Spacer for providing drainage passageways within building structures

Information

  • Patent Grant
  • 6594965
  • Patent Number
    6,594,965
  • Date Filed
    Tuesday, August 21, 2001
    23 years ago
  • Date Issued
    Tuesday, July 22, 2003
    21 years ago
Abstract
A roll-form spacer product providing air space and drainage passageways within a building structure. Preferably, the spacer product is a corrugated web of material having undulating front and rear faces and serpentine-shaped longitudinally extending edges. The faces include alternating arrays of grooves and ridges which extend perpendicular to the side edges and parallel to an axis of a spiral roll of the spacer. Thus, when the spacer is unrolled and applied to a building structure in a plurality of horizontally extending rows, the ridges and grooves are substantially vertically-disposed to form a plurality of unobstructed passageways for the drainage of moisture. Preferably, the web is made of an openwork mat of randomly convoluted polymeric filaments, and thus, enables ready circulation of air.
Description




FIELD OF THE INVENTION




The present invention relates to the formation of drainage and ventilation passageways within a building structure to prevent the accumulation of moisture within the building structure, and more particularly, the present invention relates to a spacer, a building structure assembled with the spacer, and a method of assembling a building structure with the spacer such that the spacer provides substantially vertically-disposed, continuous, unobstructed drainage paths adjacent an inner sheathing member and an outer building material of the structure.




BACKGROUND OF THE INVENTION




Moisture which accumulates within a building structure, such as an exterior wall of a building, will cause premature deterioration of the building structure. To avoid the accumulation of moisture, it has previously been recommended to provide ventilation and/or drainage passageways between an inner sheathing member and an outer building material of the building structure.




Entrapped moisture is particularly a problem on wall structures of buildings covered with a house-wrap product. Typical house-wraps utilized in building constructions are engineered to permit one-way passage of vapor therethrough so that moisture vapor can escape the building but cannot enter the building. Vapor which is permitted to pass through house-wrap must be provided with a drainage path through the remainder of the wall; otherwise, condensation will form and become entrapped within the wall.




One known building component for use in providing a path of ventilation in a roof or wall of a building structure is disclosed in U.S. Pat. No. 5,099,627 which issued to Coulton et al. and which is assigned to Benjamin Obdyke, Inc., the assignee of the present application. According to the Coulton patent, an openwork member is located between an inner sheathing member and an outer building material, such as wooden shingles. The openwork member provides vapor flow paths therethrough to prevent moisture from becoming entrapped adjacent the inner sheathing member and adjacent the outer building material. As disclosed in the '627 patent, the preferred embodiment of an openwork member is made of a resilient matrix of matted self-supporting filaments providing multiple vapor flow paths therethrough.




Other building products are known which are provided in a corrugated shape. For example, U.S. Pat. No. 5,826,390 issued to Sacks discloses a vapor permeable membrane having spacers thereon for the purpose of providing drainage passageways within a wall of a building. For instance,

FIG. 4

of the Sacks patent discloses a vapor permeable membrane having corrugated spacer elements attached at regular intervals on the membrane, and in an embodiment illustrated in

FIG. 6

, the membrane itself is provided in a corrugated form.




Another corrugated product is disclosed by U.S. Pat. No. 5,888,614 which issued to Slocum et al. and which discloses a multilayer, corrugated house-wrap film for use within the exterior walls of buildings. A further example of a corrugated building component is disclosed by U.S. Pat. No. 2,339,220 which issued to Crowley and which discloses a building panel having a corrugated metal stiffening member sandwiched between outer layers of wooden material.




Other building products for providing drainage and/or ventilation passageways within building structures are disclosed by U.S. Pat. No. 6,131,353 issued to Egan; U.S. Pat. No. 5,860,259 issued to Laska; U.S. Pat. No. 6,233,890 issued to Tonyan; U.S. Pat. No. 5,598,673 issued to Atkins; U.S. Pat. No. 4,805,367 issued to Kleckner; U.S. Pat. No. 4,538,388 issued to Friesen; U.S. Pat. No. 4,315,392 issued to Sylvest; U.S. Pat. No. 5,489,462 issued to Sieber; and U.S. Pat. No. 5,383,314 issued to Rothberg. The Egan patent discloses a drainage mat including a vapor permeable membrane and an openwork mat of filaments having a waffle-like structure. The Laska patent discloses an insulated cuspated sheet of plastic for use in providing open drainage paths behind masonry walls. The Tonyan patent discloses a weather resistive membrane having an attached mesh material which provides open spaces for the flow of moisture downwardly within a wall structure. The Atkins patent discloses a layer of mesh material providing drainage pathways behind an exterior masonry wall. The Kleckner patent discloses a rigid undulating support for providing ventilation between roof insulation board and a roof deck. The Friesen patent discloses a double-sided cuspated plastic sheet material for use in providing ventilation pathways within a flat roof. The Sylvest patent discloses a roof covering sheet material including a layer of openwork mat. The Sieber patent discloses a double-sided cuspated plastic sheet material for use between the ground and a building foundation for providing protective, ventilation, heat-insulating, and drainage functions, and the Rothberg patent discloses a cuspated plastic sheet drainage mat for roofs and decks.




Certain building products are provided in a spiral roll to enable efficient storage and transportation. Such products are generally referred to as so-called roll-form products. For example, U.S. Pat. Nos. 5,902,432 and 5,673,521 which issued to Coulton et al. and which are assigned to Benjamin Obdyke, Inc. disclose roof ridge vents provided as elongate, roll-form, sheet-like, thermoplastic webs of material. Also see U.S. Pat. No. 5,960,595 issued to McCorsley, III et al. which discloses a roll-form roof ridge vent constructed of an openwork mat, and U.S. Pat. No. 5,651,734 issued to Morris which discloses a roll-form roof ridge vent made of a blank of corrugated plastic sheet material.




Although the drainage and/or ventilation mats and the like disclosed in the above referenced patents may function satisfactorily for their intended purposes, there remains a need for an inexpensive roll-form spacer product made of an elongate web of material which can be utilized in a wall and/or roof construction to provide continuous, unobstructed, vertically-disposed drainage paths and ventilation air spaces between an inner sheathing member and an outer building material. The spacer should permit ready installation requiring only a minimum of skill and should provide drainage and/or ventilation paths along both the inner sheathing member and the outer building material. Preferably, the spacer product also provides ventilation paths transversely through the web and can be inexpensively manufactured requiring only a minimum of material.




OBJECTS OF THE INVENTION




With the foregoing in mind, a primary object of the present invention is to provide an efficient and economical spacer product which is capable of being readily installed in a wall or roof structure between an inner sheathing member and an outer building material and which provides continuous, unobstructed, vertically-disposed drainage passageways adjacent both the inner sheathing member and the outer building material.




Another object of the present invention is to provide a building structure having continuous, unobstructed, vertically-disposed drainage paths therein which prevent moisture from becoming entrapped within the structure.




A further object of the present invention is to provide a method of assembling a building structure which ensures that continuous and unobstructed drainage paths are vertically-disposed adjacent both an inner sheathing member and an outer building material.




SUMMARY OF THE INVENTION




More specifically, the present invention is a spacer utilized to provide drainage paths and air space within a building structure thereby preventing deterioration of the building structure due to trapped moisture. The spacer is a continuous, indeterminate-length, roll-form, corrugated web of material which has an undulating front face, a corresponding undulating rear face, and a pair of serpentine-shaped, longitudinally-extending side edges. The corrugated web is capable of being rolled lengthwise into a spiral roll about an imaginary central axis during manufacture and being unrolled lengthwise during installation, and each of the undulating front and rear faces have an alternating array of ridges and grooves which extend continuously from one side edge to the other. When the corrugated web is unrolled laterally on the building structure for installation on the building structure, the grooves on the front and rear faces provide substantially vertically-disposed, continuous, unobstructed drainage paths. Preferably, the side edges are substantially parallel, and the ridges and grooves extend substantially perpendicular to the side edges and substantially parallel to the imaginary central axis of the spiral roll. In addition, the preferred embodiment of the web is an openwork mat of randomly convoluted polymeric filaments.




According to another aspect of the present invention, a building structure is provided having drainage passageways and air spaces therein to prevent moisture from being trapped and to retard deterioration. To this end, the building structure includes an inner sheathing member, an outer building material, and an elongate corrugated web of material located therebetween for providing drainage passageways and air spaces therein. The corrugated web has an undulating front face, a corresponding undulating rear face, and a pair of longitudinally-extending side edges each having a serpentine configuration. The pair of side edges are substantially parallel and are installed in the building structure such that they extend substantially parallel with the horizontal. Each of the undulating front and rear faces have an alternating array of ridges and grooves which extend continuously from one of side edge to the other such that the grooves on the front and rear faces provide substantially vertically-disposed, continuous, unobstructed drainage paths within the building structure.




According to yet another aspect of the present invention, a method of assembling a building structure is provided. A spiral roll of an elongate corrugated web of material is provided adjacent an installed inner sheathing member of a building structure. The web has an undulating front face, a corresponding undulating rear face, and a pair of serpentine-shaped, longitudinally-extending side edges, and each of the undulating front and rear faces have an alternating array of ridges and grooves which extend continuously from one side edge to the other. The web is unrolled in a lengthwise direction horizontally on the sheathing and secured to the sheathing such that the rear face of the web faces the sheathing and the side edges of the web extend substantially parallel to the horizontal. Thus, the grooves on the front and rear faces of the web provide substantially vertically-disposed, continuous, unobstructed drainage paths within the building structure.











BRIEF DESCRIPTION OF THE DRAWINGS




The foregoing and other objects, features and advantages of the present invention should become apparent from the following description when taken in conjunction with the accompanying drawings, in which:





FIG. 1

is an elevation view of a portion of an undulating front face of a spacer according to the present invention;





FIG. 2

is a perspective view of a wall construction for a building utilizing the spacer according to the present invention;





FIG. 3

is a cross-sectional view of the sidewall illustrated in

FIG. 2

taken along a plane parallel to the horizontal;





FIG. 4

is a perspective view of a spiral roll of the spacer illustrated in

FIG. 1

; and





FIG. 5

is a perspective view of a roof construction for a building according to the present invention.











DETAILED DESCRIPTION OF THE PREFERRED SPACER




Referring now to the drawings,

FIG. 2

illustrates a wall


10


of a building structure assembled with a spacer


12


according to the present invention. The installed spacer


12


provides ventilation and drainage passageways which enables the free flow of air, vapor and liquids adjacent, and transversely between, the opposite sides of the spacer


12


to ensure that moisture is prevented from accumulating within the wall


10


on either side of the spacer


12


. Preferably, the drainage paths provided by the spacer


12


are continuous, unobstructed, and vertically-disposed so that liquid moisture is permitted to descend within the wall under the force of gravity in an unobstructed free path to an exit provided at the base of the wall.




As illustrated in

FIGS. 1-5

, the preferred structure of the spacer


12


is an elongate, corrugated openwork mat of randomly convoluted polymeric filaments. To this end, the spacer


12


is made of a thin layer of randomly convoluted polymeric filaments that is shaped into a corrugated form during manufacture to provide a corrugated openwork mat having a relatively significant thickness “T” despite containing very little material, i.e., polymeric filaments. For instance, the weight of the polymeric filament material in a preferred embodiment of a corrugated openwork mat is within a range of about 4.0 ounces to about 8.0 ounces per square yard of the openwork mat. In addition, the corrugated structure of the openwork mat enables it to be made form a minimum of material yet still provide an elastically compressible spacer


12


that has a suitable compression strength to operate in about a 100 to about a 200 pounds per square foot (psf) environment. Preferably, the spacer


12


compresses no more than about 30% of its original thickness when it is subjected to 100 to 200 psf of pressure. Thus, the corrugated and openwork structure of the spacer


12


enables the ventilation/drainage paths to be relatively open and unobstructed and enables the spacer


12


to be made of a minimum of material thereby significantly decreasing material costs incurred in the manufacture of the spacer


12


.




Structurally, the spacer


12


includes a front face


14


with a wavy or undulating surface and a rear face


16


with a corresponding wavy or undulating surface. The surface of the front face


14


is provided with an alternating array of ridges


18


and grooves


20


that extend continuously from one longitudinally-extending side edge


22


to an opposite longitudinally-extending side edge


24


, and the surface of the rear face


16


is provided with an alternating array of ridges


26


and grooves


28


that extend continuously from the side edge


22


to the opposite side edge


24


. The pair of side edges,


22


and


24


define the height “H” of the faces,


14


and


16


, and have a serpentine or sinuous shape as best illustrated in FIG.


3


.




As illustrated in

FIG. 4

, the spacer


12


is conveniently and efficiently stored and transported in roll-form in which the spacer


12


is rolled in a spiral about an imaginary central axis “A”. Importantly, as best illustrated in

FIG. 4

, the ridges and grooves,


18


,


20


,


26


and


28


, extend substantially parallel to axis “A” and substantially perpendicular to the parallel side edges,


22


and


24


. Thus, when unrolled laterally across a vertical wall and installed on the wall, the grooves,


20


and


28


, in the front and rear faces,


14


and


16


, are vertically disposed thereby providing a plurality of continuous, vertical paths for the unobstructed downward flow of liquid moisture within the wall. For instance, see the direction in which the grooves,


20


and


28


, extend in the exposed portion of spacer


12


in the bottom-right portion of FIG.


2


.




The importance of the above stated directionality of the grooves,


20


and


28


, can perhaps best be understood in contrast to a spacer (not shown) having grooves extending parallel to its side edges. To this end, the grooves and ridges of an installed spacer would extend horizontally in the wall, and any moisture dripping downwardly within the wall would contact each ridge in its downward path. This contact slows the descent of the moisture and aids in extending the period of time of retention of a portion of the moisture on the spacer and/or between the ridges of the spacer and a confronting building structure surface. Alternatively, such a spacer product could be pre-cut into finite length strips which would be vertically positioned and secured to a wall so that the grooves are vertically-disposed in the wall. However, such a process would require securing the spacer at the top of a wall, unrolling it to the base of wall, and securing it along its length at various vertically-spaced elevations. Such a process would be awkward and time and labor intensive as compared to the spacer of the present invention which is properly oriented when simply unrolled horizontally on the wall and secured along a given constant elevation.




By way of example, and not by way of limitation, the spacer


12


according to the present invention is provided having a length of about 30 to 120 feet, when unrolled, and a height “H” between its side edges,


22


and


24


, of about three to eight feet. Preferably, each groove


20


on the front face


14


of the corrugated openwork mat is of a substantially uniform size and shape and each ridge


18


on the front face


14


is of a substantially uniform size and shape. The same is true of the grooves


28


and ridges


26


of the rear face


16


. The grooves and ridges on both faces,


14


and


16


, can be formed of an identical size and shape, or the size and shape of the grooves and ridges can vary within different lengths of the spacer. The shape of the transverse cross-section of the corrugated spacer can resemble a saw-tooth pattern, a sine-wave pattern, or any other serpentine or undulating shape.




When the mat is unrolled into a substantially planar condition, each of the ridges


18


on the front face


14


has an apex


30


which extends to a common front imaginary plane “P


F


” and each ridge


26


on the rear face


16


has an apex


32


which extends to a common rear imaginary plane “P


R


” which extends parallel to the front imaginary plane “P


F


” The thickness “T” of the mat is defined as the distance between the front and rear imaginary planes, “P


F


” and “P


R


” Preferably, the thickness “T” is in a range of about ⅛ (one-eighth) to about ¾ (three-fourths) inch, and each adjacent pair of apexes


30


on the front face


14


and each adjacent pair of apexes


32


on the rear face


16


are spaced-apart a distance “B” of about ⅛ (one-eighth) to about ¾ (three-fourths) inch.




If not all the advantages provided by an openwork mat are required, the spacer can be a similarly constructed corrugated solid sheet of thermoplastic material (not shown). If desired, the corrugated web of thermoplastic material can be perforated having a series of ventilation apertures at predetermined spaced distances to permit a transverse path of ventilation through the otherwise solid sheet spacer. The thermoplastic material can be, for instance, high impact polystyrene (HIPS), ABS, high-density polyethylene (HDPE), high-density polypropylene (HDPP), PVC, or a blend of any of these suitable polymers and can be shaped by thermoforming, vacuum stamping, or any other suitable technique.




DETAILED DESCRIPTION OF THE PREFERRED BUILDING STRUCTURE




The wall


10


illustrated in

FIGS. 2 and 3

includes an upright planar inner sheathing member


34


which is affixed to support posts


36


. The inner sheathing member


34


is typically formed of panels of plywood, panels of oriented strand board, panels of particle board, an insulated concrete wall, or other materials permitted by local building codes. In some instances, the inner sheathing member


34


is lined with a membrane (not shown), such as a one-way vapor permeable house-wrap. Examples of other membranes include asphalt impregnated felt and building paper.




During construction, the spacer


12


is unrolled laterally on the inner sheathing member


34


such that the rear face


16


of the spacer


12


faces the inner sheathing member


34


and/or membrane, and the side edges


22


and


24


of the spacer


12


extend substantially parallel with the horizontal. Thereafter, an outer building material


38


is affixed to the inner sheathing member


34


such that it overlies the spacer


12


and sandwiches the spacer


12


between the inner sheathing member


34


and the outer building material


36


. The outer building material


36


can be, for instance, a siding material such as a wood or fiber-cement siding product. Of course, other outer building materials can also be utilized, such as, brick, vinyl materials, stucco, exterior insulation finish systems (EIFS) or other siding materials.




As best illustrated in

FIG. 3

, the apexes


32


of the ridges


26


of the rear face


16


engage the inner sheathing member


34


, or membrane, and the apexes


30


of the ridges


18


of the front face


14


are spaced a distance “T” therefrom and engage the outer building material


38


. Thus, a plurality of continuous and vertically-disposed drainage paths, or runways,


40


extend adjacent the inner sheathing member


34


between each adjacent pair of ridges


26


, and a plurality of continuous and vertically-disposed drainage paths, or runways,


42


extend adjacent the outer building material


38


between each adjacent pair of ridges


18


. Any moisture which collects on the surface of either the inner sheathing member


34


or membrane, and the outer building material


38


adjacent the spacer


12


is provided with a free unobstructed path to drain downwardly and out of the wall. The multitude of apertures formed in the openwork mat enable the free circulation of air between the inner sheathing member


34


and outer building material


38


and aid in the drying, or evaporation, of any moisture which is present within the wall


10


.




The spacer


12


according to the present invention can also be utilized in roof constructions. As illustrated in

FIG. 5

, the inclined roof structure


44


includes an inner sheathing member, in this case a deck member


46


, which is affixed to rafters


48


. The deck member


46


is typically made of plywood, particle board or other materials permitted by local building codes and is typically lined with a membrane, in this case a layer of roofing felt (not shown).




During assembly of the roof


44


, the spacer product


12


is unrolled lengthwise over the roofing felt in a direction parallel with the peak


46


of the roof


40


and is secured to the deck member


42


with nails, staples, adhesives or the like. The rear face


16


of the spacer


12


faces the roofing felt and the deck member


42


, and the side edges,


22


and


24


, of the spacer


12


are vertically offset and extend substantially parallel with the horizontal. Thereafter, an outer building material


50


is affixed to the deck member


46


such that it overlies the spacer


12


. As illustrated, the outer building material


50


is wooden shingles, such as cedar shakes. Of course, other outer building materials can also be utilized, such as, metal roofing materials.




The apexes


32


of ridges


26


of the rear face


16


of the spacer


12


engage the roofing felt and the apexes


30


of the ridges


18


of the front face


14


engage the outer building material


50


. Thus, a plurality of unobstructed and continuous inclined drainage paths, or runways, extend from adjacent the peak


54


of the roof


44


to a lower edge of roof


44


. Any vapors which enter the roof


44


will be vented via the circulation of air through the spacer


12


, and any rain water which leaks into the roof


44


will be provided with a free unobstructed inclined drainage path to trickle downwardly and out of the roof structure


44


. In addition, the multitude of apertures in the openwork mat aids in the free flow of air within the spacer and the drying, or evaporation, of any moisture present in the roof


40


.




DETAILED DESCRIPTION OF THE PREFERRED METHOD




Another aspect of the present invention relates to a method of assembling a building structure such as the wall


10


illustrated in

FIG. 2

or the roof


44


illustrated in FIG.


5


. To this end, an inner sheathing member of the building structure is installed utilizing known techniques. In some instances, the inner sheathing member is then lined with a membrane (not shown), such as, a one-way vapor permeable house-wrap, an asphalt impregnated felt, or a building paper. Thereafter, a spiral roll of spacer


12


is located adjacent the inner sheathing member/membrane and unrolled laterally across the inner sheathing member/membrane such that the rear face


16


of the spacer


12


faces and/or confronts the inner sheathing member/membrane, and the side edges,


22


and


24


, of the spacer


12


extend substantially parallel to the horizontal. The spacer


12


is secured to the inner sheathing member and additional rows of spacer


12


are secured to the inner sheathing member until the entire inner sheathing member/membrane is covered by a single layer of the spacer


12


. Thereafter, an outer building material is applied over the spacer


12


.




An important aspect of the present invention is that the spacer


12


is applied in substantially horizontal rows and that the grooves and ridges of the corrugated spacer


12


extend substantially vertically within a wall, or along the direction of incline within an inclined roof. Preferably, the grooves and ridges in adjacent rows of the spacer


12


are aligned to provide a continuous groove and/or ridge throughout the entire elevation of the building structure. In this way, the grooves and ridges on the front and rear faces of the spacer will provide substantially vertically-disposed runways providing a free unobstructed path for the flow of liquids down the building structure until the liquid is permitted to exit at the base of the building structure or until the moisture evaporates due to the circulation of air through the spacer


12


.




Thus, the above-described spacer, building structure and method of assembly according to the present invention provides a cost effective spacer product for use in providing drainage passageways within wall and roof structures.




While a preferred spacer, building structure, and method of assembly have been described in detail, various modifications, alterations, and changes may be made without departing from the spirit and scope of the spacer, building structure, and method of assembly according to the present invention as defined in the appended claims.



Claims
  • 1. A spacer for providing drainage paths and air space within a building structure to prevent deterioration of the building structure due to trapped moisture, consisting of:a continuous, indeterminate-length, roll-form, corrugated web of openwork material; said corrugated web having an undulating front face, a corresponding undulating rear face, and a pair of serpentine-shaped, longitudinally-extending side edges, and said openwork material having a plurality of openings permitting free passage of air and liquids in both transverse directions therethrough between said front and rear faces; said corrugated web being rolled lengthwise into a spiral roll about an imaginary central axis during manufacture and being unrolled lengthwise during installation; and each of said undulating front and rear faces having an alternating array of ridges and grooves which extend continuously from one of said side edges to the other of said side edges such that, when said corrugated web is unrolled laterally on the building structure for installation on the building structure, said grooves on said front and rear faces provide substantially vertically-disposed, continuous, unobstructed drainage paths.
  • 2. A spacer according to claim 1, wherein said pair of side edges are substantially parallel, and wherein said ridges and grooves extend substantially perpendicular to said side edges and substantially parallel to said imaginary central axis of said spiral roll.
  • 3. A spacer according to claim 1, wherein, within at least a predetermined length of said corrugated web, each of said grooves are of a substantially uniform size and shape and each of said ridges are of a substantially uniform size and shape.
  • 4. A spacer according to claim 3, wherein, when said web is unrolled into a substantially planar condition, each of said ridges on said front face within said predetermined length has an apex which extends to a common front imaginary plane and each of said ridges on said rear face within said predetermined length has an apex which extends to a common rear imaginary plane, and wherein said front and rear imaginary planes are substantially parallel and are spaced-apart a distance of about ⅛ to about ¾ inch.
  • 5. A spacer according to claim 4, wherein each adjacent pair of said apexes on said upper face within said predetermined length and each adjacent pair of said apexes on said rear face within said predetermined length is spaced-apart a distance of about ⅛ to about ¾ inch.
  • 6. A spacer according to claim 1, wherein said corrugated web is elastically compressible and has a compression strength sufficient to withstand at least about 200 pounds per square foot (psf) of pressure.
  • 7. A spacer according to claim 1, wherein said web is an openwork mat of randomly convoluted polymeric filaments.
  • 8. A spacer according to claim 7, wherein said corrugated openwork mat has about 4.0 to about 8.0 ounces of polymeric filaments per square yard of said openwork mat.
  • 9. A spacer according to claim 1, wherein said web is a perforated corrugated sheet of thermoplastic material.
  • 10. A spacer for providing drainage paths and air space within a building structure to prevent deterioration of the building structure due to trapped moisture, consisting of:a continuous, indeterminate-length, roll-form, corrugated openwork mat of randomly convoluted polymeric filaments; said corrugated openwork mat having an undulating front face, a corresponding undulating rear face, and a pair of serpentine-shaped, longitudinally-extending side edges, and said openwork mat having a plurality of openings permitting free passage of air and liquids in both transverse directions therethrough between said front and rear faces; said corrugated openwork mat being rolled lengthwise into a spiral roll about an imaginary central axis during manufacture and being unrolled lengthwise during installation; each of said undulating front and rear faces having an alternating array of uniformly-shaped ridges and uniformly-shaped grooves which extend continuously from one of said side edges to the other of said side edges; and said pair of side edges being substantially parallel, and said ridges and grooves extending substantially perpendicular to said side edges and substantially parallel to said imaginary central axis of said spiral roll such that, when said corrugated openwork mat is unrolled laterally on the building structure for installation on the building structure, said grooves on said front and rear faces provide substantially vertically-disposed, continuous, unobstructed drainage paths.
  • 11. A spacer according to claim 10, wherein said corrugated openwork mat is elastically compressible and compresses up to no more than about 30% of its original thickness when subjected to about 100 to about 200 pounds per square foot (psf) of pressure.
  • 12. A spacer according to claim 11, wherein said corrugated openwork mat has about 4.0 to about 8.0 ounces of polymeric filaments per square yard of said openwork mat.
  • 13. A spacer according to claim 12, wherein, when said mat is unrolled into a substantially planar condition, each of said ridges on said front face has an apex which extends to a common front imaginary plane, wherein each of said ridges on said rear face has an apex which extends to a common rear imaginary plane, and wherein said front and rear imaginary planes are substantially parallel and are spaced-apart a distance of about ⅛ to about ¾ inch.
  • 14. A spacer according to claim 13, wherein each adjacent pair of said apexes on said upper face and each adjacent pair of said apexes on said rear face is spaced-apart a distance of about ⅛ to about ¾ inch.
  • 15. A building structure having drainage passageways and air spaces therein to prevent moisture from being trapped within the building structure and to retard deterioration of the building structure, comprising:an inner sheathing member; an outer building material; and an elongate corrugated web of openwork material located between said inner sheathing member and said outer building material for providing drainage passageways and air spaces therein to prevent moisture from being trapped between said inner sheathing member and said outer building material; said corrugated web having an undulating front face, a corresponding undulating rear face, and a pair of longitudinally-extending side edges each having a serpentine configuration, said pair of side edges being substantially parallel and being installed in the building structure such that said side edges extend substantially parallel with the horizontal, and said openwork material having a plurality of openings permitting free passage of air and liquids in both transverse directions therethrough between said front and rear faces; and each of said undulating front and rear faces having an alternating array of ridges and grooves which extend continuously from one of said side edges to the other of said side edges such that said grooves on said front and rear faces provide substantially vertically-disposed, continuous, unobstructed drainage paths within the building structure.
  • 16. A building structure according to claim 15, wherein the building structure forms a wall of a building.
  • 17. A building structure according to claim 15, wherein the building structure forms a roof of a building.
  • 18. A building structure according to claim 15, wherein said web is an openwork mat of randomly convoluted polymeric filaments.
  • 19. A building structure according to claim 18, further comprising a membrane located between said inner sheathing member and said web, and wherein said membrane is selected from the group consisting of a housewrap material, an asphalt impregnated felt, a building paper, a roofing felt, and a vapor permeable membrane that permits moisture to exit through the building structure and blocks moisture from entering through the building structure.
  • 20. A building structure according to claim 18, wherein said outer building material is selected from the group consisting of wood, brick, metal, fiber cement, vinyl siding material, stucco, and exterior insulation finish systems (EIFS).
  • 21. A building structure according to claim 18, wherein said ridges and grooves extend substantially perpendicular to said side edges.
  • 22. A building structure according to claim 21, wherein substantially each of said grooves are of a substantially uniform size and shape and wherein each of said ridges are of a substantially uniform size and shape.
  • 23. A building structure according to claim 22, wherein said corrugated openwork mat has about 4.0 to about 8.0 ounces of polymeric filaments per square yard of said openwork mat.
  • 24. A building structure according to claim 23, wherein said corrugated openwork mat is elastically compressible and compresses up to no more than about 30% of its original thickness when subjected to about 100 to about 200 pounds per square foot (psf) of pressure.
  • 25. A building structure according to claim 24, wherein each of said ridges on said front face has an apex which extends to a common front imaginary plane, wherein each of said ridges on said rear face has an apex which extends to a common rear imaginary plane, and wherein said front and rear imaginary planes are substantially parallel and are spaced apart by a distance of about ⅛ to about ¾ inch.
  • 26. A building structure according to claim 23, wherein each adjacent pair of said apexes on said upper face and each adjacent pair of said apexes on said rear face is spaced apart by a distance of about ⅛ to about ¾ inch.
  • 27. A building structure according to claim 15, wherein said web is a perforated corrugated sheet of thermoplastic material.
  • 28. A method of assembling a building structure, comprising the steps of:providing a spiral roll consisting of an elongate corrugated web of openwork material adjacent an installed inner sheathing member of a building structure, said web having an undulating front face, a corresponding undulating rear face, and a pair of serpentine-shaped, longitudinally-extending side edges, each of said undulating front and rear faces having an alternating array of ridges and grooves which extend continuously from one of said side edges to the other of said side edges, and said openwork material having a plurality of openings permitting free passage of air and liquids in both transverse directions therethrough between said front and rear faces; unrolling said web in a lengthwise direction horizontally on said sheathing; and securing said web to said sheathing such that said rear face of said web faces said sheathing and said side edges extend substantially parallel to the horizontal; said grooves on said front and rear faces providing substantially vertically-disposed, continuous, unobstructed drainage paths within the building structure.
  • 29. A method according to claim 28, wherein said ridges and grooves extend substantially perpendicular to said side edges.
  • 30. A method according to claim 29, wherein said web is an openwork mat of randomly convoluted polymeric filaments.
  • 31. A method according to claim 30, wherein a plurality of horizontally extending rows of said spacer are secured to said inner sheathing member to cover said inner sheathing member, and wherein said grooves and ridges in each adjacent pair of rows are aligned.
  • 32. A method according to claim 30, wherein said corrugated openwork mat is elastically compressible and compresses up to no more than about 30% of its original thickness when subjected to about 100 to about 200 pounds per square foot (psf) of pressure.
  • 33. A method according to claim 32, wherein said corrugated openwork mat has about 4.0 to about 8.0 ounces of polymeric filaments per square yard of said openwork mat.
  • 34. A method according to claim 30, further comprising the step of installing an outer building material over said openwork mat such that said mat is sandwiched between said inner sheathing material and said outer building material.
  • 35. A method according to claim 34, further comprising the step of securing a membrane to said inner sheathing member before securing said web to said inner sheathing member, wherein said membrane is selected from the group consisting of a housewrap material, an asphalt impregnated felt, a building paper, a roofing felt, and a vapor permeable membrane that permits moisture to exit through the building structure and blocks moisture from entering through the building structure.
  • 36. A method according to claim 34, wherein said outer building material is selected from the group consisting of wood, brick, metal, fiber cement, vinyl siding material, stucco, and exterior insulation finish systems (EIFS).
  • 37. A method according to claim 28, wherein said web is a perforated corrugated sheet of thermoplastic material.
US Referenced Citations (22)
Number Name Date Kind
2339220 Crowley Jan 1944 A
2804657 Munters Sep 1957 A
3313072 Cue Apr 1967 A
3318056 Thompson May 1967 A
4315392 Sylvest Feb 1982 A
4515840 Gatward May 1985 A
4538388 Friesen Sep 1985 A
4805367 Kleckner Feb 1989 A
5099627 Coulton et al. Mar 1992 A
5383314 Rothberg Jan 1995 A
5489462 Sieber Feb 1996 A
5598673 Atkins Feb 1997 A
5651734 Morris Jul 1997 A
5673521 Coulton et al. Oct 1997 A
5826390 Sacks Oct 1998 A
5860259 Laska Jan 1999 A
5888614 Slocum et al. Mar 1999 A
5902432 Coulton et al. May 1999 A
5960595 McCorsley, III et al. Oct 1999 A
6131353 Egan Oct 2000 A
6233890 Tonyan May 2001 B1
6355333 Waggoner et al. Mar 2002 B1
Foreign Referenced Citations (2)
Number Date Country
60-124419 Aug 1985 JP
01-083805 Jun 1989 JP
Non-Patent Literature Citations (5)
Entry
Dryvit Systems, Inc., “Residential MD System®”, includes: 6 pages of Specifications, 3 pages of Installation Details, and 13 pages of Application Instructions, Apr. 2000.
Senergy, “Senturion III Senergy® QR-CDsystem Exterior Insulation and Finish System”, 9 pages, Oct. 1998.
Enka-Engineered Building Products, “Enkamat®”,“Enkadrain®” & “Enkatherm™”, 4 pages from Internet web site, date unknown.
American Wick Drain Corporation, “CedarSaver Vent for Wood Shingles and Shakes”, 2 pages from Internet web site, date unknown.
Brochure of KO Sangyo Co., Ltd., “Rib Sheet”, 1988 (month unknown), English translation included.