Claims
- 1. A method of making a spacer frame for spacing sheets of a multi sheet glazing unit, the spacer frame having at least one corner, comprising the steps of:
- providing an elongated substrate of a bendable material, the substrate having a first edge and a second edge spaced from and opposite to the first edge, a first major surface and a second major surface opposite to the first major surface between the first and second edges;
- imposing on a major surface of the substrate a first set of crease lines adjacent the first edge and spaced from centerline of the substrate and a second set of crease lines adjacent the second edge and spaced from the centerline with the first set of crease lines opposite the second set of crease lines, the first and second sets of crease lines each include at least two bend lines, the bend lines of the first set of crease lines angled toward one another to provide a generally "V" shape configuration with the open end of the "V" facing the first edge of the substrate and the bend lines of the second set of crease lines angled toward one another to provide a generally "V" shape configuration with the open end of the "V" formed by the second set of crease lines facing the second edge of the substrate;
- forming the substrate to provide a spacer stock having a first upright leg and a second upright leg spaced from the first upright leg with the first and second upright legs connected by a base to provide the upright legs and the base with a generally U-shaped cross section configuration with the first major surface of the substrate defining inner surface of the spacer stock and with the "V" formed by the first set of crease lines in the first upright leg and the "V" formed by the second set of crease lines in the second upright leg;
- bending the base of the spacer stock at a location between the first and second sets of crease lines while moving portions of the first and second upright legs between the "V" formed by the first and second set of crease lines toward each other over the base to provide the spacer frame having the at least one corner, and
- joining ends of the spacer frame, wherein the first upright leg of the spacer frame lies in a first plane, the second upright leg of the spacer frame lies in a second plane, the base of the spacer frame on one side of the at least one corner lies in a third plane, and the base of the spacer frame on the other side of the at least one corner lies in a fourth plane with the first and second planes parallel to one another, the third and fourth planes intersecting one another and the third and fourth planes intersecting the first and second planes, and the base of the spacer frame and portions of the upright legs of the spacer frame at the at least one corner being continuous.
- 2. The method as set forth in claim 1 including the step of providing a bead of moisture and gas pervious material having a desiccant on selected portions of the inner surface of the spacer stock.
- 3. The method as set forth in claim 1 including the step of removing a portion of the first and second edges of the substrate to provide a notch between the bend lines of the first and second sets of crease lines, respectively.
- 4. The method as set forth in claim 3 wherein the removing a portion step is practiced prior to the practice of said forming step.
- 5. The method as set forth in claim 1 wherein the substrate is a metal substrate.
- 6. The method as set forth in claim 2 wherein the bead is on the inner surface of the base between the first and second upright legs of the spacer stock.
- 7. The method as set forth in claim 1 wherein the forming step includes passing the substrate through roll forming wheels which progressively shape the substrate into the spacer stock.
- 8. The method as set forth in claim 7 wherein the substrate is a metal substrate and further including the step of providing a bead of a moisture and gas pervious material having a desiccant on a center portion of the first major surface of the substrate and wherein said passing step includes:
- providing a plurality of roll forming wheels having bottom wheels shaped to gradually form the metal substrate into the spacer stock and an upper roll for each forming wheel, the upper rolls each having a peripheral groove to provide the bead with a predetermined shape.
- 9. The method as set forth in claim 1 where the height of each of the upright legs of the spacer stock is greater than one-half the distance of the base of the spacer stock between the upright legs, and said bending step includes offsetting the portions of the upright legs extending over the base.
- 10. The method as set forth in claim 2 wherein the step of providing a bead of a moisture and gas pervious material having a desiccant is practiced before the bending step.
- 11. The method as set forth in claim 1 wherein the second major surface of the substrate is an outer surface of the spacer stock and further including the step of providing a moisture and gas impervious sealant on selected outer surfaces of the spacer stock.
- 12. The method as set forth in claim 1 wherein said imposing step includes removing a portion of the first and second edge of the substrate to provide a notch between the bend lines of each of the first and second sets of crease lines, respectively.
- 13. The method as set forth in claim 12 further including the step of applying a moisture pervious adhesive having a desiccant therein on selected portions of the inner surface of the spacer stock.
- 14. The method as set forth in claim 13 wherein the second major surface of the substrate is an outer surface of the spacer stock and after the practice of the forming step providing a layer of a moisture impervious material on selected portions of the outer surface of the spacer stock.
- 15. The method as set forth in claim 14 wherein the spacer frame is made of metal and includes four corners and three of the four corners are formed by repeating the imposing and bending steps.
- 16. A method of making a spacer stock for use in making a spacer frame for spacing sheets of a multi sheet glazing unit, comprising the steps of:
- providing an elongated substrate of a bendable material, the substrate having a first edge and a second edge spaced from and opposite to the first edge, a first major surface and a second major surface opposite to the first major surface between the first and second edges;
- imposing on a major surface of the substrate a first set of crease lines adjacent the first edge and spaced from centerline of the substrate and a second set of crease lines adjacent the second edge and spaced from the centerline with the first set of crease lines opposite the second set of crease lines, the first and second sets of crease lines each include at least two bend lines imposed in one of the major surfaces of the substrate, the bend lines of the first set of crease lines angled toward one another to provide a generally "V" shape configuration with the open end of the "V" facing the first edge, and the bend lines of the second set of crease lines angled toward one another to provide a generally "V" shape configuration with the open end of the "V" of the second set of crease lines facing the second edge, and
- forming the substrate to provide a spacer stock having a first upright leg and a second upright leg spaced from the first upright leg and connected by a base to provide the upright legs and base with a generally U-shaped cross section configuration with the first major surface of the substrate defining an inner surface of the spacer stock and with the first set of crease lines in the first upright leg and the second set of crease lines in the second upright leg and with the base being continuous.
- 17. The method of claim 16 wherein prior to the practice of the forming step providing a moisture and gas pervious material having a desiccant on selected portions of the first major surface of the substrate.
- 18. The method of claim 16 wherein after the practice of the forming step providing a moisture and gas pervious material having a desiccant on selected portions of the inner surface of the spacer stock.
- 19. The method of claim 16 including the step of removing a portion of the first and second edges of the substrate to provide a notch between the bend lines of each of the first and second set of crease lines.
- 20. The method of claim 19 further includes the step of providing a bead of a moisture and gas pervious material on inner surface of the base of the spacer stock.
- 21. The method of claim 20 when the step of providing a bead is practiced after the forming step.
- 22. A method of making a spacer stock for use in making a spacer frame for spacing sheets of a multi sheet glazing unit, comprising the steps of:
- providing an elongated substrate having a predetermined length, the substrate having a first edge and a second edge spaced from the first edge, a base segment of the substrate between and spaced from the edges defining a base segment of the substrate, a segment of the substrate between the first edge and the base segment defining a first outer segment of the substrate and a segment of the substrate between the second edge and the base segment defining a second outer segment of the substrate with the second outer segment of the substrate spaced from and opposite to the first outer segment of the substrate;
- removing a portion of the first outer segment of the substrate defined as a deleted portion of the first outer segment such that a portion defined as a remaining portion of the first outer segment remains and interconnects portions of the first outer segment on each side of the deleted portion of the first outer segment, and a portion of the second outer segment of the substrate defined as deleted portion of the second outer segment such that portion defined as a remaining portion of the second outer segment remains and interconnects portions of the second outer segment on each side of the deleted portions of the second outer segment wherein the deleted portions of the first and second outer segments are spaced from and opposite to one another, and
- forming the substrate to provide the spacer stock, the spacer stock having a base provided by the base segment of the substrate, and a first upright leg provided by portions of the first outer segment and a second upright leg provided by portions of the second outer segment, with the first and second edges of the substrate spaced from one another, wherein the deleted portion of the first outer segment is in the first upright leg of the spacer stock and the deleted portion of the second outer segment is in the second upright leg of the spacer, the base is continuous and the predetermined length is sufficient to make the spacer frame having a continuous base.
- 23. The method as set forth in claim 1 wherein the second major surface of the substrate is outer surface of the spacer frame and further including the step of providing a moisture and gas impervious sealant on selected portions of the outer surface of the spacer stock.
- 24. A method of making a spacer frame for spacing sheets of a multi sheet glazing unit, the frame having at least one corner, a base and first and second upright legs joined to the base, the upright legs providing the spacer frame with surfaces to which the sheets of the unit are secured, comprising the steps of:
- providing an elongated substrate of sufficient length to make the spacer frame, the substrate having a first edge and a second edge spaced from and opposite the first edge, a center segment of the substrate between and spaced from the edges defining a base segment of the substrate, a segment of the substrate between the first edge and the base segment defining a first outer segment of the substrate, and a segment of the substrate between the second edge and the base segment defining a second outer segment of the substrate with the second outer segment of the substrate spaced from and opposite to the first outer segment of the substrate;
- removing a portion of the first outer segment of the substrate defined as a deleted portion of the first outer segment such that a portion defined as a remaining portion of the first outer segment remains to interconnect portions of the first outer segment on each side of the deleted portion of the first outer segment, and a portion of the second outer segment of the substrate defined as a deleted portion of the second outer segment such that a portion defined as a remaining portion of the second outer segment remains to interconnect portions of the second outer segment on each side of the deleted portion of the second outer segment wherein the deleted portions of the first and second outer segments are opposite and spaced from one another;
- forming the substrate to provide a spacer stock having the base and the upright legs joined to the base, the base provided by the base segment of the substrate, the first upright leg provided by portions of the first outer segment of the substrate and the second upright leg provided by portions of the second outer segment of the substrate, with the first and second edges of the substrate spaced from one another, wherein the deleted portion of the first outer segment of the substrate is in the first upright leg of the spacer stock and the deleted portion of the second outer segment of the substrate is in the second upright leg of the spacer stock, and
- bending the base of the spacer stock at a location between the deleted portions of the first and second outer segments to move first and second remaining portions of the first and second outer segments toward the base to provide the spacer frame with the at least one corner, wherein the first upright leg of the spacer frame lies in a first plane, the second upright leg of the spacer frame lies in a second plane, the base of the spacer frame on one side of the at least one corner lies in a third plane and the base of the spacer frame on the other side of the at least one corner lies in a fourth plane, with the first and second planes parallel to one another, the third and fourth planes intersecting one another and the third and fourth planes intersecting the first and second planes and the base of the spacer frame and the first and second remaining portions of the first and second outer segments at the at least one corner being continuous.
- 25. The method as set forth in claim 24 wherein the first major surface of the substrate is inner surface of the spacer stock and further including the step of applying a moisture pervious adhesive having a desiccant therein on selected portions of the inner surface of the spacer stock.
- 26. The method as set forth in claim 24 wherein after the practice of the forming step providing a layer of a moisture impervious material on selected portions of the outer surface of the spacer frame.
- 27. The method as set forth in claim 24 further including the step of imposing a bend line on each side of the deleted portion of the first outer segment, the bend lines having a generally "V" shape configuration with the open end of the "V" facing the first edge of the substrate and a bend line on each side of the deleted portion of the second outer segment, the bend lines on each side of the deleted portion of the second outer segment having a generally "V" shape configuration with an open end of the "V" facing the second edge of the substrate and wherein the "V" formed by the bend lines in the first outer segment is in the first upright leg of the spacer stock and the "V" formed by the bend lines in the second outer segment is in the second upright leg of the spacer stock.
- 28. The method as set forth in claim 27 wherein the deleted portion of the first outer segment is a notch in the first edge of the substrate and the remaining portion of the first outer segment is between the notch in the first edge of the substrate and the base segment of the substrate, and the deleted portion of the second outer segment is a notch in the second edge of the substrate and the remaining portion of the second outer segment is between the notch in the second edge of the substrate and the base segment of the substrate.
- 29. The method as set forth in claim 28 wherein the spacer frame has four corners and further including repeating the removing and bending steps to provide three corners and including the step of joining ends of the spacer frame to form a closed spacer frame.
- 30. The method as set forth in claim 28 including the step of providing a bead of moisture and gas pervious material having a desiccant between the upright legs of the spacer stock.
- 31. The method as set forth in claim 30 wherein the substrate is a metal substrate.
- 32. The method as set forth in claim 31 wherein the second major surface of the substrate is an outer surface of the spacer stock and further including the step of providing a moisture and gas impervious sealant on the outer surfaces of the upright legs of the spacer stock.
- 33. The method of claim 19 further including the step of providing a moisture and gas impervious sealant on selected outer surfaces of the spacer stock.
- 34. The method of claim 33 wherein the selected outer surface of the spacer stock is outer surface of the upright legs of the spacer stock.
- 35. The method of claim 34 wherein the substrate is made of metal and the imposing step is practiced at three spaced positions on the substrate prior to the practice of the forming step.
- 36. The method of claim 16 wherein the imposing step is practiced at three spaced positions on the substrate prior to the practice of the shaping step.
- 37. The method as set forth in claim 22 further including the step of imposing a bend line on each side of the deleted portions of the first outer segment, the bend lines having a generally "V" shape configuration with an open end of the "V" facing the first edge of the substrate, and a bend line on each side of the deleted portion of the second outer segment with the open end of the "V" facing the first edge of the substrate wherein the "V" formed by the bend line in the first outer segment is in the first upright leg of the spacer stock and the "V" formed by the bend line imposed in the second outer segment is in the second upright leg of the spacer stock.
- 38. The method as set forth in claim 37 wherein the deleted portions of the first outer segment is a notch in the first edge of the substrate and the deleted portion of the second outer segment is a notch in the second edge of the substrate and the notch in the first outer segment is a notch in an edge of the first upright leg of the spacer stock and the notch in the second outer segment is a notch in an edge of the second upright leg of the spacer stock.
- 39. The method as set forth in claim 38 further including the step of applying a moisture pervious adhesive having a desiccant therein on selected portions of the first major surface of the substrate prior to the forming step.
- 40. The method as set forth in claim 39 wherein the second major surface of the substrate is an outer surface of the spacer stock and after the practice of said forming step providing a layer of a moisture impervious material on selected portions of the outer surface of the spacer stock.
- 41. The method of claim 40 wherein the imposing step is practiced at three spaced positions on the substrate prior to the practice of the shaping step.
- 42. The method as set forth in claim 41 wherein the substrate is made of metal.
- 43. The method of claim 22 wherein the imposing step is practiced at three spaced positions on the substrate prior to the practice of the forming step.
- 44. The method of claim 1 further including the step of pressing the portions of the upright legs over the base against portions of the inner surface of the adjacent one of the upright legs.
RELATED APPLICATION
This is a divisional of application Ser. No. 08/064,264, filed May 20, 1993, now U.S. Pat. No. 5,351,451 which is a divisional of application Ser. No. 07/906,645 filed on Jun. 30, 1992, of Stephen C. Misera and William R. Siskos, now U.S. Pat. No. 5,255,481, which is a divisional of application Ser. No. 07/578,697 filed on Sep. 4, 1990, of William R. Siskos, now U.S. Pat. No. 5,177,916.
The spacer and spacer frame taught in this application may be used in the fabrication of the insulating unit taught in U.S. patent application Ser. No. 07/578,697 filed even date in the names of Stephen C. Misera and William R. Siskos and entitled INSULATING GLAZING UNIT HAVING A LOW THERMAL CONDUCTING EDGE AND METHOD OF MAKING SAME.
US Referenced Citations (38)
Foreign Referenced Citations (5)
Number |
Date |
Country |
0403058 |
Dec 1990 |
EPX |
639955 |
Jul 1950 |
GBX |
898981 |
Jun 1962 |
GBX |
1509178 |
Apr 1978 |
GBX |
1585544 |
Mar 1981 |
GBX |
Non-Patent Literature Citations (6)
Entry |
Advertisement from Lockformer Company (no date). |
"IBM Technical Disclosure Bulletin" vol. 11, No. 2, Jul. 1968. |
"Super Spacer.TM.", Edgetech I.G. Ltd. |
Glover et al.; "Super Spacer.TM. Technical Report", Edgetech I. G. Ltd., May 1988. |
"Introducing Super Spacer.TM. PIB". |
Wright et al., "Thermal Resistance Measurement of Glazing System Edge-Seals and Seal Materials Using a Guarded Heater Plate Apparatus". |
Divisions (3)
|
Number |
Date |
Country |
Parent |
64264 |
May 1993 |
|
Parent |
906645 |
Jun 1992 |
|
Parent |
578697 |
Sep 1990 |
|