083535 Marchukov et al. Mar 2017 A1
20170097873 Krishnamachari, Sr. et al. Apr 2017 A1
20170109298 Kurita et al. Apr 2017 A1
20170123726 Sinclair et al. May 2017 A1
20170212690 Babu, Sr. et al. Jul 2017 A1
20170220777 Wang et al. Aug 2017 A1
20170300248 Purohit et al. Oct 2017 A1
20170351543 Kimura Dec 2017 A1
20180081832 Longo et al. Mar 2018 A1
20180287951 Waskiewicz, Jr. et al. Oct 2018 A1
Foreign Referenced Citations (7)
Number Date Country
0726521 Aug 1996 EP
1970821 Sep 2008 EP
2693358 Feb 2014 EP
2735978 May 2014 EP
2006050455 May 2006 WO
2010033962 Mar 2010 WO
2012132943 Oct 2012 WO
Non-Patent Literature Citations (86)
Entry
Konishi, R., Sato, K., andY. Amagai, “Filesystem Support for Continuous Snapshotting,” Ottawa Linux Symposium, 2007.
Lamport L, “The Part-Time Parliament,” ACM Transactions on Computer Systems, May 1998, vol. 16 (2), pp. 133- 169.
Leventhal a.H., “A File System All its Own,” Communications of the ACM Queue, May 2013, vol. 56 (5), pp. 64-67.
Lim H., et al., “Silt: A Memory-Efficient, High-Performance Key-Value Store,” Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP'11), Oct. 23-26, 2011, pp. 1-13.
Metreveli et al. “CPHash: A Cache-Partitioned Hash Table.” Nov. 2011. https://people.csail.mit.edu/nickolai/papers/metrevelicphash-tr.pdf.
Moshayedi M., et al., “Enterprise SSDs,” ACM Queue- Enterprise Flash Storage, Jul.-Aug. 2008, vol. 6 (4), pp. 32-39.
Ddlevak, “Simple Kexec Example”, https://www.linux.com/blog/simple-kexec-example, accessed on Feb. 5, 2019 (Year: 2011), 4 pages.
Detiker, “rrdfetch,” http ://oss.oetiker.ch/rrdtool/dodrrdfetch .en. html, Date obtained from the internet: Sep. 9, 2014, 5 pages.
Oetiker, “rrdtool,” http :/loss. oetiker.ch/rrdtool/doc/rrdtool.en. html Date obtained from the Internet: Sep. 9, 2014, 5 pages.
D'Neil P., at al., “The Log-structured Merge-tree (Ism-tree),” Acta Informatica, 33, 1996, pp. 351-385.
Dngaro D., et al., “In Search of an Understandable Consensus Algorithm,” Stanford University, URL: https:// ramcloud.stanford.edu/wiki/download/attachments/11370504/raft.pdf, May 2013, 14 pages.
Ongaro, et al., “In search of an understandable consensus algorithm (extended version),” 2014, 18 pages.
Pagh R., et al., “Cuckoo Hashing,” Elsevier Science, Dec. 8, 2003, pp. 1-27.
Pagh R., et al., “Cuckoo Hashing for Undergraduates,” IT University of Copenhagen, Mar. 27, 2006, pp. 1-6.
“Pivot Root”, Die.net, retrieved from https://linux.die.net/pivot_root on Nov. 12, 2011 (Year: 2012).
Proceedings of the Fast 2002 Conference on File Storage Technologies, Monterey, California, USA, Jan. 28-30, 2002, 14 pages.
Rosenblum M., et al., “The Design and Implementation of a Log-Structured File System,” in Proceedings of ACM Transactions on Computer Systems, vol. 10(1),Feb. 1992, pp. 26-52.
Rosenblum M., et al., “The Design and Implementation of a Log-Structured File System,” (SUN00006867—SUN00006881), Jul. 1991, 15 pages.
Rosenblum M., et al., “The Design and Implementation of a Log-Structured File System,”Proceedings of the 13th ACM Symposium on Operating Systems Principles, (SUN00007382—SUN00007396), Jul. 1991, 15 pages.
Rosenblum M., et al., “The LFS Storage Manager,” USENIX Technical Conference, Anaheim, CA, (Sun 00007397—SUN00007412), Jun. 1990, 16 pages.
Rosenblum M., et al., “The LFS Storage Manager,” Usenix Technical Conference, Computer Science Division, Electrical Engin. and Computer Sciences, Anaheim, CA, presented at Summer '90 Usenix Technical Conference, SUN00006851—SUN00006866), Jun. 1990, 16 pages.
Rosenblum M., “The Design and Implementation of a Log-Structured File System,” UC Berkeley,1992, pp. 1-101.
Sears., et al., “Blsm: A General Purpose Log Structured Merge Tree,” Proceedings of the 2012 ACM Sigmod International Conference on Management, 2012, 12 pages.
Seltzer M., et al., “An Implementation of a Log Structured File System for Unix,” Winter Usenix, San Diego, CA, Jan. 25-29, 1993, pp. 1-18.
Seltzer M.I., et al., “File System Performance and Transaction Support,” University of California at Berkeley Dissertation, 1992, 131 pages.
Smith K., “Garbage Collection,” Sand Force, Flash Memory Summit, Santa Clara, CA, Aug. 2011, pp. 1-9.
Stoica et al. “Chord: a Scalable Peer-to-peer Lookup Service for Internet Applications.” Aug. 2001. ACM. SIGCOMM 01.
Supplementary European Search Report for Application No. EP12863372 dated Jul. 16, 2015, 7 pages.
Texas Instruments, User Guide, TMS320C674x/OMAP-L1 x Processor Serial ATA (SATA) Controller, Mar. 2011, 76 pages.
Twigg A., et al., “Stratified B-trees and Versioned Dictionaries,” Proceedings of the 3rd US EN IX Conference on Hot Topics in Storage and File Systems, 2011, vol. 11, pp. 1-5.
Waskiewicz, PJ, “Scaling With Multiple Network Namespaces in a Single Application”, Netdev 1.2- the Technical Conferenceon Linux Networking, retrieved from internet: URL; https://netdevconforq/1.2/papers/pj- netdev-1.2pdf Dec. 12, 2016, 5 pages.
Nei, Y. And D. Shin, “Nand Flash Storage Device Performance in Linux File System,” fith International Conference on Computer Sciences and Convergence Information Technology (ICCIT), 2011.
Nikipedia, “Cuckoo hashing,” http://en.wikipedia.org/wiki/Cuckoo_hash, Apr. 2013, pp. 1-5.
Wilkes J., et al., “The Hp Auto Raid Hierarchical Storage System,” Operating System Review, ACM, New York, NY, Dec. 1, 1995, vol. 29 (5), pp. 96-108.
Wu P-L., et al., “A File-System-Aware Ftl Design for Flash-Memory Storage Systems,” IEEE, Design, Automation & Test in Europe Conference & Exhibition, 2009, pp. 1-6.
Yossef, “BuildingMurphy-compatible embedded Linux Systems”, Proceedings of the Linux Symposium,Ottawa, Ontario Canada, Jul. 20-23, 2005 (Year: 2005).
Agrawal, et al., “Design Tradeoffs for SSD Performance,” USENIX Annual Technical Conference, 2008, 14 pages.
Alvaraez C., “NetApp Deduplication for Fas and V-Series Deployment and Implementation Guide,” Technical Report TR-3505, 2011, 75 pages.
Amit et al., “Strategies for Mitigating the IOTLB Bottleneck,” Technion- Israel Institute of Technology, IBM Research Haifa, Wiosca 2010- Sixth Annual Workshop on the Interaction between Operating Systems and Computer Architecture, 2010, 12 pages.
Arpaci-Dusseau R., et al., “Log-Structured File Systems,” Operating Systems: Three Easy Pieces published by Arpaci-Dusseau Books, May 25, 2014, 15 pages.
Balakrishnan M., et al., “CORFU: A Shared Log Design for Flash Clusters,” Microsoft Research Silicon Vally, University of California, San Diego, Apr. 2012, https://www.usenix.org/conference/nsdi12/technical-sessions/ presentation/balakrishnan, 14 pages.
Ben-Yehuda et al., “The Price of Safety: Evaluating Iommu Performance,” Proceedings of the Linux Symposium, vol. 1, Jun. 27-30, 2007, pp. 9-20.
Bitton a et al., “Duplicate Record Elimination in Large Data Files,” Oct. 26, 1999, 11 pages.
Bogaerdt, “cdeftutorial,” http://oss.oetiker.chirrdtool/tut/cdeftutorial.en.html Date obtained from the internet, Sep. 9, 2014, 14 pages.
Bogaerdt, “Rates, Normalizing and Consolidating,” http://www.vandenbogaerdl.nl/rrdtool/process.php Date Obtained from the Internet: Sep. 9, 2014, 5 pages.
Cogaerdt, “rrdtutorial,” http://oss.oetiker.chirrdtool/lul/rrdtutorial.en.html Date obtained from the internet, Sep. 9, 2014, 21 pages.
Chris K., et al., “How many primes are there?” Nov. 2001. https://web.archive.org/web/20011120073053/http:// primes.utm.edu/howmany.shtml.
Cornwellm., “Anatomy of a Solid-state Drive,” ACM Queue-Networks, Oct. 2012, vol. 10 (10), pp. 1-7.
Culik K., et al., “Dense Multiway Trees,” ACM Transactions on Database Systems, Sep. 1981, vol. 6 (3), pp. 486-512.
Debnath B., et al., “FlashStore: High Throughput Persistent Key-Value Store,” Proceedings of the VLDB Endowment VLDB Endowment, Sep. 2010, vol. 3 (1-2), pp. 1414-1425.
Debnath, et al., “ChunkStash: Speeding up in line Storage Deduplication using Flash Memory,” USENIX, USENICATC '10, Jun. 2010, 15 pages.
Dictionary definition for references, retrieved from: http://www.dictionary.com/browse/reference?s=t on Dec. 23, 2017.
Enclopedia entry for pointers vs. references, retrieved from: https://www.geeksforgeeks.org/pointers-vs-references-cpp/ on Dec. 23, 2017.
Extended European Search Report dated Apr. 9, 2018 for EP Application No. 15855480.8 filed Oct. 22, 2015, 7 pages.
Fan, et al., “MemC3: Compact and Concurrent MemCache with Dumber Caching and Smarter Flashing,” USENIX NSDI '13, Apr. 2013, pp. 371-384.
Gal E., et al., “Algorithms and Data Structures for Flash Memories,” ACM Computing Surveys (CSUR) Archive, Publisher ACM, New York City, NY, USA, Jun. 2005, vol. 37 (2), pp. 138-163.
Gray J., et al., “Flash Disk Opportunity for Server Applications,” Queue- Enterprise Flash Storage, Jul.-Aug. 2008, vol. 6 (4), pp. 18-23.
Gulati et al., “Basil: Automated 10 Load Balancing Across Storage Devices,” Proceedings of the 8th Usenix Conference on File and Storage Technologies, FAST'10, Berkeley, CA, USA, 2010, 14 pages.
Handy J., “SSSI Tech Notes: How Controllers Maximize SSD Life,” SNIA, Jan. 2013, pp. 1-20.
Hwang K, et al., “Raid-x: A New Distributed Disk Array for I/O-centric Cluster Computing,” IEEE High-Performance Distributed Computing, Aug. 2000, pp. 279-286.
BM Technical Disclosure Bulletin, “Optical Disk Axial Runout Test”, vol. 36, no. 10, NN9310227, Oct. 1,1993, 3 pages.
Intel, Product Specification- Intel® Solid-State Drive DC S3700, Jun. 2013, 32 pages.
International Search Report and Written Opinion for Application No. PCT/EP2014/071446 dated Apr. 1, 2015, 14 pages.
International Search Report and Written Opinion for Application No. PCT/US2012/071844 dated Mar. 1, 2013, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2014/035284 dated Apr. 1, 2015, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US2014/055138 dated Dec. 12, 2014, 13 pages.
International Search Report and Written Opinion for Application No. PCT/US2014/058728 dated Dec. 16, 2014, 11 pages.
International Search Report and Written Opinion for Application No. PCT/US2014/060031 dated Jan. 26, 2015, 9 pages.
International Search Report and Written Opinion for Application No. PCT/US2014/071446 dated Apr. 1, 2015, 13 pages.
International Search Report and Written Opinion for Application No. PCT/US2014/071465 dated Mar. 25, 2015, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2014/071484 dated Mar. 25, 2015, 9 pages.
International Search Report and Written Opinion for Application No. PCT/US2014/071581 dated Apr. 10, 2015, 9 pages.
International Search Report and Written Opinion for Application No. PCT/US2014/071635 dated Mar. 31, 2015, 13 pages.
International Search Report and Written Opinion for Application No. PCT/US2015/016625 dated Sep. 17, 2015, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US2015/021285 dated Jun. 23, 2015, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US2015/024067 dated Jul. 8, 2015, 7 pages.
International Search Report and Written Opinion for Application No. PCT/US2015/048800 dated Nov. 25, 2015, 11 pages.
International Search Report and Written Opinion for Application No. PCT/US2015/048810 dated Dec. 23, 2015, 11 pages.
International Search Report and Written Opinion for Application No. PCT/US2015/048833 dated Nov. 25, 2015, 11 pages.
International Search Report and Written Opinion for Application No. PCT/US2015/056932 dated Jan. 21, 2016, 11 pages.
International Search Report and Written Opinion for Application No. PCT/US2015/057532 dated Feb. 9, 2016, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2016/059943 dated May 15, 2017, 14 pages.
International Search Report and Written Opinion for Application No. PCT/US2018/025951, dated Jul. 18, 2018, 16 pages.
Jones, M. Tim, “Next-generation Linux file systems: NiLFS(2) and eofs,” IBM, 2009.
Jude Nelson “Syndicate: Building a Virtual Cloud Storage Service Through Service Composition” Princeton University, 2013, pp. 1-14.
Kagel A.S, “two-way merge sort,” Dictionary of Algorithms and Data Structures [online], retrieved on Jan. 28, 2015, Retrieved from the Internet : URL: http://xlinux.nist.gov/dads/HTMUlwowaymrgsrl.html, May 2005, 1 page.
Related Publications (1)
Number Date Country
20170308305 A1 Oct 2017 US