A telecommunication cable management system for use between or adjacent to fiber distribution bays or frames.
A fiber distribution frame can be used to support telecommunication components that are connected to other telecommunication components via telecommunication cables, such as patch cords. Slack in these cables can be taken up in cable management systems that are typically located adjacent the fiber distribution frames. The cable management systems protect the cables and keep them organized and out of the way. When multiple fiber distribution frames/racks are used, the cable management systems are often mounted between adjacent fiber distribution frames. Since the fiber distribution frame can be used to support a wide variety of telecommunication components, there is a need for improved cable management systems.
The present disclosure is directed at an interbay management panel connected to a spacer block that includes a front spacer, a rear spacer, and an optical mid spacer. The assembly can be secured adjacent to or between distribution frames. The modular construction of the spacer box allows for easy installation, and the variable length enables the spacer box to be easily configured to correspond to the type and size of the telecommunication components that are to be supported in the distribution frame.
Referring to
In the depicted embodiment, the patch cord management system 10 includes a panel 15 for managing cables extending to or from frames 12, 14 or other frame equipment. Panel 15 includes various cable management structures such as cable guides or fingers 17 and cable spools 19 for guiding cables and storing cable slack. In the depicted embodiment of cable management system 10, panel 15 is mounted to a spacer box or spacer assembly 22. Panel 15 includes an upper management column 16 that is connected to a lower management column 18. The lower column 18 is connected to a coupling member 20 of the spacer assembly 22. In the depicted embodiment the lower column 18 is supported in part on the spacer assembly 22. It should be appreciated that the upper and lower columns 16, 18 can alternatively or additionally be secured to the fiber distribution frames 12, 14 either directly or via connection components (e.g., brackets and connection plates). It should also be appreciated that alternative embodiments may include more patch cord management columns or fewer (e.g., a single column, or 3 or more columns).
In the depicted embodiment, the front face of the spacer assembly 22 is aligned with the front face of the adjacent front guard boxes 24, 26. The rear face of the spacer assembly 22 is aligned with the rear face of the adjacent rear guard boxes 28, 30. The distance D1 between the front face of the front guard boxes 24, 26 and the rear face of the rear guard boxes 28, 30 is correlated with the width of the telecommunication components that are to be supported in the distribution frames (the larger the width of the telecommunication components, the larger the distance D1). In some embodiments the distance D1 is substantially equal to the depth of the largest telecommunication component in the fiber distribution frame. In other embodiments the distance D1 is slightly larger than the width of the largest telecommunication component in the fiber distribution frame. In such embodiments the front and rear guard boxes and spacer assembly 22 serve as a bumper to protect the telecommunication components housed in the distribution frames.
In the depicted embodiment the management panel 15 is mounted to the coupling member 20 at the front portion of the spacer assembly 22. This configuration results in the management panel 15 being generally aligned with the front faces of the telecommunication components mounted in the distribution frames. In other words, the management panel 15 is arranged to be in generally the same plane as the front faces of the telecommunication circuitry in the fiber distribution frames. The close proximity and orientation is desirable for efficiency and ease of use.
Referring to
In the depicted embodiment the front face of the front spacer 32 includes a support rail 36 and the rear face of the rear spacer 34 includes a support rail 38. The support rails can be used to provide support for cables (e.g., power cords or strips) that travel horizontally across the spacer and guard boxes.
In the depicted embodiment the coupling member 20 is connected to the top of the front spacer 32. The coupling member 20 includes supports that connect to the lower management column 18. In the depicted embodiment the coupling member 20 includes two generally horizontal support members 40, 42 that contact the end of the lower management column 18. In the depicted embodiment the horizontal support members 40, 42 are received in notches 44, 46 on the lower patch cord management column 18 (see
Referring to
In the depicted embodiment the rear spacer 34 is box shaped and includes a guard plate 78 that attaches over and caps the upper and rear portions of the rear spacer. Until the guard plate 78 is installed inside of the rear spacer it is easy to access, which allows operators to run cables and fasteners therethrough. It should be appreciated that the guard plate 78 can be connected to the rear spacer 34 before of after the management system is positioned between or adjacent to the fiber distribution panels.
Referring to
As discussed above, in some embodiments it is preferable that the front face of the spacer assembly 22 be aligned with the front face of the adjacent front guard boxes 24, 26 and the rear face of the spacer assembly 22 is aligned with the rear face of the adjacent rear guard boxes 28, 30. Since in some embodiments, the distance between the front face of the front guard boxes 24, 26 and the rear face of the rear guard boxes 28, 30 is correlated with the depth of the telecommunication components, it can be desirable to shorten or lengthen the spacer assembly 22. In some embodiments alignment between the front and rear faces of the spacer assembly with the front and rear guard boxes is advantageous as it allows objects (e.g., a ladder) to roll or slide across the front or rear of the frames without interruption.
Referring to
As shown in the depicted embodiment, the management column can in some cases be free-standing (supported by the spacer box which is connected to the fiber distribution frame). The patch cord management system being modular allows it to be more easily assembled, disassembled, and reconfigured. Parts of the assembly of the system can occur somewhere other than in the tight space between the fiber distribution frames. Also, given the secure connection between the spacer assembly 22 and the management panel 15, in some cases, fewer structural connections are needed between the fiber distribution frames 12, 14 and the management panel 15.
Referring to
The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
This application claims the benefit of provisional application Ser. No. 61/108,325, filed Oct. 24, 2008, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4991927 | Anstey | Feb 1991 | A |
4995688 | Anton et al. | Feb 1991 | A |
6427936 | Noel et al. | Aug 2002 | B1 |
6571047 | Yarkosky et al. | May 2003 | B1 |
7939763 | Jones et al. | May 2011 | B2 |
20010015598 | Sevier | Aug 2001 | A1 |
20040175088 | Dagley et al. | Sep 2004 | A1 |
20090090533 | Jones et al. | Apr 2009 | A1 |
20100135632 | Redmann et al. | Jun 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20100135632 A1 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
61108325 | Oct 2008 | US |