This invention is generally directed toward systems for bringing a spacecraft to a desired attitude. A position-based gyroless control has been invented to perform the acquisition maneuver for the spacecraft with no gyro information available but with position sensors (e.g., star trackers), which could be in a long intrusion during the maneuver.
The systems disclosed herein enable gyroless spacecraft acquisition maneuvers including power acquisitions with the spacecraft in either stowed or deployed configurations, wing/reflector deployments, on-station large-angle slew, antenna mapping, attitude hold in momentum dump, etc.
In a typical spacecraft attitude control system (ACS), a gyro plays a crucial role in performing the spacecraft acquisition maneuvers, in either stowed or fully deployed configurations. However, due to limited resources, a program may opt to use only a single on-board gyro, which drastically increases the risk factor in the area of fault autonomy. As other position sensors, such as star trackers, become more advanced and powerful, an algorithm using attitude reference, instead of rate reference, is needed for the spacecraft with no inertial reference unit (IRU) data available in either the toggle alternate or post-toggle state.
Disclosed herein is a position-based gyroless control system using position sensors to drive the spacecraft acquisition maneuvers under various maneuver scenarios. Furthermore, a sensor intrusion will prevent an attitude estimate update when a position sensor is used, resulting in an attitude drift from intrusion. A method is provided to lessen the impact of sensor intrusions using the position control technique disclosed herein.
In the past, gyroless operation existed but was only applicable for a few minutes during the entire mission on a need basis, i.e., to switch the gyro to its backup assembly when the primary unit failed. Before the redundant gyro warmed up, the ACS needed a “gyroless” control to monitor the system stability for a short while. For such a momentary gyroless ACS, analysts in the past simply relied on the so-called “derived rate” from the position sensors such as star trackers or earth sensors. They used the existing control laws to close the ACS loop, as if the rate information was always available. Some prior spacecraft have turned off the gyro during the on-station safe-hold mode, but they could not (did not) perform any gyroless “maneuvers” as described herein.
“Deriving the rate” when the gyro is not available tends to produce huge noise and is much worse than the original rate information. One can filter the noise to some extent but at a cost of sacrificing system stability margins. As a result, this noisy “artificial” rate information can produce poor performance, saturate the control actuation capability, limit the controllability and observability of the ACS, and eventually jeopardize the entire spacecraft attitude stability and cause the spacecraft to tumble. In the past, since “gyroless” operation only happened less than 0.001% of the mission time span, using a “derived rate” temporarily was acceptable before rate noise drift contaminated the ACS. But for a serious official “gyroless” mission maneuver, a “derived rate” becomes awkward and troublesome and an algorithm using the position sensors is critically needed.
The system and method disclosed herein need not rely on rate measurement for any acquisition maneuvers. Instead the system can simply command the spacecraft to do a 3-axis maneuver purely based on “position” measurement. Using an “inertial gimbal concept”, a set of formulae were derived that can map a set of “inertial” motion to the spacecraft body frame based on position information so that the spacecraft can perform/follow according to the desired inertial position maneuvers commands. Also, the system and method disclosed herein employ an intrusion steering law to protect the spacecraft from acquisition failure when a long sensor intrusion occurs.
Previous acquisition maneuvers such as power acquisition, on-station large-angle slew, antenna mapping, etc. relied on rate measurements from gyros. The system disclosed herein can perform these maneuvers with only attitude measurements from position sensors.
Fault autonomy design on power acquisition (either during the spinning transfer orbit or on station) and other on-station acquisition maneuvers cannot be closed with previous methods relying on a redundant gyro. The present invention allows a failsafe design to work with position sensors only when the single on-board gyro has failed. Furthermore, the algorithms as disclosed herein work as a fuel saver since the power acquisition maneuvers can be performed on wheels, instead of thrusters.
Other aspects of the invention are disclosed and claimed below.
Reference will now be made to the drawings in which similar elements in different drawings bear the same reference numerals.
In accordance with one embodiment depicted in
Each star tracker 6 is an optical sensor used to identify the stars in space. Star trackers overcome earth sensor obsolescence while providing higher pointing accuracy and robust attitude determination.
The IRU 8 is an on-board sensor used to measure the spacecraft body rates with respect to an inertial reference frame. The terms “gyro” and “IRU” are used herein interchangeably to refer to the same rate sensing device. The present invention makes it possible to control spacecraft attitude without using the IRU or without any IRU aboard the spacecraft.
In accordance with one embodiment, the estimator 10 seen in
The “Normal Mode Operations” seen in
The system includes two additional phase sequencers that are related to the power acquisition algorithms seen in
The term “power and thermal safe state” means the spacecraft is in either a slow rotisserie about a selected body axis with the solar wing panels on sun exposure periodically, or a stationary attitude such that the solar panels are on sun exposure continually. A successful sun acquisition will hold the wings on the sun, providing enough power to support the spacecraft loads, including power for the necessary heaters.
The system disclosed herein uses a proportional feedback controller architecture (block 14 in
The system disclosed herein is characterized by its position-only control and the method of generating position command relies on continued attitude determination on attitude sensor. It can be used, with no gyro information, to (1) place and maintain the spacecraft, in either stowed or fully deployed configurations, in a power/thermal safe state from a post-toggle and (2) perform on-station large-angle slew and/or attitude capture. Furthermore, this system provides a gyroless intrusion steering law (part of the AQM and SHM algorithms) to protect against possible acquisition failure from a long sensor intrusion. The gyroless intrusion steering law is applied to the phases of the AQM and SHM phase sequencers wherever it is applicable.
The embodiment disclosed herein uses an “Inertial Gimbal Concept” to represent the inertial space with a two-axis gimbal. The functionality of the gimbal is to represent a three-dimensional inertial space with elevation, azimuth and rotation of boresight. The azimuth and elevation rotations of the gimbal axes cover the entire three-dimensional sky. One can use the “Inertial Gimbal Concept” to derive a set of quaternion commands that allow a spacecraft to perform the desired 3-axis acquisition maneuvers on attitude sensor. [The phrase “on attitude sensor”, as used herein, means that the attitude control system uses the attitude sensor (e.g., star trackers) measurements as references to estimate the spacecraft attitude and perform desired acquisition maneuver control such that the estimated attitude will closely follow the attitude command.] The Euler angles (in three dimensions) can be represented by elevation, azimuth and rotation of boresight. The basic idea of the “Inertial Gimbal Concept” is to rotate the gimbal in two directions—one about “Azimuth” and the other about “Elevation”—at rotation rates that create a “spiral” maneuver pattern needed for an acquisition maneuver. Therefore moving the gimbal systematically can carry out the required Euler transformation sequences systematically. This spiral pattern is a three-dimensional acquisition pattern. The center of the star tracker field of view forms a “spiral shape” trajectory as shown in
More specifically, this invention employs a 1-2-3 Euler sequence of rotation to map the inertially fixed gimbal motion to spacecraft body motion via the quaternion operation: T=[φ]3[a]2[e]1 where “e” is the EL gimbal angle, “a” is the AZ gimbal angle, and “φ38 is the spin angle. (Quaternion representation is used for convenience.) The total combined transformation in terms of a set of quaternion commands with respect to the inertially fixed gimbal frame is shown in
The present invention includes phase sequencers to direct desired power acquisition with position-based control on attitude sensor. The acquisition mode logic state diagram is given in
AQM provides an emergency sun acquisition capability during transfer orbit. It can put the spacecraft in a power/thermal safe state for an extended period of time from arbitrary initial conditions (attitude or rate). It is useful for anomaly recovery. AQM uses thrusters to spin up/down and wheels to find the sun and hold the spacecraft on a power/thermal safe state.
In brief, the AQM works as follows. First, AQM uses extended transfer orbit slit sun sensors with a ±75 deg field-of-view to place the sun vector in the body X/Z plane, followed by a Z-reorientation to place the Z body axis perpendicular to the sunline. Then the spacecraft uses thrusters to spinup to 0.6 deg/sec about the Z body axis and remains at this rate using wheels with the sun in the X/Y plane and well-illuminated solar panels.
AQM can use either gyro data or star tracker data to execute an acquisition maneuver. In either case the position-based “inertial gimbal” control loop is used; the commanded quaternion is updated using the desired φ, AZ (azimuth), and EL (elevation) rates to define the desired position of the spacecraft axes throughout the entire AQM execution.
More specifically, the initialization procedure for AQM is shown in phase 18 of
An existing spacecraft fleet employs the regular (heritage) AQM to perform the sun acquisition maneuver with thruster control and ends with, in the safe hold state, the spacecraft spinning about the X-body axis in the Standby Mode with no control. (This is what the term “free X-spin” means.) Note that the X-spin is dynamically stable and an active control is not required. The new AQM as presented in this disclosure is designed to perform the maneuvers on wheel instead (i.e., a fuel saver) and ends with the spacecraft spinning about the Z-body axis while wheel control remains active. The uniqueness of this new approach is as follows.
The heritage “free X-spin” may not be feasible for the acquisition maneuver on wheel since the X-body axis is the major axis with much larger inertia about this axis than the Z-body axis (minor axis). When performing the Z-to-X momentum reorientation as needed to bring the spacecraft to the safe hold state, the spacecraft will experience a significant momentum exchange between the body/wheel if with the wheel control, resulting in a wheel momentum saturation and consequently, an acquisition failure. The new AQM disclosed herein takes advantage of the smaller spacecraft inertia about the Z-body axis, at which the step of Z-to-X momentum reorientation as needed for the heritage AQM can be omitted, but still, needs to remain in wheel control since the Z-body axis is dynamically unstable. (Note that the spacecraft can be in either X-spin or Z-spin to meet the power and thermal safe requirement)
SHM provides an emergency sun acquisition capability during the post-wing-deployment phases of the mission and on-orbit. It can put the spacecraft in a power/thermal safe state for an extended period of time from arbitrary initial conditions of attitude and rate (limited by the momentum storage capability of the RWAs). SHM uses thrusters or wheels to null rates and wheels to find the sun and hold the spacecraft in a power/thermal safe state. SHM also provides the momentum dump capability when the thruster option is selected.
SHM achieves a power and thermal safe state for the spacecraft by commanding coordinated slews of both the body and the wings until the wing current is above a set threshold.
Finally, SHM can use either gyro data or star tracker data to execute an acquisition maneuver. In either case, a position-based “inertial gimbal” control loop is used; the commanded quaternion is updated using the desired φ, AZ (azimuth), and EL (elevation) rates to define the desired position of the spacecraft axes throughout the entire SHM execution.
More specifically, the initialization procedure for SHM is shown in phase 32 of
With the “Inertial Gimbal Concept” described above, the system disclosed herein calculates the quaternion position commands, in each mode phase, to yield a desired maneuver in the Earth Centered Inertial (ECI) frame. The method of calculation is as follow (referring again to
(i) Upon entry to a new mode phase, use the body-to-ECI quaternion estimate from an Attitude Determination (ATD) software module at phase entry as a local “inertial reference” (defined as original reference): {circumflex over (q)}refo={circumflex over (q)}b
(ii) While in the mode phase processing, calculate the gimbal angle commands e,a,φ based on gimbal rate commands ė,{dot over (a)},{dot over (φ)} functionally set for each phase, and calculate the corresponding quaternion position commands {circumflex over (q)}b
(iii) Update the quaternion position commands relative to the ECI frame: {circumflex over (q)}b
(iv) Exit to next mode phase when the position errors become small and other exit criteria are met.
As previously mentioned, a gyroless intrusion steering law is used at control intrusion induced by attitude reference dropping (for example, star tracker sun/earth intrusions). When position control is resumed from a long intrusion, it may cause, without the steering law, excessive thruster firings on large position control errors growing under no control state and subsequent acquisition failure. The intrusion steering law is developed to maintain zero position control errors during intrusions, and small attitude transients in the post-intrusion by deriving a set of alternated “inertial” references. The intrusion steering law involves a two-stage operation that works as follows (for all mode phases).
(i) The first stage of the steering law is to maintain zero position errors when attitude reference becomes unavailable and the spacecraft is in no control state. The steering law stops the normal function of the mode phase in processing and generates a temporary “inertial reference” {circumflex over (q)}ref to substitute for the original reference {circumflex over (q)}refo at each dispatch time:
{circumflex over (q)}
ref
={circumflex over (q)}
b
ect
est
(qb
at which the quaternion position command output to the STR software module will follow the quaternion estimate {circumflex over (q)}b
(ii) The second stage of the steering law is to perform a quaternion reference slew, after intrusion is over and control is resumed, to bring the current reference {circumflex over (q)}ref at control resumed (={circumflex over (q)}reff) to the original reference {circumflex over (q)}refo at a slew rate {circumflex over (ω)}slew. (If an intrusion occurred in Z-spin phase, for example, this will set the quaternion reference back to where the full wing currents are acquired at phase entry). First, the steering law determines the slew axis and angle:
{circumflex over (q)}
slew=({circumflex over (q)}reff)−1{circumflex over (q)}refo
ê=slew axis={circumflex over (q)}slew(1:3)/|{circumflex over (q)}slew(1:3)|
θslew,max=max imum slew angle=2 cos−1[{circumflex over (q)}slew(4)]
Next, the steering law generates the intermediate quaternion reference {circumflex over (q)}ref,1
where ΔT is the acquisition mode dispatch time. The acquisition resumes its normal processing once θ1=θslew,max.
Thus, using an “Inertial Gimbal Concept”, the inventors have developed a position-based acquisition maneuver control method which allows the spacecraft to perform 3-axis maneuvers in the mission without using or deriving any “rate” information. As a result, the spacecraft can put the gyro in the backup mode or eliminate the gyro sensor hardware/software completely in future missions, which can save a program at least multi-millions of dollars for the gyro hardware itself as well as its additional operation/maintenance service fees.
To supplement the foregoing disclosure, the functions of each AQM and SHM phase will now be described in greater detail.
AQM is designed to achieve a power/thermal safe state during transfer orbit. It uses the yaw sensor to eventually place the sun vector in the body X/Y plane. The yaw sensor is a body-mounted slit sun sensor located on the plane normal to the −X axis with an FOV range of ±75 degrees. Only the yaw sensor crossing indicator is required, not the angular position from sensor null. Initially, thrusters are used to spin the spacecraft about its Z axis and dump any momentum in the wheels. The attempt to find the sun with the sensor starts by commanding a wheel-based body slew around the spacecraft yaw axis and waiting for a pulse from the yaw sensor. If a yaw sensor pulse is not seen after a full spacecraft revolution, then the sun is known to be in the “keyhole” along either the plus or minus Z axis, out of range of the yaw sensor. If the sun is in the keyhole, a 90-degree reorientation is executed under wheel control and the yaw slew is re-commanded. One of these yaw slews should have detected the sun with the yaw sensor pulse. Once the sun is detected, the Z-axis is reoriented by 90 degrees using wheel control to place the sun in the spacecraft X/Y plane. A final spin up around the Z-axis is then executed with thrusters to leave the spacecraft in Z-spin with the sun in the X/Y plane and well illuminated solar panels. The final Z-spin state will be actively controlled by the spacecraft using the reaction wheels.
AQM is designed to perform a successful sun acquisition with the default IRU. If the IRU is not available, AQM can also attempt an execution using star trackers. Nominally, data from both star trackers will be used to lessen the impact of tracker intrusions. In either case a position-based “inertial gimbal” control loop is used; the commanded quaternion is updated using the desired φ, AZ and EL rates to define the desired position of the spacecraft axes throughout the entire AQM execution.
AQM could be invoked at any time after X to Z spin transition, and prior to wing deployment, from arbitrary initial conditions of attitude and attitude rate (within requirements limits) with respect to the sunline. It is designed for anomaly recovery. The algorithm includes features to make it robust to eclipse conditions.
The AQM software module is made up of the following six phases as shown in
Initialization: In the Initialization phase (phase 18 in
Null Rates: In the Null Rates phase (phase 20 in
Yaw Search: In the Yaw Search phase (phase 22 in
Pitch Search: In the Pitch Search Phase (phase 24 in
Z-Reorient: In the Z-Reorient Phase (phase 26 in
Z-Spin: In the Z-Spin phase (phase 28 in
The SHM software module is made up of the following five phases as shown in
Initialization: In an Initialization Phase (phase 32 in
Null Rates: In the Null Rates phase (phase 34 in
Start Sun Search: In the Start Sun Search phase (phase 36 in
X/Z Slew: In the X/Z Slew Phase (phase 38 in
Note that if control type is set to none during the X/Z slew, the acceleration to the desired slew rate will be stopped until the control type is set back to wheel control. During this time, the reference quaternion is redefined to provide a position error of near zero to prevent errors from accumulating while the control type is none. However, this phase will also perform a slew to return to the initial quaternion reference before the X/Z slew is resumed. If control type is set to none during the X/Z slew stop maneuver, the phase timer countdown will be halted and the persistence timer reset until the control type is set back to wheel control.
Safe Hold: In the Safe Hold phase (phase 40 in
Upon entry, the body is commanded to spin up the pitch body rate to 0.1 deg/sec using position commands (AZ in the inertial gimbal scheme) and remain in Y-rotisserie indefinitely. The body rates and the total momentum in the body frame are checked to verify that the slew is proceeding in the correct direction and at the correct rate. If control type is set to none during the acceleration state toward Y-rotisserie or in Y-rotisserie, the reference quaternion is redefined to provide a position error of near zero to prevent errors from accumulating while the control type is none. However, this phase will also perform a slew to return to the initial quaternion reference before the nominal control path resumed. In addition, the acceleration will be stopped until the control type is set back to wheel control when in the acceleration state.
If the current in both wings persists below a threshold, then a command is issued to stop the pitch slew and the phase timer is initialized to 400 seconds. The sequencer waits until the position control errors are below a threshold for a persistence time, and then exits back to the X/Z Slew phase (phase 38 in
Upon entry to the Safe Hold phase, the number of wheels available is inspected to verify if a wheel failure has occurred, in which case the algorithm performs a single transition from the Safe Hold phase back to the Null Rates phase (phase 34 in
While the invention has been described with reference to various embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation to the teachings of the invention without departing from the essential scope thereof. Therefore it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention.
This application claims the benefit, under Title 35, United States Code, §119(e), of U.S. Provisional Application No. 61/149,453 filed on Feb. 3, 2009.
Number | Date | Country | |
---|---|---|---|
61149453 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12487187 | Jun 2009 | US |
Child | 13769489 | US |