Spacer insertion instrument

Abstract
A percutaneous and minimally invasive instrument for inserting an interspinous process spacer into a patient is disclosed. The insertion instrument includes a first assembly connected to a handle assembly. The first assembly includes an inner shaft located inside an outer shaft and configured for relative translational motion with respect to the outer shaft. The relative translational motion causes one of the outer or inner shafts to move with respect to the other and thereby deflect at least one prong formed on one of the inner or outer shafts wherein such deflection causes engagement with a juxtapositioned interspinous spacer. The instrument further includes a driving tool configured for removable insertion into a proximal end of a passageway of the instrument.
Description
FIELD

The present invention generally relates to medical devices for the spine. In particular, the present invention relates to minimally invasive instruments for delivery of an implant between adjacent spinous processes of a patient's spine.


BACKGROUND

With spinal stenosis, the spinal canal narrows and pinches the spinal cord and nerves, causing pain in the back and legs. Typically, with age, a person's ligaments may thicken, intervertebral discs may deteriorate and facet joints may break down all contributing to the condition of the spine characterized by a narrowing of the spinal canal. Injury, heredity, arthritis, changes in blood flow and other causes may also contribute to spinal stenosis.


Doctors have been at the forefront with various treatments of the spine including medications, surgical techniques and implantable devices that alleviate and substantially reduce debilitating pain associated with the back. In one surgical technique, a spacer is implanted between adjacent spinous processes of a patient's spine. The implanted spacer opens the spinal canal, maintains the desired distance between vertebral body segments, and as a result, avoids impingement of nerves and relieves pain. For suitable candidates, an implantable interspinous spacer may provide significant benefits in terms of pain relief.


Any surgery is an ordeal. However, the type of device and how it is implanted has an impact. For example, one consideration when performing surgery to implant an interspinous spacer is the size of the incision that is required to allow introduction of the device. Small incisions and minimally invasive techniques are generally preferred as they affect less tissue and result in speedier recovery times. As such, there is a need for interspinous process spacers and instruments that deliver them that work well with surgical techniques that are minimally invasive for the patient. The present invention sets forth such an instrument.


SUMMARY

According to one aspect of the invention, an instrument is provided. The instrument includes a handle connected to a first assembly. The first assembly comprises an outer shaft. An inner shaft is located inside the outer shaft and configured for relative translational motion with respect to the outer shaft. A control is configured to effect the relative translational motion wherein the relative translational motion causes one of the outer or inner shafts to move with respect to the other and thereby deflect at least one prong formed on one of the inner or outer shafts. Such deflection causes connection or engagement with a juxtapositioned spacer. A driver having a distal portion configured to reversibly arrange the spacer between and including at least one deployed configuration and at least one undeployed configuration.


According to another aspect of the invention, an instrument having a longitudinal axis and connectable to a spacer is provided. The instrument comprises a substantially radiolucent portion connected to a substantially non-radiolucent portion. The substantially non-radiolucent portion has a radiographic projection on a plane perpendicular to the longitudinal axis that is substantially coincident with a radiographic or non-radiographic projection of a connected undeployed spacer on said plane.


According to another aspect of the invention, a method is disclosed. The method includes the step of connecting an interspinous spacer to a distal end of an instrument. The connected interspinous spacer is inserted into an interspinous space of a patient's spine with the instrument. The interspinous spacer is arranged by the instrument into at least one deployed configuration while the interspinous spacer is inserted in the interspinous space. The interspinous spacer is disconnected from the instrument leaving the interspinous spacer located in the interspinous space.


According to another aspect of the invention, a method is disclosed. The method includes the step of inserting a distal end of an instrument into an interspinous space of a patient's spine. The distal end of the instrument is connected to an interspinous spacer implanted in the interspinous space. The interspinous spacer is arranged with said instrument into at least one undeployed configuration while said instrument is inserted in the interspinous space and connected to the interspinous spacer. The connected interspinous spacer is removed from the patient with the instrument.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity.



FIG. 1 illustrates a perspective view of a spacer insertion instrument without a driving tool according to the present invention.



FIG. 2 illustrates a side view of a spacer insertion instrument without a driving tool according to the present invention.



FIG. 3 illustrates a front view of a spacer insertion instrument without a driving tool according to the present invention.



FIG. 4 illustrates an end view of a spacer insertion instrument without a driving tool according to the present invention.



FIG. 5 illustrates a top view of a spacer insertion instrument without a driving tool according to the present invention.



FIG. 6 illustrates a cross-sectional view of a spacer insertion instrument without a driving tool according to the present invention.



FIG. 7 illustrates a cross-sectional view of an inner shaft of a spacer insertion instrument according to the present invention.



FIG. 8a illustrates a perspective view of an outer shaft of a spacer insertion instrument according to the present invention.



FIG. 8b illustrates a side view of an outer shaft of a spacer insertion instrument according to the present invention.



FIG. 8c illustrates a side view of an outer shaft of a spacer insertion instrument according to the present invention.



FIG. 8d illustrates a cross-sectional view of an outer shaft of a spacer insertion instrument according to the present invention.



FIG. 9a illustrates a perspective view of a control of a spacer insertion instrument according to the present invention.



FIG. 9b illustrates a perspective view of a control of a spacer insertion instrument according to the present invention.



FIG. 9c illustrates a cross-sectional view of a control of a spacer insertion instrument according to the present invention.



FIG. 10a illustrates a perspective view of a proximal end cap of a spacer insertion instrument according to the present invention.



FIG. 10b illustrates a perspective view of a proximal end cap of a spacer insertion instrument according to the present invention.



FIG. 11 illustrates a perspective view of a distal end cap of a spacer insertion instrument according to the present invention.



FIG. 12a illustrates a perspective view of a spacer in an undeployed configuration.



FIG. 12b illustrates a perspective view of a spacer in a deployed configuration.



FIG. 13a illustrates a perspective view of a spacer in an undeployed configuration.



FIG. 13b illustrates a perspective view of a spacer in a deployed configuration.



FIG. 14a illustrates a perspective view of a spacer in an undeployed configuration.



FIG. 14b illustrates a perspective view of a spacer in a deployed configuration.



FIG. 15a illustrates a perspective view of a driving tool according to the present invention.



FIG. 15b illustrates a side view of a driving tool according to the present invention.



FIG. 15c illustrates a partial perspective view of a driving tool according to the present invention.



FIG. 16 illustrates a perspective view of a spacer insertion instrument and driving tool connected to a spacer in a deployed configuration according to the present invention.



FIG. 17 illustrates a cross-sectional view of a spacer insertion instrument and driving tool connected to a spacer in an undeployed configuration according to the present invention.



FIG. 18 illustrates a partial cross-sectional view of a spacer insertion instrument and driving tool connected to a spacer in an undeployed configuration according to the present invention.



FIG. 19 illustrates a cross-sectional view of a spacer insertion instrument and driving tool connected to a spacer in a deployed configuration according to the present invention.



FIG. 20 illustrates a partial cross-sectional view of a spacer insertion instrument and driving tool connected to a spacer in a deployed configuration according to the present invention.





DETAILED DESCRIPTION

Turning to FIGS. 1-6, there is shown a spacer insertion instrument 10 according to the present invention. The spacer insertion instrument 10 includes a first assembly 12 connected to a handle assembly 14 and retained by a distal end cap 16 and a proximal end cap 18. The instrument 10 also includes a driving tool 66 that is removably insertable into the central passageway of the instrument 10. FIGS. 15a, 15b and 15c illustrate the driving tool 66 and FIG. 16 shows the instrument 10 with the driving tool 66 inserted.


Still referencing FIGS. 1-6, the first assembly 12 of the insertion instrument 10 is configured to releasably clamp to a body of an interspinous process implant to be delivered into or removed from a patient using the instrument 10. The first assembly 12 includes an inner shaft 20, an outer shaft 22 and a control 24. The inner shaft 20 is connected to the handle assembly 14 and the outer shaft 22 is passed over the inner shaft 20 and allowed to translate with respect thereto by means of a control 24 that is threadingly engaged with the outer shaft 22. With rotation of the control 24 in either direction, the outer shaft 22 translates with respect to the stationary inner shaft 20. In another variation of the invention, the outer shaft 22 is connected to handle assembly 14 and the inner shaft 20 is threadingly engaged with the control 24 such that rotation of the control 24 moves the inner shaft 20 with respect to the outer shaft 22. Although rotation of the control 24 is used in one variation, other variations are within the scope of the present invention such as, for example, translation of the control 24 or movement of the outer shaft 22 relative to the inner shaft 20.


Turning now to FIG. 7, there is shown an inner shaft 20 according to the present invention. As seen in the drawings, the inner shaft 20 is substantially cylindrical in shape having a central bore 26 extending from end to end. The distal end of the inner shaft 20 includes a pair of prongs 28 with each prong being substantially oppositely located from each other. The finger-like prongs 28 are formed by openings 30 extending proximally from the distal end. The fingers are flexible and, when in a normal position, splay slightly outwardly from the longitudinal axis as shown in FIG. 7. The prongs 28 are configured to connect with a spacer 32 of the like shown in FIGS. 12-14 or other similar spacers. In particular, the prongs 28 include extensions 34 that extend inwardly toward the longitudinal axis in a hook-like fashion. These extensions 34 are configured to be inserted into prong-receiving portions 36 (see FIGS. 12-14) on the spacer 32 and securely clamp thereto. The prongs 28 also include conforming surfaces 38 configured to conform to the spacer 32 in a manner best suited for secure attachment thereto. The proximal end of the inner shaft 20 includes a proximal portion 40 having a larger cross section and configured for insertion into a conformingly shaped recess in the handle assembly 14.


Turning now to FIGS. 8a-8d, there is shown the outer shaft 22 of the first assembly 12. As seen in the drawings, the outer shaft 22 is substantially cylindrical in shape having a central bore 42 extending from end to end. The outer shaft 22 is sized such that the inner shaft 20 fits inside the outer shaft 22. The distal end includes a pair of flattened portions 44 located substantially opposite from each other. There is a middle portion 46 having a larger cross-section and a threaded proximal portion 48. The threaded proximal portion 48 is configured for threaded connection with the control 24. In one variation, the middle portion 46 includes features such as an octagonal shape as seen in FIG. 16 that serve to align the instrument 10 when inserted into a cannula positioned to an interspinous space of a patient. The features on the middle portion 46 are aligned with similar complementary features on a cannula so that insertion of the instrument into the cannula is limited by the alignment of the features with the result being proper orientation of the instrument relative to the cannula and in turn relative to the patient. The outer shaft 22 includes at least one aperture formed in the sidewall of the shaft to provide access to the inner shaft and the interior of the shaft construct for cleaning purposes.


Turning now to FIGS. 9a-9c, there is shown the control 24 of the first assembly 12. The control 24 includes a user interface such as a finger portion or grip 50. In the variation shown in FIGS. 9a-9c, the user interface 50 is an outer circular or disk shaped portion for easily effecting rotation of the control 24 with a thumb or index finger. The control 24 also includes a connecting portion 52 that connects the control 24 to effect relative translation of the inner shaft 20 with respect to the outer shaft 22. In particular, in the variation shown in the drawings, the connecting portion 52 is a cylindrical portion connected to the user interface 50. The cylindrical portion has a threaded inner surface for engaging the threaded proximal portion 48 of the outer shaft 22 wherein the outer shaft 22 is received inside a threaded bore 54 of the connecting portion 52.


Turning now to FIGS. 10a and 10b, there is shown the proximal end cap 18 of the present invention. The end cap 18 is configured to cap the proximal end of the handle assembly 14. The handle assembly 14, if made of multiple parts, is held together, in part, by the end cap 18, capturing at least a portion of the first assembly 12 therein. The end cap 18 includes a central bore 56 providing a passage through the instrument 10 end to end. Also, apertures 58 are formed in the end cap 18 for receiving fasteners (not shown) therein for attachment to the handle assembly 14.


Turning now to FIG. 11, there is shown the distal end cap 16 of the present invention. The end cap 16 is configured to cap the distal end of the handle assembly 14. The handle assembly 14, if made of multiple parts, is held together, in part, by the distal end cap 16, capturing at least a portion of the first assembly 12 therein. The distal end cap 16 includes a central bore 60 sized to receive the outer shaft 22 therein. Also, apertures 62 are formed in the end cap 16 for receiving fasteners (not shown) therein for attachment to the handle assembly 14. In one variation, the distal end cap 16 has a directional indicator 64 in the shape of an arrow indicating, for example, a direction information such as “cephalad” as shown in FIG. 3 to help the surgeon to easily orientate the instrument 10.


The assembly of the spacer insertion instrument 10 will now be described. With particular reference back to FIG. 6, the control 24 is threaded onto the threaded proximal portion 48 of the outer shaft 22. The prongs 28 of the inner shaft 20 are compressed together slightly and the inner shaft 20 is inserted into the outer shaft 22. The first assembly 12 is then placed inside first assembly receiving portions of the handle assembly 14 and if more than one piece comprises the handle assembly 14 as, for example, in a clam shell construction, the handle assembly 14 is joined and secured together by the distal and proximal end caps 14, 16 fastened to the handle assembly 14. Additional fastening elements such as fasteners, screws, glue and the like may also be additionally or alternatively employed to capture at least a portion of and secure the first assembly 12 inside the handle assembly 14. With the instrument 10 assembled, there is a central passageway 67 clearly visible in the cross-sectional view of the instrument 10 shown in FIG. 6. The central passageway 67 extends from one end to the other end of the instrument 10. Through this central passageway 67, the driving tool 66 is removably inserted to deploy or undeploy the interspinous spacer. FIG. 16 illustrates a driving tool 66 inserted into the instrument 10 and engaged with a spacer 32 in a deployed configuration.


Jumping now to FIGS. 15a, 15b and 15c, there is shown a driving tool 66 according to the present invention. The driving tool 66 includes a handle 74 at the proximal end and a spacer engaging bit 76 at the distal end. The handle 74 and bit 76 are interconnected by a middle shaft portion 78. The driving tool 66 is configured and sized to be inserted into the central passageway 67 of the instrument 10 such that the bit 76 at the distal end operatively connects with a spacer loaded and locked into the prongs 28 of the instrument 10. The distal bit 78 includes features 80 for engaging with the operative portion of the spacer 32 in order to effect deployment or undeployment of the spacer 32. A driving tool 66 may have a different distal bit 76 in order to mate with a complementarily different member on the spacer. For example, the driving tool 66 shown in FIG. 15 includes features 80 comprising two oppositely located projections which are configured to mate with complementary features on the spacer. In another variation of the driving tool 66, the distal bit 66 may simply be a hexagonally shaped or other polygonal shaped member that fits inside a complementary member or hex socket on the spacer. In essence, different driving tools 66 having different distal bits 76 may be employed depending on the design of the spacer with which it is to be used. The instrument is advantageously configured such that torque placed on the handle 74 of the driving tool 66 while arranging the spacer is countered by grasping the handle assembly 14 to provide a counter-torque preventing twisting or misalignment of the instrument relative to the implantation site.


The spacer insertion instrument 10 functions to engage with, insert and deploy an interspinous spacer. Illustrative examples of interspinous spacers that are compatible with the insertion instrument are described in applicant's co-pending U.S. patent application Ser. No. 12/217,662 entitled “Interspinous spacer” filed on Jul. 8, 2008 incorporated herein by reference in its entirety, U.S. patent application Ser. No. 12/220,427 entitled “Interspinous spacer” filed on Jul. 24, 2008 incorporated herein by reference in its entirety, U.S. patent application Ser. No. 12/205,511 entitled “Interspinous spacer” filed on Sep. 5, 2008 incorporated herein by reference in its entirety, and U.S. Provisional Patent Application Ser. No. 61/011,199 entitled “Interspinous spacer” filed on Jan. 15, 2008 incorporated herein by reference in its entirety. Examples of such interspinous spacers 32 are shown in FIGS. 12-14 wherein like reference numerals are used to describe like parts. In general, each spacer 32 includes a body portion 68 with at least one prong receiving portion 36 for connecting with the instrument 10, at least one wing 70 rotatably connected to the body portion 68 and an actuator shaft 72 housed in the body portion 68 and configured to arrange the at least one wing 70 from at least one undeployed configuration (see FIGS. 12a, 13a and 14a) to at least one deployed configuration (see FIGS. 12b, 13b and 14b) and vice versa. The at least one wing serves as a body portion 68 stabilizer with respect to at least one adjacent spinous process of a patient's spine and is configured in one variation to cradle an adjacent spinous process on both sides and in another variation forming a seat for an adjacent spinous process.


The spacer insertion instrument 10 utilizes a working channel accessing a patient's spine that is preferably created by the use of one or more tools such as a target needle, K-wire, dilators, mounting bracket, cannula, stabilizing arm, interspinous knife, interspinous reamer, and interspinous gage, all described in applicant's co-pending U.S. patent application Ser. No. 11/582,874 entitled “Minimally invasive tooling for delivery of interspinous spacer” filed on Oct. 18, 2006, incorporated herein by reference in its entirety. The spacer insertion instrument 10 is typically inserted through a cannula having a distal end positioned at the interspinous process space in a minimally invasive, percutaneous, mini-open or open surgical procedure. In some procedures, a cannula is not employed to deliver the instrument 10 and spacer 32 to the interspinous space.


In use, a spacer 32 is placed in juxtaposition to the distal end of the insertion instrument 10 such that the prongs 28 of the instrument 10 are adjacent to the prong receiving portions 36 on the spacer 32. The control 24 is then activated to clamp the prongs 28 of the inner shaft 20 onto the spacer 32. In particular, the control 24 is rotated in one direction which advances the outer shaft 22 over the inner shaft 20 to thereby inwardly deflect the outwardly extending prongs 28 at the distal end of the inner shaft 20. This inward deflection allows the prongs 28 to engage the spacer body and, in particular, allows the prong extensions 34 to be inserted into the prong receiving portions 36 and with further rotation of the control 24 to lock the instrument 10 securely onto the spacer 32. Reverse rotation of the control 24 translates the outer shaft 22 proximally to expose the prongs 28 allowing them to deflect outwardly to their pre-stressed normal position and thereby release the spacer 32 from the insertion instrument 10.


If a cannula is employed in the operative site, the insertion instrument 10 with the attached spacer 32 in an undeployed configuration is sized to fit through a cannula and is passed through the cannula to the interspinous process space. Once in position inside the patient, a driving tool 66 is inserted into the proximal opening of the central passageway 67 of the instrument and passed until the distal spacer engaging bit 76 of the driving tool 66 connects with the spacer 32. The connection of the driver 66 to the spacer is signaled via tactile feedback of the bit engaging the spacer. Depending on the spacer design, the connection of the driving tool 66 with the spacer 32, in particular the engaging features 80, 82, will be different. In general, however, the driving tool 66 connects to the spacer 32 such that movement, such as rotation and/or translation, of the driving tool 66 effects deployment of the at least one wing 70 of the spacer 32. Such deployment of the wings is continuous with the rotation and/or translation of the driving tool. As a result, the deployment may be stopped by stopping such rotation making the deployment incremental. Such incremental deployment allows the surgeon to observe incremental deployment progress via fluoroscopic observation inbetween rotations to help properly position the instrument. Hence, the spacer and instrument combination provides incremental and continous deployment unlike other spacer/installment combinations that only have one deployed configuration and one undeployed configuration with no intermediate configurations or means provided by the instrument to gradually arrange the spacer therebetween. In particular and with respect to the spacer embodiments shown in FIGS. 12-14, movement, such as rotation and/or translation, of the driving tool effects translation of the actuator shaft 72 which in turn is connected to the at least one wing 70 causing it to deploy into an expanded configuration.


With particular reference now to FIGS. 12a and 12b, the driving tool 66 that is configured to connect with the spacer shown in FIGS. 12a and 12b will have a spacer engaging bit 76 that has a hexagonally shaped member that is sized to fit inside the complementarily hexagonally shaped interior 84 of the actuator shaft 72. With the instrument 10 operatively positioned inside the patient and with the driving tool engaged to the actuator shaft 72, rotation of the driving tool 66 distally advances the actuator shaft 72 to deploy the wings 70 into the configuration shown in FIG. 12b. Of course, any polygonal or other shape may be employed. Reverse rotation of the driving tool 66 will proximally retract the actuator shaft 72 to undeploy the wings 70.


With particular reference now to FIGS. 13a, 13b and FIGS. 17-20, the driving tool 66 that is configured to connect with the spacer 32 shown in FIGS. 13a and 13b will have a configuration of the like shown in FIGS. 15a, 15b and 15c wherein the spacer engaging bit 76 includes two projecting features 80. The two projecting features 80 engage complementary features 88 on a spindle 86 located inside the body portion 68 of the spacer 32 as shown in FIG. 18. Once engaged to the spindle 86 (see FIG. 17), rotation of the driving tool 66 rotates the spindle 86 which in turn advances the actuator shaft 72 to deploy the wings 70 into the configuration shown in FIGS. 13b, 19 and 20. As can be seen in these figures, when in the deployed configuration, the actuator shaft 72 is distally translated with rotation of the driving tool. Reverse rotation of the driving tool 66 will turn the spindle 86 in an opposite direction and proximally translate the actuator shaft 72 to undeploy the wings 70 into position shown in FIGS. 13a and 17.


With particular reference now to FIGS. 14a and 14b, the driving tool 66 that is configured to connect with the spacer shown in FIGS. 14a and 14b will have a spacer engaging bit 76 that has a hexagonally shaped member that is sized to fit inside the complementarily hexagonally shaped interior 84 of the actuator shaft 72. With the instrument 10 operatively positioned inside the patient and with the driving tool engaged to the actuator shaft 72, rotation of the driving tool 66 proximally advances the actuator shaft 72 to deploy the wings 70 into the configuration shown in FIG. 14b. Of course, any polygonal or other shape may be employed and reverse rotation of the driving tool 66 will distally advance the actuator shaft 72 to undeploy the wings 70.


For all of the spacer embodiments described above with which the insertion instrument 10 may be used, the driving tool 66 is activated by rotation. However, the driving tool may be activated by translation to deploy a spacer of the like described in applicant's co-pending U.S. patent application Ser. No. 11/314,712 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Dec. 20, 2005 and U.S. patent application Ser. No. 11/593,995 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Nov. 7, 2006, both of which are incorporated herein by reference in their entireties. Other examples of spacers with which the insertion instrument or modified version thereof may be employed are disclosed in U.S. patent application Ser. No. 11/079,006 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Mar. 10, 2005 and U.S. patent application Ser. No. 11/190,496 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Jul. 26, 2005 both of which are incorporated herein by reference in their entireties.


Furthermore, the driving tool may be activated by rotation and translation of the driving tool to deploy the spacers of the like shown in FIGS. 12a, 12b, 14a and 14b. Activation of the driving tool to deploy the spacer that involves translation of the driving tool advantageously provides the user with a degree of deployment information. This feature is particularly important because positioning and deployment of the instrument and spacer may result in the wings 70 abutting tissue, bone or other obstructions within the patient that would signal to the user to either reposition the instrument and spacer or clear any obstructions. An example of a degree of deployment information feature includes translation of the driving tool. For example, if translation of the driving tool is less than a specific marker or distance, the user will know that the spacer is not fully deployed or that there is some obstruction and further movement of the driving tool, repositioning or removal of an obstruction is required for full deployment. In one variation, the handle 74 of the driving tool 66 rests a certain distance from the proximal end of the handle assembly 14 and with rotation, the driving tool 66 advances until the handle 74 of the driving tool contacts the proximal end of the handle assembly 14. In another variation, the middle shaft 78 of the driving tool 66 includes markings that indicate to the user the distance that the driving tool has moved distally or proximally to provide a degree of deployment information.


Of course, the spacer may have more than one deployed configuration as well as more than one undeployed configuration as the system permits varying degrees of deployment according to surgeon preference. Also, the deployment is reversible such that along any stage of deployment the driving tool can change the direction of translation of the actuator shaft of the spacer and hence, reverse deployment of the wings. The degree of translation of the actuator shaft and hence deployment of the spacer is variable. This variability advantageously permits the spacer to have multiple deployment configurations. Also, at intermediate levels of deployment, the spacer in conjunction with the instrument serves as a customized distractor. Once the spacer is in position and in the desired deployed configuration between adjacent interspinous processes of a patient's spine, the control 24 is activated in an opposite direction to release the prongs 28 and disconnect the spacer from the instrument. The insertion instrument is then removed from the patient leaving the spacer in place. With the spacer in place, the wings cradle the spinous processes. If two wings are employed, they cradle both of the adjacent spinous processes for a given interspinous process space. The spacer body alone, the wings alone, or the body in conjunction with one or more of the wings space apart the adjacent spinous processes and as a result, the implanted spacer opens the spinal canal, maintains the desired distance between vertebral body segments, and as a result, avoids impingement of nerves and relieves pain.


The insertion instrument can also be used to remove a spacer from the patient or to adjust its position following deployment. In such a case, the insertion instrument is inserted into a cannula, if one is employed, the cannula being accessed to an interspinous process space of a patient and positioned proximate to the spacer located in the interspinous space. Then the control 24 is activated to connect the instrument to the body with tactile feedback of the connection provided by the instrument configuration. A driving tool 66 is also inserted and connected to the spacer to undeploy the spacer wings. With the wings in at least one undeployed configuration, the spacer can then be removed or repositioned and redeployed.


In typical applications, the insertion instrument includes a variety of markings, for example, to indicate various status conditions of the tool and the associate interspinous spacer. In an alterative arrangement, the markings are selected as conventional visible markings or may be radio-opaque. The insertion instrument may also be optionally arranged with one or more markers selected, for example, from ultrasonic, magnetic markers or other marker types to advantageously avoid the need for fluoroscopy.


The disclosed devices or any of their components can be made of any biologically adaptable or compatible materials including PEEK, PEK, PAEK, PEKEKK or other polyetherketones. Materials considered acceptable for biological implantation are well known and include, but are not limited to, stainless steel, titanium, tantalum, combination metallic alloys, various plastics, polymers, resins, ceramics, biologically absorbable materials and the like. In one variation, the instrument includes a substantially radiolucent portion connected to a substantially non-radiolucent portion. For example, the non-radiolucent portion may be comprised of at least a portion of the first assembly 12 and the radiolucent portion may be comprised of at least a portion of the handle assembly 14. The substantially non-radiolucent portion is a substantial portion of radiolucent material that is exclusive of small fasteners or other features found scattered in a radiographic projection. The substantially non-radiolucent portion has a radiographic projection on a plane perpendicular to the longitudinal axis that is substantially coincident with a radiographic projection of a connected spacer on said plane when in at least one undeployed configuration. This feature is advantageous for minimilly invasive surgical procedures wherein fluoroscopic observations assist the surgeon in correct placement of an implant while providing the patient with less tissue intrusion that would otherwise be the case in larger incisions or open surgical procedures because the substantial radiolucent portions of the instrument do not obstruct fluoroscopic imaging of the implantation site for positioning and guiding the implant. This is the case when the instrument is connected to a spacer, inserted posteriorly with radiographic projections taken along a substantially anterior-posterior view of the patient's body. This is also the case when the instrument is used to deploy the spacer into at least one deployed configuration wherein the radiographic or non-radiographic projection of the spacer on a plane perpendicular to the longitudinal axis is substantially coincident with a radiographic projection of a substantial portion of the instrument made of substantially non-radiolucent material. However, the instrument and spacer are configured such that when the wings are arranged in at least one deployed configuration, the projection of the deployed wings on said plane extend beyond the perimeter of the projection of non-radiolucent portions such that the wings and their position can be observed under fluoroscopic observation, thereby, the physician can see the deployment of the wings without obstruction from the rest of the instrument and then undeploy and redeploy the wings as necessary or reposition the instrument for proper placement of the spacer and improve implantation according to patient anatomy. Therefore, this instrument and spacer system greatly improves ease of implantation for the surgeon, reduces surgery time, increases patient recovery and significantly improves upon minimally invasive techniques. In one variation, the non-radiolucent portion substantially comprises a spacer connecting shaft. In one variation, non-radiolucent portions include the shaft 78 of the driving tool 66 and radiolucent portion include the handle 74 of the driver 66.


The preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.

Claims
  • 1. A method for implanting an interspinous device having a spacer body and first and second wings, the method comprising: inserting the interspinous device between a first spinous process and a second spinous process of a subject's spine while an instrument is connected to the interspinous device;deploying the interspinous device by rotating a driving tool of the instrument to rotate the first and second wings relative to the spacer body such that the first and second wings are positioned to hold the first and second spinous processes; anddisconnecting the interspinous device from the instrument by rotating a control of the instrument while the first and second wings are positioned to hold the first and second spinous processes and the control is located outside of the subject.
  • 2. The method of claim 1 wherein deploying the interspinous device includes rotating the driving tool while a prong of the instrument is positioned within a prong receiving portion of the interspinous device such that the prong limits rotation of the spacer body.
  • 3. The method of claim 1 wherein disconnecting the interspinous device from the instrument includes moving prongs of the instrument from a clamping configuration for holding the interspinous device to an open configuration for releasing the interspinous device.
  • 4. The method of claim 1 wherein the instrument includes a clamping assembly and a handle, and wherein rotating the driving tool includes rotating the driving tool about an axis of rotation defined by the clamping assembly while the driving tool extends through the clamping assembly and extends through the handle positioned outside of the subject.
  • 5. The method of claim 1 wherein the driving tool includes a proximal end with a driver handle and a distal end with an engaging bit, and wherein deploying the interspinous device includes manually rotating the driver handle positioned proximally of a clamping tool of the instrument while the clamping tool of the instrument holds the spacer body and the engaging bit engages an actuation mechanism of the interspinous device, wherein the actuation mechanism is configured to rotate the first and second wings as the control rotates.
  • 6. The method of claim 1 wherein disconnecting the interspinous device from the instrument includes moving a clamping assembly of the instrument from a clamping configuration for holding the interspinous device to a release configuration for releasing the interspinous device.
  • 7. The method of claim 1 wherein the instrument includes a handle, anda clamping assembly coupleable to the handle, wherein the clamping assembly includes at least one prong, an outer shaft, and an inner shaft with a passageway for receiving the driving tool; anddisconnecting the interspinous device from the instrument includes moving the at least one prong out of a prong receiving portion of the interspinous device by moving one of the outer and inner shafts.
  • 8. The method of claim 7 wherein disconnecting the interspinous device includes rotating the control to move one of the outer and inner shafts with respect to the other to cause the at least one prong to move toward and/or away from a longitudinal axis of the instrument.
  • 9. The method of claim 1 wherein disconnecting the interspinous device from the instrument includes opening a clamping assembly of the instrument configured to hold the interspinous device.
  • 10. The method of claim 1 wherein the instrument has a distal end that clamps onto the interspinous device, wherein rotation of the control causes the distal end to open and release the interspinous device.
  • 11. A method for implanting an interspinous device having a spacer body and first and second wings using an instrument, the method comprising: positioning the interspinous device at an interspinous space between a first spinous process and a second spinous process of a subject's spine while the interspinous device is connected to the instrument, wherein the instrument includes a handle, an assembly, a driving tool, and a control;moving the driving tool relative to the spacer body releasably held by the assembly to cause an actuator mechanism of the interspinous device to drive the first and second wings toward a deployed configuration for holding the first and second spinous process;after deploying the first and second wings, rotating the control positioned external to the subject to cause the assembly to release the interspinous device; andafter releasing the interspinous device, removing the instrument from the subject while the first spinous process is between elongate arms of the first wing and the second spinous process is between elongate arms of the second wing.
  • 12. The method of claim 11 wherein the driving tool is configured to be rotated independent of rotation of the control to rotate the first and second wings independently of the release of the interspinous device.
  • 13. The method of claim 11 wherein rotating the control of the instrument includes rotating the control a sufficient amount to move prongs of the instrument out of respective prong receiving portions of the interspinous device and thereby release the interspinous device.
  • 14. The method of claim 11 wherein the instrument includes a clamping assembly movable from clamping configuration for holding the interspinous device to an open configuration for releasing the interspinous device, androtating the control of the instrument includes rotating the control a sufficient amount to move the clamping assembly toward the open configuration so as to release the interspinous device.
  • 15. The method of claim 11 wherein moving the driving tool includes rotating the driving tool about an axis of rotation defined by a clamping assembly of the instrument while the driving tool is positioned within a passageway of the clamping assembly.
  • 16. The method of claim 11 wherein the driving tool includes a proximal end with a driver handle and a distal end with an engaging bit, andmoving the driving tool includes manually rotating the driver handle positioned proximally of a clamping assembly of the instrument while the engaging bit engages the interspinous device held by the clamping assembly.
  • 17. The method of claim 11 wherein rotating the control of the instrument causes a clamping assembly of the instrument to move from an clamping configuration for holding the interspinous device to a release configuration for disconnecting from the interspinous device.
  • 18. The method of claim 11 wherein the instrument includes a handle and a clamping assembly coupleable to the handle, wherein the clamping assembly includes an outer shaft and an inner shaft with a passageway for receiving the driving tool, androtating the control includes moving the control a sufficient amount to move at least one prong out of a prong receiving portion of the interspinous device.
  • 19. The method of claim 18 wherein rotation of the control causes one of the outer and inner shafts to move with respect to the other to cause the at least one prong to move toward or away from a longitudinal axis of the instrument.
  • 20. The method of claim 11 wherein the instrument includes an assembly having a distal end with a clamping assembly, wherein rotation of the control includes moving the clamping assembly between a clamping configuration for holding the interspinous device and an open configuration for releasing the interspinous device independent of rotation of the driving tool.
  • 21. The method of claim 11, further comprising moving the interspinous device along a midline approach to position the interspinous device at the interspinous space.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/338,793, now U.S. Pat. No. 8,613,747, filed Dec. 18, 2008, now allowed, which claims priority to and the benefit of U.S. Provisional Patent Application No. 61/008,418 entitled “Spacer Insertion Instrument” filed on Dec. 19, 2007, which also claims priority to and is a continuation-in-part of U.S. patent application Ser. No. 12/205,511, now U.S. Pat. No. 8,123,782, filed on Sep. 5, 2008, entitled “Interspinous Spacer,” which is a non-provisional of U.S. Provisional Patent Application No. 60/967,805, filed on Sep. 7, 2007, and entitled “Interspinous Spacer,” and is a continuation-in-part of U.S. patent application Ser. No. 12/220,427, now U.S. Pat. No. 8,277,488, filed Jul. 24, 2008 and entitled “Interspinous Spacer,” which is a non-provisional of U.S. Provisional Patent Application No. 60/961,741, filed Jul. 27, 2007, and entitled “Insterspinous Spacer,” and is a continuation-in-part of U.S. patent application Ser. No. 12/217,662, now U.S. Pat. No. 8,273,108, filed Jul. 8, 2008, and entitled “Interspinous Spacer,” which is a non-provisional of U.S. Provisional Patent Application No. 60/958,876, filed Jul. 9, 2007, and entitled “Interspinous Spacer,” and is a continuation-in-part of U.S. patent application Ser. No. 12/148,104, now U.S. Pat. No. 8,292,922, filed Apr. 16, 2008, and entitled “Interspinous Spacer,” which is a non-provisional of U.S. Provisional Patent Application No. 60/923,971, filed on Apr. 17, 2007, and entitled “Interspinous Spacer,” and U.S. Provisional Patent Application No. 60/923,841, filed Apr. 16, 2007, entitled “Spacer Insertion Instrument,” all of which are hereby incorporated by reference in their entireties. Patent application Ser. No. 12/338,793 is also a continuation-in-part of U.S. Patent application Ser. No. 11/593,995, now U.S. Pat. No. 8,425,559, filed on Nov. 7, 2006, entitled “Systems and Methods for Posterior Dynamic Stabilization of the Spine,” and a continuation-in-part of U.S. patent application Ser. No. 11/582,874, now U.S. Pat. No. 8,128,662, filed on Oct. 18, 2006, and entitled “Minimally Invasive Tooling for Delivery of Interspinous Spacer” and a continuation-in-part of U.S. patent application Ser. No. 11/314,712, now U.S. Pat. No. 8,152,837, filed on Dec. 20, 2005 and entitled “Systems and Methods for Posterior Dynamic Stabilization of the Spine,” and a continuation-in-part of U.S. patent application Ser. No. 11/190,496, now U.S. Pat. No. 8,409,282, filed Jul. 26, 2005, and entitled “Systems and Methods for Posterior Dynamic Stabilization of the Spine,” and a continuation-in-part of U.S. patent application Ser. No. 11/079,006, now U.S. Pat. No. 8,012,207, filed on Mar. 10, 2005, and entitled “Systems and Methods for Posterior Dynamic Stabilization of the Spine,” which is a continuation-in-part of U.S. patent application Ser. No. 11/052,002, now U.S. Pat. No. 8,317,864, filed Feb. 4, 2005, entitled “Systems and Methods for Posterior Dynamic Stabilization of the Spine,” which is a continuation-in-part of U.S. patent application Ser. No. 11/006,502, now U.S. Pat. No. 8,123,807, filed on Dec. 6, 2004, and entitled “Systems and Methods for Posterior Dynamic Stabilization of the Spine” which is a continuation-in-part of U.S. patent application Ser. No. 10/970,843, now U.S. Pat. No. 8,167,944, filed Oct. 20, 2004, and entitled “Systems and Methods for Posterior Dynamic Stabilization of the Spine,” all of which are hereby incorporated by reference in their entireties.

US Referenced Citations (551)
Number Name Date Kind
2248054 Becker Jul 1941 A
2677369 Knowles May 1954 A
3242120 Steuber Mar 1966 A
3486505 Morrison Dec 1969 A
3648691 Lumb et al. Mar 1972 A
3986383 Petteys Oct 1976 A
4545374 Jacobson Oct 1985 A
4632101 Freedland Dec 1986 A
4685447 Iversen et al. Aug 1987 A
4799484 Smith et al. Jan 1989 A
4863476 Shepperd Sep 1989 A
4895564 Farrell Jan 1990 A
4986831 King et al. Jan 1991 A
5011484 Breard et al. Apr 1991 A
5015247 Michelson May 1991 A
5019081 Watanabe May 1991 A
5059193 Kuslich Oct 1991 A
5092866 Breard et al. Mar 1992 A
5178628 Otsuka et al. Jan 1993 A
5180393 Commarmond et al. Jan 1993 A
5182281 Frigola-Constansa et al. Jan 1993 A
5188281 Fujiwara et al. Feb 1993 A
5192281 de la Caffiniere Mar 1993 A
5195526 Michelson Mar 1993 A
5298253 LeFiles et al. Mar 1994 A
5368594 Martin et al. Nov 1994 A
5390683 Pisharodi Feb 1995 A
5415661 Holmes May 1995 A
5456722 McLeod et al. Oct 1995 A
5462738 LeFiles et al. Oct 1995 A
5472452 Trott Dec 1995 A
5484437 Michelson Jan 1996 A
5487739 Aebischer et al. Jan 1996 A
5489308 Kuslich et al. Feb 1996 A
5496318 Howland et al. Mar 1996 A
5531748 de la Caffiniere et al. Jul 1996 A
5549679 Kuslich Aug 1996 A
5571189 Kuslich Nov 1996 A
5591165 Jackson Jan 1997 A
5609634 Voydeville et al. Mar 1997 A
5609636 Kohrs et al. Mar 1997 A
5645599 Samani et al. Jul 1997 A
5654599 Casper Aug 1997 A
5658337 Kohrs et al. Aug 1997 A
5674295 Ray et al. Oct 1997 A
5700264 Zucherman et al. Dec 1997 A
5725582 Bevan et al. Mar 1998 A
5741253 Michelson Apr 1998 A
5746720 Stouder, Jr. May 1998 A
5762629 Kambin Jun 1998 A
5836948 Zucherman et al. Nov 1998 A
5860977 Zucherman et al. Jan 1999 A
5863948 Epstein et al. Jan 1999 A
5876404 Zucherman et al. Mar 1999 A
RE36211 Nonomura et al. May 1999 E
5904636 Chen et al. May 1999 A
5904686 Zucherman et al. May 1999 A
5928207 Pisano et al. Jul 1999 A
5948017 Taheri Sep 1999 A
5972015 Scribner et al. Oct 1999 A
6039761 Li et al. Mar 2000 A
6045552 Zucherman et al. Apr 2000 A
6048342 Zucherman et al. Apr 2000 A
6048345 Berke et al. Apr 2000 A
6066154 Reiley et al. May 2000 A
6068630 Zucherman et al. May 2000 A
6074390 Zucherman et al. Jun 2000 A
6080155 Michelson Jun 2000 A
6080157 Cathro et al. Jun 2000 A
6090112 Zucherman et al. Jul 2000 A
6096038 Michelson Aug 2000 A
6102928 Bonutti Aug 2000 A
D433193 Gaw et al. Oct 2000 S
6132464 Martin et al. Oct 2000 A
6149642 Gerhart et al. Nov 2000 A
6149652 Zucherman et al. Nov 2000 A
6152926 Zucherman et al. Nov 2000 A
6156038 Zucherman et al. Dec 2000 A
6159215 Urbahns et al. Dec 2000 A
6179873 Zientek Jan 2001 B1
6183471 Zucherman et al. Feb 2001 B1
6190387 Zucherman et al. Feb 2001 B1
6225048 Soderberg-Naucler et al. May 2001 B1
6235030 Zucherman et al. May 2001 B1
6238397 Zucherman et al. May 2001 B1
6264651 Underwood et al. Jul 2001 B1
6264656 Michelson Jul 2001 B1
6267765 Taylor et al. Jul 2001 B1
6270498 Michelson Aug 2001 B1
6280444 Zucherman et al. Aug 2001 B1
6312431 Asfora Nov 2001 B1
6332882 Zucherman et al. Dec 2001 B1
6332883 Zucherman et al. Dec 2001 B1
6336930 Stalcup et al. Jan 2002 B1
6348053 Cachia Feb 2002 B1
6364883 Santilli Apr 2002 B1
6371989 Chauvin et al. Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6379355 Zucherman et al. Apr 2002 B1
6387130 Stone et al. May 2002 B1
6395032 Gauchet May 2002 B1
6402740 Ellis et al. Jun 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6402784 Wardlaw et al. Jun 2002 B1
6413228 Hung et al. Jul 2002 B1
6419676 Zucherman et al. Jul 2002 B1
6419677 Zucherman et al. Jul 2002 B2
6440169 Elberg et al. Aug 2002 B1
6443988 Felt et al. Sep 2002 B2
6447547 Michelson Sep 2002 B1
6451019 Zucherman et al. Sep 2002 B1
6451020 Zucherman et al. Sep 2002 B1
6471976 Taylor et al. Oct 2002 B1
6478796 Zucherman et al. Nov 2002 B2
6478822 Leroux et al. Nov 2002 B1
6500178 Zucherman et al. Dec 2002 B2
6514256 Zucherman et al. Feb 2003 B2
6530925 Boudard et al. Mar 2003 B2
6558333 Gilboa et al. May 2003 B2
6565570 Sterett et al. May 2003 B2
6572617 Senegas et al. Jun 2003 B1
6575981 Boyd et al. Jun 2003 B1
6579281 Palmer et al. Jun 2003 B2
6579319 Goble et al. Jun 2003 B2
6582433 Yun Jun 2003 B2
6582451 Marucci et al. Jun 2003 B1
6599292 Ray Jul 2003 B1
6610065 Branch et al. Aug 2003 B1
6610091 Reiley Aug 2003 B1
6645207 Dixon et al. Nov 2003 B2
6645211 Magana Nov 2003 B2
6652527 Zucherman et al. Nov 2003 B2
6652534 Zucherman et al. Nov 2003 B2
6663637 Dixon et al. Dec 2003 B2
6679886 Weikel et al. Jan 2004 B2
6695842 Zucherman et al. Feb 2004 B2
6699246 Zucherman et al. Mar 2004 B2
6699247 Zucherman et al. Mar 2004 B2
6702847 DiCarlo Mar 2004 B2
6712819 Zucherman et al. Mar 2004 B2
6716245 Pasquet et al. Apr 2004 B2
6733534 Sherman May 2004 B2
6746485 Zucherman et al. Jun 2004 B1
6761720 Senegas et al. Jul 2004 B1
6783529 Hover et al. Aug 2004 B2
6783546 Zucherman et al. Aug 2004 B2
6796983 Zucherman et al. Sep 2004 B1
6805697 Helm et al. Oct 2004 B1
6835205 Atkinson et al. Dec 2004 B2
6840944 Suddaby Jan 2005 B2
6858029 Yeh Feb 2005 B2
6869398 Obenchain et al. Mar 2005 B2
6875212 Shaolian et al. Apr 2005 B2
6902566 Zucherman et al. Jun 2005 B2
6926728 Zucherman et al. Aug 2005 B2
6946000 Senegas et al. Sep 2005 B2
6949123 Reiley Sep 2005 B2
6966930 Arnin et al. Nov 2005 B2
6974478 Reiley et al. Dec 2005 B2
7011685 Arnin et al. Mar 2006 B2
7029473 Zucherman et al. Apr 2006 B2
7033358 Taylor et al. Apr 2006 B2
7048736 Robinson et al. May 2006 B2
7070598 Lim et al. Jul 2006 B2
7083649 Zucherman et al. Aug 2006 B2
7087055 Lim et al. Aug 2006 B2
7087083 Pasquet et al. Aug 2006 B2
7097648 Globerman et al. Aug 2006 B1
7101375 Zucherman et al. Sep 2006 B2
7163558 Senegas et al. Jan 2007 B2
7179225 Shluzas et al. Feb 2007 B2
7187064 Tzu et al. Mar 2007 B2
7189234 Zucherman et al. Mar 2007 B2
7189236 Taylor et al. Mar 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7217291 Zucherman et al. May 2007 B2
7223289 Trieu et al. May 2007 B2
7229441 Trieu et al. Jun 2007 B2
7238204 Le Couedic et al. Jul 2007 B2
7252673 Lim Aug 2007 B2
7273496 Mitchell Sep 2007 B2
7282063 Cohen et al. Oct 2007 B2
7297162 Mujwid Nov 2007 B2
7306628 Zucherman et al. Dec 2007 B2
7318839 Malberg et al. Jan 2008 B2
7320707 Zucherman et al. Jan 2008 B2
7335200 Carli Feb 2008 B2
7335203 Winslow et al. Feb 2008 B2
7354453 McAfee Apr 2008 B2
7384340 Eguchi et al. Jun 2008 B2
7390330 Harp Jun 2008 B2
7410501 Michelson Aug 2008 B2
7442208 Mathieu et al. Oct 2008 B2
7445637 Taylor Nov 2008 B2
7473268 Zucherman et al. Jan 2009 B2
7476251 Zucherman et al. Jan 2009 B2
7481839 Zucherman et al. Jan 2009 B2
7481840 Zucherman et al. Jan 2009 B2
7491204 Marnay et al. Feb 2009 B2
7497859 Zucherman et al. Mar 2009 B2
7503935 Zucherman et al. Mar 2009 B2
7504798 Kawada et al. Mar 2009 B2
7510567 Zucherman et al. Mar 2009 B2
7520887 Maxy et al. Apr 2009 B2
7520899 Zucherman et al. Apr 2009 B2
7547308 Bertagnoli et al. Jun 2009 B2
7549999 Zucherman et al. Jun 2009 B2
7550009 Arnin et al. Jun 2009 B2
7565259 Sheng et al. Jul 2009 B2
7572276 Lim et al. Aug 2009 B2
7575600 Zucherman et al. Aug 2009 B2
7585313 Kwak et al. Sep 2009 B2
7585316 Trieu Sep 2009 B2
7591851 Winslow et al. Sep 2009 B2
7601170 Winslow et al. Oct 2009 B2
7621939 Zucherman et al. Nov 2009 B2
7635377 Zucherman et al. Dec 2009 B2
7635378 Zucherman et al. Dec 2009 B2
7637950 Baccelli et al. Dec 2009 B2
7658752 Labrom et al. Feb 2010 B2
7662187 Zucherman et al. Feb 2010 B2
7666186 Harp Feb 2010 B2
7666209 Zucherman et al. Feb 2010 B2
7666228 Le Couedic et al. Feb 2010 B2
7670377 Zucherman et al. Mar 2010 B2
7682376 Trieu Mar 2010 B2
7691146 Zucherman et al. Apr 2010 B2
7695513 Zucherman et al. Apr 2010 B2
7699852 Frankel et al. Apr 2010 B2
7699873 Stevenson et al. Apr 2010 B2
7727233 Blackwell et al. Jun 2010 B2
7727241 Gorensek et al. Jun 2010 B2
7731751 Butler et al. Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7749231 Bonvallet et al. Jul 2010 B2
7749252 Zucherman et al. Jul 2010 B2
7749253 Zucherman et al. Jul 2010 B2
7753938 Aschmann et al. Jul 2010 B2
7758619 Zucherman et al. Jul 2010 B2
7758647 Arnin et al. Jul 2010 B2
7763028 Lim et al. Jul 2010 B2
7763050 Winslow et al. Jul 2010 B2
7763051 Labrom et al. Jul 2010 B2
7763073 Hawkins et al. Jul 2010 B2
7763074 Altarac et al. Jul 2010 B2
7766967 Francis Aug 2010 B2
7776090 Winslow et al. Aug 2010 B2
7780709 Bruneau et al. Aug 2010 B2
7789898 Peterman Sep 2010 B2
7794476 Wisnewski Sep 2010 B2
7803190 Zucherman et al. Sep 2010 B2
7806911 Peckham Oct 2010 B2
7811308 Arnin et al. Oct 2010 B2
7811322 Arnin et al. Oct 2010 B2
7811323 Arnin et al. Oct 2010 B2
7811324 Arnin et al. Oct 2010 B2
7811330 Arnin et al. Oct 2010 B2
7819921 Grotz Oct 2010 B2
7828822 Zucherman et al. Nov 2010 B2
7828849 Lim Nov 2010 B2
7833272 Arnin et al. Nov 2010 B2
7837687 Harp Nov 2010 B2
7837688 Boyer, II et al. Nov 2010 B2
7837700 Harp Nov 2010 B2
7837734 Zucherman et al. Nov 2010 B2
7846183 Blain Dec 2010 B2
7846185 Carls et al. Dec 2010 B2
7846186 Taylor Dec 2010 B2
7857815 Zucherman et al. Dec 2010 B2
7862569 Zucherman et al. Jan 2011 B2
7862586 Malek Jan 2011 B2
7862590 Lim et al. Jan 2011 B2
7862592 Peterson et al. Jan 2011 B2
7862615 Carli et al. Jan 2011 B2
7867276 Matge et al. Jan 2011 B2
7871426 Chin et al. Jan 2011 B2
7896879 Solsberg et al. Mar 2011 B2
7942830 Solsberg et al. May 2011 B2
7955392 Dewey et al. Jun 2011 B2
8012207 Kim Sep 2011 B2
8025684 Garcia-Bengochea et al. Sep 2011 B2
8057513 Kohm et al. Nov 2011 B2
8062332 Cunningham et al. Nov 2011 B2
8100823 Harp Jan 2012 B2
8123782 Altarac et al. Feb 2012 B2
8123807 Kim Feb 2012 B2
8128662 Altarac et al. Mar 2012 B2
8152837 Altarac et al. Apr 2012 B2
8167944 Kim May 2012 B2
8226690 Altarac et al. Jul 2012 B2
8273108 Altarac et al. Sep 2012 B2
8277488 Altarac et al. Oct 2012 B2
8292922 Altarac et al. Oct 2012 B2
8317864 Kim Nov 2012 B2
8409282 Kim Apr 2013 B2
8425559 Tebbe et al. Apr 2013 B2
8608762 Solsberg et al. Dec 2013 B2
8613747 Altarac et al. Dec 2013 B2
8628574 Altarac et al. Jan 2014 B2
8696671 Solsberg et al. Apr 2014 B2
8734477 Solsberg et al. May 2014 B2
8740948 Reglos et al. Jun 2014 B2
8845726 Tebbe et al. Sep 2014 B2
8864828 Altarac et al. Oct 2014 B2
8882772 Solsberg et al. Nov 2014 B2
8894653 Solsberg et al. Nov 2014 B2
8900271 Kim Dec 2014 B2
8945183 Altarac et al. Feb 2015 B2
9023084 Kim May 2015 B2
9039742 Altarac et al. May 2015 B2
9119680 Altarac et al. Sep 2015 B2
9125692 Kim Sep 2015 B2
9155570 Altarac et al. Oct 2015 B2
9155572 Altarac et al. Oct 2015 B2
9161783 Altarac et al. Oct 2015 B2
9186186 Reglos et al. Nov 2015 B2
9211146 Kim Dec 2015 B2
20010031965 Zucherman et al. Oct 2001 A1
20020042607 Palmer et al. Apr 2002 A1
20020143331 Zucherman et al. Oct 2002 A1
20030040746 Mitchell et al. Feb 2003 A1
20030074075 Thomas et al. Apr 2003 A1
20030149438 Nichols et al. Aug 2003 A1
20030153976 Cauthen et al. Aug 2003 A1
20030176921 Lawson Sep 2003 A1
20030220650 Major et al. Nov 2003 A1
20030233098 Markworth Dec 2003 A1
20040087947 Lim et al. May 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040220568 Zucherman et al. Nov 2004 A1
20050049708 Atkinson et al. Mar 2005 A1
20050075634 Zucherman et al. Apr 2005 A1
20050101955 Zucherman et al. May 2005 A1
20050125066 McAfee Jun 2005 A1
20050143738 Zucherman et al. Jun 2005 A1
20050165398 Reiley Jul 2005 A1
20050192586 Zucherman et al. Sep 2005 A1
20050192671 Bao et al. Sep 2005 A1
20050209603 Zucherman et al. Sep 2005 A1
20050216087 Zucherman et al. Sep 2005 A1
20050228383 Zucherman et al. Oct 2005 A1
20050228384 Zucherman et al. Oct 2005 A1
20050245937 Winslow Nov 2005 A1
20050261768 Trieu Nov 2005 A1
20050278036 Leonard et al. Dec 2005 A1
20060036258 Zucherman et al. Feb 2006 A1
20060064166 Zucherman et al. Mar 2006 A1
20060074431 Sutton et al. Apr 2006 A1
20060084976 Borgstrom et al. Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060084991 Borgstrom et al. Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060085074 Raiszadeh Apr 2006 A1
20060089718 Zucherman et al. Apr 2006 A1
20060102269 Uchida et al. May 2006 A1
20060122620 Kim Jun 2006 A1
20060149254 Lauryssen et al. Jul 2006 A1
20060149289 Winslow et al. Jul 2006 A1
20060167416 Mathis et al. Jul 2006 A1
20060195102 Malandain Aug 2006 A1
20060217811 Lambrecht et al. Sep 2006 A1
20060224159 Anderson Oct 2006 A1
20060235386 Anderson Oct 2006 A1
20060241597 Mitchell et al. Oct 2006 A1
20060241614 Bruneau et al. Oct 2006 A1
20060241757 Anderson Oct 2006 A1
20060247623 Anderson et al. Nov 2006 A1
20060247632 Winslow et al. Nov 2006 A1
20060247633 Winslow et al. Nov 2006 A1
20060247650 Yerby et al. Nov 2006 A1
20060247773 Stamp Nov 2006 A1
20060264938 Zucherman et al. Nov 2006 A1
20060264939 Zucherman et al. Nov 2006 A1
20060265066 Zucherman et al. Nov 2006 A1
20060265067 Zucherman et al. Nov 2006 A1
20060271044 Petrini et al. Nov 2006 A1
20060271049 Zucherman et al. Nov 2006 A1
20060271055 Thramann Nov 2006 A1
20060271061 Beyar et al. Nov 2006 A1
20060271194 Zucherman et al. Nov 2006 A1
20060276801 Yerby et al. Dec 2006 A1
20060276897 Winslow et al. Dec 2006 A1
20060282077 Labrom et al. Dec 2006 A1
20060282078 Labrom et al. Dec 2006 A1
20070016196 Winslow et al. Jan 2007 A1
20070055237 Edidin et al. Mar 2007 A1
20070055246 Zucherman et al. Mar 2007 A1
20070073289 Kwak et al. Mar 2007 A1
20070100340 Lange et al. May 2007 A1
20070123863 Winslow et al. May 2007 A1
20070123904 Stad et al. May 2007 A1
20070161991 Altarac et al. Jul 2007 A1
20070161993 Lowery et al. Jul 2007 A1
20070173818 Hestad et al. Jul 2007 A1
20070173821 Trieu Jul 2007 A1
20070173822 Bruneau et al. Jul 2007 A1
20070173823 Dewey et al. Jul 2007 A1
20070173832 Tebbe et al. Jul 2007 A1
20070173939 Kim et al. Jul 2007 A1
20070179500 Chin et al. Aug 2007 A1
20070185490 Implicito Aug 2007 A1
20070191948 Arnin et al. Aug 2007 A1
20070198045 Morton et al. Aug 2007 A1
20070198091 Boyer et al. Aug 2007 A1
20070203493 Zucherman et al. Aug 2007 A1
20070203495 Zucherman et al. Aug 2007 A1
20070203496 Zucherman et al. Aug 2007 A1
20070203497 Zucherman et al. Aug 2007 A1
20070203501 Zucherman et al. Aug 2007 A1
20070208345 Marnay et al. Sep 2007 A1
20070208346 Marnay et al. Sep 2007 A1
20070208366 Pellegrino et al. Sep 2007 A1
20070210018 Wallwiener et al. Sep 2007 A1
20070225706 Clark et al. Sep 2007 A1
20070225724 Edmond Sep 2007 A1
20070225807 Phan et al. Sep 2007 A1
20070225814 Atkinson et al. Sep 2007 A1
20070233068 Bruneau et al. Oct 2007 A1
20070233074 Anderson et al. Oct 2007 A1
20070233076 Trieu Oct 2007 A1
20070233077 Khalili Oct 2007 A1
20070233081 Pasquet et al. Oct 2007 A1
20070233082 Chin et al. Oct 2007 A1
20070233083 Abdou Oct 2007 A1
20070233084 Betz et al. Oct 2007 A1
20070233088 Edmond Oct 2007 A1
20070233089 DiPoto et al. Oct 2007 A1
20070233096 Garcia-Bengochea Oct 2007 A1
20070233098 Mastrorio et al. Oct 2007 A1
20070233129 Bertagnoli et al. Oct 2007 A1
20070250060 Anderson et al. Oct 2007 A1
20070260245 Malandain et al. Nov 2007 A1
20070265623 Malandain et al. Nov 2007 A1
20070265624 Zucherman et al. Nov 2007 A1
20070265625 Zucherman et al. Nov 2007 A1
20070265626 Seme Nov 2007 A1
20070270822 Heinz Nov 2007 A1
20070270823 Trieu et al. Nov 2007 A1
20070270824 Lim et al. Nov 2007 A1
20070270826 Trieu et al. Nov 2007 A1
20070270827 Lim et al. Nov 2007 A1
20070270828 Bruneau et al. Nov 2007 A1
20070270829 Carls et al. Nov 2007 A1
20070270834 Bruneau et al. Nov 2007 A1
20070272259 Allard et al. Nov 2007 A1
20070276368 Trieu et al. Nov 2007 A1
20070276369 Allard et al. Nov 2007 A1
20070276372 Malandain et al. Nov 2007 A1
20070276373 Malandain Nov 2007 A1
20070276493 Malandain et al. Nov 2007 A1
20070276496 Lange et al. Nov 2007 A1
20070276497 Anderson Nov 2007 A1
20070276500 Zucherman et al. Nov 2007 A1
20080015700 Zucherman et al. Jan 2008 A1
20080021468 Zucherman et al. Jan 2008 A1
20080021560 Zucherman et al. Jan 2008 A1
20080021561 Zucherman et al. Jan 2008 A1
20080027545 Zucherman et al. Jan 2008 A1
20080027552 Zucherman et al. Jan 2008 A1
20080027553 Zucherman et al. Jan 2008 A1
20080033445 Zucherman et al. Feb 2008 A1
20080033553 Zucherman et al. Feb 2008 A1
20080033558 Zucherman et al. Feb 2008 A1
20080033559 Zucherman et al. Feb 2008 A1
20080039853 Zucherman et al. Feb 2008 A1
20080039858 Zucherman et al. Feb 2008 A1
20080039859 Zucherman et al. Feb 2008 A1
20080039945 Zucherman et al. Feb 2008 A1
20080039946 Zucherman et al. Feb 2008 A1
20080039947 Zucherman et al. Feb 2008 A1
20080045958 Zucherman et al. Feb 2008 A1
20080045959 Zucherman et al. Feb 2008 A1
20080046081 Zucherman et al. Feb 2008 A1
20080046085 Zucherman et al. Feb 2008 A1
20080046086 Zucherman et al. Feb 2008 A1
20080046087 Zucherman et al. Feb 2008 A1
20080046088 Zucherman et al. Feb 2008 A1
20080051785 Zucherman et al. Feb 2008 A1
20080051898 Zucherman et al. Feb 2008 A1
20080051899 Zucherman et al. Feb 2008 A1
20080051904 Zucherman et al. Feb 2008 A1
20080051905 Zucherman et al. Feb 2008 A1
20080058806 Klyce et al. Mar 2008 A1
20080058807 Klyce et al. Mar 2008 A1
20080058808 Klyce et al. Mar 2008 A1
20080058941 Zucherman et al. Mar 2008 A1
20080065086 Zucherman et al. Mar 2008 A1
20080065212 Zucherman et al. Mar 2008 A1
20080065213 Zucherman et al. Mar 2008 A1
20080065214 Zucherman et al. Mar 2008 A1
20080071280 Winslow Mar 2008 A1
20080071378 Zucherman et al. Mar 2008 A1
20080086212 Zucherman et al. Apr 2008 A1
20080108990 Mitchell et al. May 2008 A1
20080114455 Lange et al. May 2008 A1
20080132952 Malandain et al. Jun 2008 A1
20080167655 Wang et al. Jul 2008 A1
20080167656 Zucherman et al. Jul 2008 A1
20080172057 Zucherman et al. Jul 2008 A1
20080177272 Zucherman et al. Jul 2008 A1
20080177306 Lamborne et al. Jul 2008 A1
20080177312 Perez-Cruet et al. Jul 2008 A1
20080183210 Zucherman et al. Jul 2008 A1
20080188895 Cragg et al. Aug 2008 A1
20080208344 Kilpela et al. Aug 2008 A1
20080215058 Zucherman et al. Sep 2008 A1
20080221692 Zucherman et al. Sep 2008 A1
20080228225 Trautwein et al. Sep 2008 A1
20080234708 Houser et al. Sep 2008 A1
20080234824 Youssef et al. Sep 2008 A1
20080288075 Zucherman et al. Nov 2008 A1
20080319550 Altarac et al. Dec 2008 A1
20090012528 Aschmann et al. Jan 2009 A1
20090118833 Hudgins et al. May 2009 A1
20090125030 Tebbe et al. May 2009 A1
20090138046 Altarac et al. May 2009 A1
20090138055 Altarac et al. May 2009 A1
20090222043 Altarac et al. Sep 2009 A1
20090248079 Kwak et al. Oct 2009 A1
20090292315 Trieu Nov 2009 A1
20100042217 Zucherman et al. Feb 2010 A1
20100082108 Zucherman et al. Apr 2010 A1
20100131009 Roebling et al. May 2010 A1
20100228092 Ortiz et al. Sep 2010 A1
20100234889 Hess Sep 2010 A1
20100262243 Zucherman et al. Oct 2010 A1
20100280551 Pool et al. Nov 2010 A1
20100305611 Zucherman et al. Dec 2010 A1
20110245833 Anderson Oct 2011 A1
20110313457 Reglos et al. Dec 2011 A1
20120158063 Altarac et al. Jun 2012 A1
20120226315 Altarac et al. Sep 2012 A1
20120232552 Morgenstern Lopez et al. Sep 2012 A1
20120303039 Chin et al. Nov 2012 A1
20130012998 Altarac et al. Jan 2013 A1
20130150886 Altarac et al. Jun 2013 A1
20130165974 Kim Jun 2013 A1
20130165975 Tebbe et al. Jun 2013 A1
20130172932 Altarac et al. Jul 2013 A1
20130172933 Altarac et al. Jul 2013 A1
20130289399 Choi et al. Oct 2013 A1
20130289622 Kim Oct 2013 A1
20140214082 Reglos et al. Jul 2014 A1
20140228884 Altarac et al. Aug 2014 A1
20140275992 Choi et al. Sep 2014 A1
20150150598 Tebbe et al. Jun 2015 A1
20150150604 Kim Jun 2015 A1
20150164560 Altarac et al. Jun 2015 A1
20150374415 Kim Dec 2015 A1
Foreign Referenced Citations (126)
Number Date Country
268461 Feb 1927 CA
69507480 Sep 1999 DE
322334 Jun 1989 EP
0767636 Apr 1997 EP
0768843 Apr 1997 EP
0959792 Dec 1999 EP
1027004 Aug 2000 EP
1030615 Aug 2000 EP
1138268 Oct 2001 EP
1330987 Jul 2003 EP
1056408 Dec 2003 EP
1343424 Sep 2004 EP
1454589 Sep 2004 EP
1148850 Apr 2005 EP
1570793 Sep 2005 EP
1299042 Mar 2006 EP
1578314 May 2007 EP
1675535 May 2007 EP
1861046 Dec 2007 EP
2681525 Mar 1993 FR
2722980 Feb 1996 FR
2816197 May 2002 FR
2884136 Oct 2006 FR
2888744 Jan 2007 FR
988281 Jan 1983 SU
WO-9404088 Mar 1994 WO
WO-9426192 Nov 1994 WO
WO-9525485 Sep 1995 WO
WO-9531158 Nov 1995 WO
WO-9600049 Jan 1996 WO
WO-9829047 Jul 1998 WO
WO-9921500 May 1999 WO
WO-9921501 May 1999 WO
WO-9942051 Aug 1999 WO
WO-0013619 Mar 2000 WO
WO-0044319 Aug 2000 WO
WO-0044321 Aug 2000 WO
WO-0128442 Apr 2001 WO
WO-0191657 Dec 2001 WO
WO-0191658 Dec 2001 WO
WO-0203882 Jan 2002 WO
WO-0207623 Jan 2002 WO
WO-0207624 Jan 2002 WO
WO-02051326 Jul 2002 WO
WO-02067793 Sep 2002 WO
WO-02071960 Sep 2002 WO
WO-02076336 Oct 2002 WO
WO-03007791 Jan 2003 WO
WO-03007829 Jan 2003 WO
WO-03008016 Jan 2003 WO
WO-03015646 Feb 2003 WO
WO-03024298 Mar 2003 WO
WO-03045262 Jun 2003 WO
WO-03099147 Dec 2003 WO
WO-03101350 Dec 2003 WO
WO-2004073533 Sep 2004 WO
WO-2004110300 Dec 2004 WO
WO-2005009300 Feb 2005 WO
WO-2005013839 Feb 2005 WO
WO-2005025461 Mar 2005 WO
WO-2005041799 May 2005 WO
WO-2005044152 May 2005 WO
WO-2005055868 Jun 2005 WO
WO-2005079672 Sep 2005 WO
WO-2005086776 Sep 2005 WO
WO-2005115261 Dec 2005 WO
WO-2006033659 Mar 2006 WO
WO-2006034423 Mar 2006 WO
WO-2006039243 Apr 2006 WO
WO-2006039260 Apr 2006 WO
WO-2006045094 Apr 2006 WO
WO-2006063047 Jun 2006 WO
WO-2006064356 Jun 2006 WO
WO-2006065774 Jun 2006 WO
WO-2006089085 Aug 2006 WO
WO-2006102269 Sep 2006 WO
WO-2006102428 Sep 2006 WO
WO-2006102485 Sep 2006 WO
WO-2006107539 Oct 2006 WO
WO-2006110462 Oct 2006 WO
WO-2006110464 Oct 2006 WO
WO-2006110767 Oct 2006 WO
WO-2006113080 Oct 2006 WO
WO-2006113406 Oct 2006 WO
WO-2006113814 Oct 2006 WO
WO-2006118945 Nov 2006 WO
WO-2006119235 Nov 2006 WO
WO-2006119236 Nov 2006 WO
WO-2006135511 Dec 2006 WO
WO-2007015028 Feb 2007 WO
WO-2007035120 Mar 2007 WO
WO-2007075375 Jul 2007 WO
WO-2007075788 Jul 2007 WO
WO-2007075791 Jul 2007 WO
WO-2007089605 Aug 2007 WO
WO-2007089905 Aug 2007 WO
WO-2007089975 Aug 2007 WO
WO-2007097735 Aug 2007 WO
WO-2007109402 Sep 2007 WO
WO-2007110604 Oct 2007 WO
WO-2007111795 Oct 2007 WO
WO-2007111979 Oct 2007 WO
WO-2007111999 Oct 2007 WO
WO-2007117882 Oct 2007 WO
WO-2007121070 Oct 2007 WO
WO-2007127550 Nov 2007 WO
WO-2007127588 Nov 2007 WO
WO-2007127677 Nov 2007 WO
WO-2007127689 Nov 2007 WO
WO-2007127694 Nov 2007 WO
WO-2007127734 Nov 2007 WO
WO-2007127736 Nov 2007 WO
WO-2007131165 Nov 2007 WO
WO-2007134113 Nov 2007 WO
WO-2008009049 Jan 2008 WO
WO-2008048645 Apr 2008 WO
WO-2008057506 May 2008 WO
WO-2008130564 Oct 2008 WO
WO-2009014728 Jan 2009 WO
WO-2009033093 Mar 2009 WO
WO-2009086010 Jul 2009 WO
WO-2009091922 Jul 2009 WO
WO-2009094463 Jul 2009 WO
WO-2009114479 Sep 2009 WO
WO-2011084477 Jul 2011 WO
WO-2015171814 Nov 2015 WO
Non-Patent Literature Citations (70)
Entry
European Search Report Application No. EP05849654.8; Applicant: The Board of Trustees of the Leland Stanford Junior University; Date of Completion: Jun. 21, 2011, 4 pages.
International Search Report and Written Opinion; Application No. PCT/US2005/038026; Mailing Date: Apr. 22, 2008, 9 pages.
International Search Report and Written Opinion; Application No. PCT/US2005/044256; Mailing Date: Jul. 28, 2006, 7 pages.
International Search Report and Written Opinion; Application No. PCT/US2006/047824; Mailing Date: Oct. 16, 2008, 17 pages.
International Search Report and Written Opinion; Application No. PCT/US2006/048611; Mailing Date: Oct. 14, 2008; 10 pages.
International Search Report and Written Opinion; Application No. PCT/US2006/048614; Mailing Date: Feb. 3, 2006; 23 pages.
International Search Report and Written Opinion; Application No. PCT/US2007/022171; Mailing Date: Apr. 15, 2008, 9 pages.
International Search Report and Written Opinion; Application No. PCT/US2007/023312; Mailing Date: May 22, 2008, 14 pages.
International Search Report and Written Opinion; Application No. PCT/US2008/004901; Mailing Date: Aug. 19, 2008, 7 pages.
International Search Report and Written Opinion; Application No. PCT/US2008/008382; Mailing Date: Mar. 2, 2009, 13 pages.
International Search Report and Written Opinion; Application No. PCT/US2008/008983; Mailing Date: Feb. 23, 2009, 7 pages.
International Search Report and Written Opinion; Application No. PCT/US2008/075487; Mailing Date: Dec. 31, 2008, 7 pages.
International Search Report and Written Opinion; Application No. PCT/US2008/087527; Mailing Date: Jul. 30, 2009, 10 pages.
International Search Report and Written Opinion; Application No. PCT/US2009/031150; Mailing Date: Aug. 28, 2009, 6 pages.
International Search Report and Written Opinion; Application No. PCT/US2009/031710; Mailing Date: Sep. 1, 2009, 10 pages.
International Search Report and Written Opinion; Application No. PCT/US2009/036561; Mailing Date: Sep. 17, 2009, 12 pages.
Minns, R.J., et al., “Preliminary Design and Experimental Studies of a Noval Soft Implant for Correcting Sagittal Plane Instability in the Lumbar Spine,” (1997) Spine, 22(16): 1819-1827.
Supplementary European Search Report; Application No. EP05849654.6; Applicant: Vertiflex, Inc.; Date of Completion: May 15, 2009, 10 pages.
Supplementary European Search Report; Application No. EP07861426.0; Applicant: Vertiflex, Inc.; Date of Completion: Jun. 7, 2011, 6 pages.
Supplementary European Search Report; Application No. EP07861721.4; Applicant: Vertiflex, Inc.; Date of Completion: Nov. 24, 2009, 6 pages.
Supplementary European Search Report; Application No. EP09170304.1; Applicant: Vertiflex, Inc.; Date of Completion: Nov. 11, 2009, 5 pages.
Supplementary European Search Report; Application No. EP09170338.9; Applicant: Vertiflex, Inc.; Date of Completion: Nov. 12, 2009, 6 pages.
Supplementary European Search Report; Application No. EP09702116.6; Applicant: Vertiflex, Inc.; Date of Completion: Feb. 11, 2011, 6 pages.
Supplementary European Search Report; Application No. EP11151901.3; Applicant: Vertiflex, Inc.; Date of Completion: Apr. 7, 2011, 6 pages.
Swan, Colby, “Preliminary Design and Experimental Studies of a Novel Soft Implant for Correcting Sogittal Plane Instability in the Lumbar Spine,” Spine, 1997, 22(16), 1826-1827.
Supplementary European Search Report; Application No. EP05815519.3; Applicant: The Board of Trustees of Leland Stanford Junior University; Date of Completion: Sep. 28, 2011, 9 pages.
Supplementary European Search Report; Application No. EP05849654; Applicant: The Board of Trustees of Leland Stanford Junior University; Date of Completion: May 15, 2009, 5 pages.
Australia Exam Report for Application No. AU2006329867, Applicant: The Board of Trustees of Leland Stanford Junior University; Date of Issue: Jan. 27, 2012, 2 pages.
Australia Exam Report for Application No. AU2007317886, Applicant: VertiFlex, Inc.; Date of Issue: Jun. 18, 2012, 3 pages.
Australia Exam Report for Application No. AU2008241447, Applicant: VertiFlex, Inc.; Date of Issue: Jul. 5, 2012, 4 pages.
Australia Exam Report for Application No. AU2008275708, Applicant: VertiFlex, Inc.; Date of Issue: Nov. 12, 2012, 4 pages.
Australia Exam Report for Application No. AU2008279680, Applicant: VertiFlex, Inc.; Date of Issue: Oct. 30, 2012, 5 pages.
Australia Exam Report for Application No. AU2008296066, Applicant: VertiFlex, Inc.; Date of Issue: Mar. 6, 2013, 3 pages.
Australia Exam Report for Application No. AU2008343092, Applicant: VertiFlex, Inc.; Date of Issue: Feb. 8, 2013, 4 pages.
Australia Exam Report No. 2 for Application No. AU2009206098, Applicant: VertiFlex, Inc.; Date of Issue: Aug. 19, 2014, 4 pages.
Australia Exam Report No. 1 for Application No. AU2009206098, Applicant: VertiFlex, Inc.; Date of Issue: Mar. 6, 2013, 4 pages.
Canada Exam Report for Application No. CA2634251, Applicant: The Board of Trustees of Leland Stanford Junior University; Date of Issue: Dec. 3, 2013, 2 pages.
Canada Exam Report for Application No. CA2668833, Applicant: Vertiflex, Inc.; Date of Issue: Dec. 5, 2013, 2 pages.
Canada Exam Report for Application No. CA2695937, Applicant: Vertiflex, Inc.; Date of Issue: Aug. 7, 2014, 2 pages.
Canada Exam Report for Application No. CA2697628, Applicant: Vertiflex, Inc.; Date of Issue: Oct. 16, 2014, 2 pages.
Canada Exam Report for Application No. CA2698718, Applicant: Vertiflex, Inc.; Date of Issue: May 20, 2014, 3 pages.
Supplementary European Search Report; Application No. EP06845480; Applicant: VertiFlex, Inc.; Date of Completion: Aug. 14, 2012, 9 pages.
Supplementary European Search Report for Application No. EP13184922.6; Applicant: VertiFlex, Inc.; Date of Issue: Oct. 30, 2013, 8 pages.
Supplementary European Search Report for Application No. EP07861426; Applicant: VertiFlex, Inc.; Date of Issue: Jun. 7, 2011, 6 pages.
Supplementary European Search Report for Application No. EP07861721.4; Applicant: VertiFlex, Inc.; Date of Issue: Nov. 24, 2009, 6 pages.
Supplementary European Search Report for Application No. EP09170304.1; Applicant: VertiFlex, Inc.; Date of Issue: Nov. 24, 2009, 5 pages.
Supplementary European Search Report for Application No. EP09170338.9; Applicant: VertiFlex, Inc.; Date of Issue: Nov. 24, 2009, 6 pages.
Supplementary European Search Report for Application No. EP11151901.3; Applicant: VertiFlex, Inc.; Date of Issue: Apr. 7, 2011, 6 pages.
Supplementary European Search Report for Application No. EP08742949.4; Applicant: VertiFlex, Inc.; Date of Issue: Sep. 17, 2012, 6 pages.
Supplementary European Search Report for Application No. EP08780034.8; Applicant: VertiFlex, Inc.; Date of Issue: Sep. 19, 2012, 7 pages.
Supplementary European Search Report for Application No. EP08794704.0; Applicant: VertiFlex, Inc.; Date of Issue: Oct. 23, 2012, 9 pages.
Supplementary European Search Report for Application No. EP08799267.3; Applicant: VertiFlex, Inc.; Date of Issue: Jun. 29, 2011, 7 pages.
Supplementary European Search Report for Application No. EP08867282.9; Applicant: VertiFlex, Inc.; Date of Issue: Nov. 28, 2012, 10 pages.
Supplementary European Search Report for Application No. EP09702116.6; Applicant: VertiFlex, Inc.; Date of Issue: Feb. 11, 2011, 7 pages.
International Search Report and Written Opinion; Application No. PCT/US2010/060498; Mailing Date: Aug. 25, 2011, 17 pages.
Australia Exam Report for Application No. AU2009223607, Applicant: VertiFlex, Inc.; Date of Issue: Jun. 4, 2013, 3 pages.
Australia Exam Report for Application No. AU2013273815, Applicant: The Board of Trustees of Leland Stanford Junior University; Date of Issue: Apr. 17, 2015, 3 pages.
International Search Report, counterpart PCT Application PCT/US2013/038534, Applicant: Vertiflex, Inc., Aug. 7, 2013, 16 pages.
McCulloch, John A., Young, Paul H., “Essentials of Spinal Microsurgery,” 1998, pp. 453-485. Lippincott-Raven Publishers, Philadelphia, PA (37 pages total).
Lee, Seungcheol et al., “New Surgical Techniques of Percutaneous Endoscopic Lumbar Disectomy for Migrated Disc Herniation,” Joint Dis. Rel. Surg., 16(2); pp. 102-110 (2005).
Choi, Gun et al., “Percutaneous Endoscopic Interlaminar Disectomy for Intracanalicular Disc Herniations at L5-S1 Using a Rigid Working Channel Endoscope,” Operative Neurosurg., 58: pp. 59-68 (2006).
Lee, Seungcheol et al., “Percutaneous Endoscopic Interlaminar Disectomy for L5-S1 Disc Herniation: Axillary Approach and Preliminary Results,” J. of Korean Neurosurg. Soc., 40: pp. 19-83 (2006).
Vertos mild Devices Kit—PRT-00430-C—Instructions for Use (13 pages total); see http://vertosmed.com/docs/mildIFU—PRT-00430-C.pdf., 2012.
Decision on Petition in U.S. Appl. No. 60/592,099, May 4, 2005.
Vaccaro, Alexander J. et al., MasterCases Spine Surgery, 2001, pp. 100-107. Thieme Medical Publishers, Inc., NY. (10 pages total).
Tredway, Trent L. et al., “Minimally Invasive Transforaminal Lumbar Interbody Fusion (MI-TLIF) and Lateral Mass Fusion with the MetRx System,” (14 pages total), 2005.
Fast, Avital et al., “Surgical Treatment of Lumbar Spinal Stenosis in the Elderly,” Arch Phys. Med Rehabil., Mar. 1985, pp. 149-151, vol. 66.
Palmer, Sylvain et al., “Bilateral decompressive surgery in lumbar spinal stenosis associated with spondylolisthesis: unilateral approach and use of a microscope and tubular retractor system,” Neurosurgery Focus, Jul. 2002, pp. 1-6, vol. 13.
International Search Report and Written Opinion; Application No. PCT/US2009/029537; Applicant: Vertiflex, Inc. Mailing Date: Aug. 3, 2015, 14 pages.
European Extended Search Report Application No. EP13780608.9; Applicant: VertiFlex, Inc.; Date of Mailing: Nov. 23, 2015, 8 pages.
Related Publications (1)
Number Date Country
20140081332 A1 Mar 2014 US
Provisional Applications (6)
Number Date Country
61008418 Dec 2007 US
60967805 Sep 2007 US
60961741 Jul 2007 US
60958876 Jul 2007 US
60923971 Apr 2007 US
60923841 Apr 2007 US
Continuations (1)
Number Date Country
Parent 12338793 Dec 2008 US
Child 14089692 US
Continuation in Parts (12)
Number Date Country
Parent 12205511 Sep 2008 US
Child 12338793 US
Parent 12220427 Jul 2008 US
Child 12338793 US
Parent 12217662 Jul 2008 US
Child 12338793 US
Parent 12148104 Apr 2008 US
Child 12338793 US
Parent 11593995 Nov 2006 US
Child 12338793 US
Parent 11582874 Oct 2006 US
Child 11593995 US
Parent 11314712 Dec 2005 US
Child 11582874 US
Parent 11190496 Jul 2005 US
Child 11314712 US
Parent 11079006 Mar 2005 US
Child 11190496 US
Parent 11052002 Feb 2005 US
Child 11079006 US
Parent 11006502 Dec 2004 US
Child 11052002 US
Parent 10970843 Oct 2004 US
Child 11006502 US