Spacers, display devices containing the same, and methods for making and using the same

Information

  • Patent Grant
  • 6530814
  • Patent Number
    6,530,814
  • Date Filed
    Wednesday, March 29, 2000
    24 years ago
  • Date Issued
    Tuesday, March 11, 2003
    21 years ago
Abstract
A display device and a method for making and operating the display device are described. The display device comprises a base plate containing at least one emitter, a display screen, and a spacer located between the base plate and display screen, where the spacer has a high concentration of an emitter-cleaning material. The spacer may comprise a xerogel or aerogel material and the emitter-cleaning material may comprise hydrogen. The spacer and a method for making the spacer and using the spacer to clean an emitter are also described. The spacer material cleans the emitter by absorbing gases during fabrication of the display device and desorbing emitter-cleaning gases during operation of the display device. By keeping the emitter clean, the spacer retains the work function of the emitter at a low level, thereby prolonging the usefulness of the display device.
Description




BACKGROUND OF THE INVENTION




This invention relates to display devices, such as field emission displays, plasma displays, and flat panel cathode ray tubes, and methods for making and using the same. Specifically, the invention relates to improved spacers for such display devices and methods for making and using the same.




Display devices visually present information generated by computers and other electronic devices. One category of display devices is electron emitter apparatus, such as a cold cathode field emission display (FED). A FED uses electrons originating from emitter tips on a base plate to illuminate a cathodoluminescent display screen and generate an image. A gate electrode, located near the emitters, and the base plate are in electrical communication with a voltage source. Electrons are emitted when a sufficient voltage differential is established between the emitters and the gate electrode. The electrons strike a phosphor coating on the display screen which emits photons to form the visual image.




In a FED, spacers separate the base plate and the display screen. Numerous processes have been developed for forming spacers for FED devices. U.S. Pat. Nos. 5,509,840, 5,232,549, 5,205,770, and 4,923,421, and Holloway et al.,


Production and Control of Vacuum in Field Emission Flat Panel Displays,


Solid State Technology, August 1995, pp. 47-54, all incorporated herein by reference, disclose exemplary processes for forming such spacers.




Numerous materials have been used in the spacers, including ceramic, glass, glass-ceramic, ceramic-reinforced glass, devitrified glass, amorphous glass, metal with electrically insulating coating, bulk resistivity metals such as titanium, aluminum, or chromium oxide, silicon dioxide, silicon nitride, polyamide, or a variation of polyimide, such as Kapton. U.S. Pat. Nos. 5,530,582 and 5,658,832, both incorporated herein by reference, disclose that materials in the form of an aerogel or xerogel may be employed as spacers.




Manufacturers have recognized that a good emitter condition is important to effectively operate display devices. If the emitters become contaminated or oxidized by gases in the display device, the work function of the emitter increases and reduces the current emission, thus degrading the performance of the display device. Several articles discuss the impact of such harmful gases on emitter performance. See Schwoebel et al.,


Field-Emitter-Array Performance Enhancement Using Glow Discharge Processing,


6


th International Vacuum Micro Electronics Conference,


Jul. 12-15, 1993; Itoh et al.,


Influence of Various Gases on the Emission of Field Emitter Arrays,


Futaba Corporation, (date unknown); and Schwoebel et al., In Situ


Enhancement of Field-Emitter Array Performance,


7


th International Vacuum Micro Electronics Conference, Jul.


4-7, 1994, p. 378; all incorporated herein by reference.




One method of reducing the amount of harmful gases in a display device has been to use gettering materials. See Giorgi et al.,


High-Porosity Thick-Film Getters, IEEE Transactions on Electron Devices,


Vol. 36, No. 11, November 1989, pp. 2744-2747. Getters absorb gases, both those generated by components and those leaking in from the atmosphere, thereby minimizing harmful gas in the display device. The getter is often placed in peripheral regions of the display device, such as inactive regions outside the active display area between the base plate and display screen. When the getter is positioned outside the active display area, the size of the respective peripheral area must be increased, reducing the effective display area. Moreover, getters merely absorb gases, and are not used to desorb gases.




U.S. Pat. No. 5,684,356 discloses another method of reducing the damaging effects of harmful gases in a display device. This patent describes a FED device with an insulating layer comprising hydrogen silsesquioxane (HSQ). Under specific operating conditions in the display device, HSQ desorbs hydrogen, thus raising the partial pressure of hydrogen with respect to oxygen and keeping deleterious oxide from forming on the emitters.




SUMMARY OF THE INVENTION




The present invention provides a method of making a display device having at least one emitter by forming at least one spacer having a high concentration of an emitter-cleaning material and disposing the at least one spacer within the display device. The emitter-cleaning material preferably comprises hydrogen. The at least one spacer preferably exhibits a dual-sorption capability, allowing the at least one spacer to chemisorb gases contaminating or oxidizing an emitter and physisorb gases cleaning the emitter.




The present invention also provides a display device comprising a base plate containing at least one emitter, a display screen, and at least one spacer located between the base plate and display screen having a high concentration of an emitter-cleaning material. The at least one spacer preferably comprises a xerogel or aerogel material and the emitter-cleaning material preferably comprises hydrogen. The display device is preferably a field emission display device.




The present invention also provides a method for making a at least one spacer for a display device containing at least one emitter by forming a sheet comprising a material having a high concentration of an emitter-cleaning material and then removing portions of the sheet to form the at least one spacer. The at least one spacer preferably comprises a xerogel or aerogel material, formed by making a substrate comprising a spacer material, removing a portion of the substrate to form the at least one spacer, and then increasing the concentration of an emitter-cleaning material. Preferably, the emitter-cleaning material comprises hydrogen.




The present invention further provides a at least one spacer for a display device containing at least one emitter, the at least one spacer having a high concentration of an emitter-cleaning material. Preferably, the at least one spacer comprises a xerogel or aerogel material. The emitter-cleaning material preferably comprises hydrogen absorbed from a gas or mixture of gases containing hydrogen. The at least one spacer preferably exhibits the dual-sorption capability mentioned above.




The present invention moreover provides a method of operating a display device containing at least one emitter and at least one spacer having a high concentration of an emitter-cleaning material by causing the at least one spacer to desorb the material to clean the at least one emitter. The present invention also provides a method for cleaning an emitter in a display device by causing at least one spacer having a high concentration of an emitter-cleaning material to desorb the material to clean the at least one emitter.




The present invention provides several advantages over the prior art. The spacer absorbs gases during processing or packaging of the display device and then desorbs helpful gases, such as hydrogen, during operation thereof. The beneficial gases aid in cleaning emitter tips during processing and help keep the tips clean during operation. The beneficial gases, therefore, retain the work function at a low level and keep the emission current high, prolonging the usefulness of the display device.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS




Certain aspects of the present invention are illustrated in the accompanying drawings in which:





FIGS. 1-4

depict a method of forming spacers according to the present invention;





FIGS. 5A-5D

depict another method of forming spacers according to the present invention; and





FIG. 6

depicts an assembled FED containing spacers formed according to the invention.











DETAILED DESCRIPTION OF THE INVENTION




The present invention provides a display device and methods for making and operating the same. In particular, the present invention provides spacers for display devices, such as field emission displays, plasma displays, and other electron-emitting apparatus, and a method for making and using the same. Specifically, the spacers of the present invention are formed of any material, such as an aerogel or xerogel, capable of absorbing gases during fabrication of the display device and releasing beneficial gases, such as hydrogen, during operation of the display device.




The following description provides specific details, such as material thicknesses and types, in order to provide a thorough understanding of the present invention. The skilled artisan, however, will understand that the present invention may be practiced without employing these specific details. Indeed, the present invention can be practiced with conventional fabrication techniques employed in the industry.




The process steps and structures described below neither form a complete process flow for manufacturing display devices nor a completed device. Only the process steps and structures necessary to understand the present invention are described.




The spacers of the present invention may be formed by any process resulting in the properties described below. For example, the spacers may be formed by a process similar to the process described in U.S. Pat. No. 5,658,832. Preferably, however, the spacers of the present invention are formed by the process illustrated in

FIGS. 1-4

or

FIGS. 5A-5D

.




As shown in

FIG. 1

, substrate


10


is formed of a sheet of spacer material with thickness T, length L, and width W. A preferred spacer material of the present invention is gel materials, especially aerogel and xerogel materials. Aerogels and xerogels are generally considered as solid materials having a gas dispersed therein. In substrate


10


, for example, thickness T may be on the order of 10 μm to 1000 μm, while length L and width W will be on the order of inches to feet. Different methods of formulating aerogels and xerogels are known in the art and can be employed to form the spacers of the present invention.




In a preferred method of formulating the aerogel or xerogel spacer, a sol or solution of the gel material is formed. The solution can be one component or a multi-component. If the aerogel or xerogel is a silica-based material, there are many silicon alkoxides, such as tetraethylorthosilicate (TEOS), that undergo a sol-gel transition by hydrolysis and polymerization. The hydrolysis and polymerization reaction is initiated by mixing TEOS and water in a solvent, such as ethanol, at a constant temperature.




The polymerization continues until the mixture becomes an elastic gel. The gel contains a solvent phase which must be removed by drying to leave a low density structure. Whether an aerogel or xerogel is formed depends on how the solvent is removed. For aerogels, the drying is performed at a temperature and pressure above the solvent critical point, thus bypassing the liquid-vapor interface of the solvent. The vapor is then vented, leaving a network of material with about 95% porosity and a pore size on the order of about 10 to 50 nm (100 to 500 Å). During subsequent processing, this network is de-aired and the pores are closed by heat treatment.




Xerogels are similar to aerogels, but are dried by naturally evaporating solvent and water to the atmosphere. While the liquid is evaporating, the gel structure is collapsing on itself. Xerogels are generally denser than aerogels and have smaller pores, i.e., a pore size on the order of 2 to 5 nm (20 to 50 Å), yet are simpler to manufacture than aerogels.




Substrate


10


can be formed with the desired dimension and geometrical configuration using a suitable mold. Following formation of substrate


10


, a photopatterning and dry etch process can be used to pattern openings


16


and channels


18


in substrate


10


as depicted in

FIGS. 2-4

and described below.




After forming substrate


10


, etch mask


12


is formed on substrate


10


. Etch mask


12


may be a photoresist layer patterned by passing ultraviolet light, or another form of radiant energy, through a reticle containing the desired pattern. The photoresist is then developed for removing either the exposed portions of resist for a positive resist or the unexposed portion for a negative resist to form a pattern of openings


14


.




As depicted in

FIG. 3

, etch mask


12


containing openings


14


is used to etch openings


16


through substrate


10


. Substrate


10


may be etched using a dry etch process, such as reactive ion etching (RIE) or plasma etching. Suitable gas etchants for etching aerogels and xerogels include fluorine species such as CF


4


, SF


4


, and SF


6


. Aerogels and xerogels are easily etched and, therefore, high aspect ratio features (i.e., high ratio of length to diameter) can be formed. Following this etch process, etch mask


12


is stripped by using suitable wet chemicals, such as a solution of sulfuric acid or hydrogen peroxide.




Openings


16


in substrate


10


have a generally conical shape with a diameter that decreases from a top surface


20


to a bottom surface


22


of the substrate


10


. In the assembled FED


34


shown in

FIG. 6

, openings


16


allow electrons emitted from emitters


40


of the FED


34


to pass through the substrate


10


to display screen


48


. In a plasma display device, the openings


16


would provide a space for generating a plasma.




Substrate


10


includes borders


32


along the periphery thereof. Borders


32


are relatively thicker than the remainder of substrate


10


and can be formed by an etch process similar to the above-described process for forming openings


16


. Borders


32


provide a framework or support structure.




As illustrated in

FIG. 4

, channels


18


are formed in the top surface


20


of substrate


10


. Channels


18


interconnect openings


16


with one another and to borders


32


of substrate


10


. Channels


18


provide a conduit for gas removal during evacuation of the assembled FED, as explained below. Channels


18


may be formed by a photopatterning and etch process similar to the process described above for forming openings


16


in substrate


10


.




Instead of a dry etch process for forming openings


16


and channels


18


in substrate


10


, a laser ablation process may be used. Similar to the dry etch process, the laser ablation process uses an etch mask carrying the desired pattern on substrate


10


. A laser is then directed at substrate


10


to ablate excess substrate material and form openings


16


and channels


18


. The laser can also be preprogrammed to scribe excess material, thus eliminating the patterning step.





FIGS. 5A-5D

illustrate another process for forming the spacers of the present invention. As shown in

FIG. 5A

, mask


12


′ is placed on substrate


10


′, which is formed in the same manner as substrate


10


, but containing a photosensitive material. Exposure to a source of radiation, such as collimated light


60


, forms latent image


16


′ similar to opening


16


described above.




As depicted in

FIG. 5B

, mask


12


′ is removed and latent image


16


′ is developed by heating to a temperature ranging from about 500° to about 600° C. Next, as shown in

FIG. 5C

, substrate


10


′ is flooded with uncollimated UV light


62


. No mask is required for this process, which exposes the clear areas of substrate


10


′.




As illustrated in

FIG. 5D

, substrate


10


′ is etched to form opening


16


′. Depending on the substrate material, this etching may use a wet etchant, such as dilute HF acid. Following the etching, substrate


10


′ can be further processed as required. For example, if photosensitive glass material is used as substrate


10


, it can be heated to a temperature of about 850° C. to convert the glass material to a ceramic.




Channels similar to channels


18


can then be formed in the same manner as openings


16


′ by controlling the depth of the etch. Furthermore, borders similar to borders


32


can be formed by etching a rectangular area in substrate


10


′ to a required depth.




The spacers of the present invention exhibit the following properties. The spacers are sufficiently non-conductive to prevent electrical breakdown between the cathode of the display screen and the anode of the display screen, in spite of the close spacing and voltage differential between the electrodes. The spacers also have sufficient mechanical strength so as to exhibit very little creep (slow deformation over time) and withstand atmospheric pressure sufficient to prevent the two electrodes from collapsing. Since electrons are generated at the emitters, the spacers also withstand electron bombardment without deleterious effects. Further, the spacers of the present invention withstand “bakeout” temperatures (required to create the vacuum between the base plate and display screen) of about 400° C. Moreover, the spacers are small enough so as not to visibly interfere with the display operation—if the spacer is not small enough, electrons from the emitters (being closely packed to obtain a high resolution) will be intercepted before striking the phosphor coated display face, thus degrading the brightness of the display. Additionally, the spacers of the present invention maintain the emitters and opposed display screen insulated from one another at a relatively small and uniform distance, thereby assuring the desired thinness and high resolution.




The spacer must also be able to exhibit dual-sorption. As used in the present invention, “dual-sorption” means that the spacer chemisorbs and physisorbs gases. Physisorption is a reversible process in which gases are absorbed on the surface of the substrate but may be released, or desorbed, at a later time. Chemisorption is a permanent process, similar to gettering, in which the gases are chemically absorbed.




To operate efficiently, a vacuum of about 10


−7


torr must be maintained within the FED cavity formed by the display screen and base plate. Over time, the pressure in the cavity increases from outgassing of components and from the atmosphere leaking into the cavity. The gases from the outgassing and atmospheric leakage can help or hinder the emission characteristics of the display device, depending on the gas.




Helpful gases include, but are not limited to, hydrogen, methane (CH


4


), and carbon monoxide (CO). It is believed, especially in the case of hydrogen, that these gases reduce oxidation and contamination of the emitter tips, as well as maintain the phosphor luminescence. It is believed that these gases treat the emitter surface and condition the surface, improving and stabilizing the emitter performance. Oxidation and contamination of the metal of the emitter changes their work functions, often by as much as 25-50%. Harmful gases include, but are not limited to, sulfur dioxide, oxygen, water vapor, sulfur, and hydrogen sulfide (H


2


S).




Accordingly, the spacers of the present invention exhibit dual-sorption: they physisorb helpful gases and chemisorb harmful gases during fabrication of the FED. The spacers then desorb the helpful gases during operation of the display device. Preferably, in the case of aerogels and xerogels, the dual-sorption capability is helped by the porosity of the spacer.




Once substrate


10


is formed, the concentration of a material desorbing the helpful gases is increased in the substrate to obtain a high concentration of this material. A “high concentration” in the present invention means that the spacer contains a sufficient concentration of the desired material to desorb in the form of a helpful gas during operation of the FED. The concentration of the material, using hydrogen as the exemplary helpful gas, can be increased by numerous methods, including those described below.




In one method of increasing the concentration, hydrogen or methane is present in the ambient atmosphere during fabrication of the display device, especially the atmosphere present during the bake and seal-in period. If not already present, the gas can be injected into the processing chamber. As the hydrogen concentration increases in the ambient atmosphere, more hydrogen will be absorbed by the spacers. During operation of the display device, because the hydrogen has only been physisorbed, it will be released by the spacers.




As an alternative to the step of increasing the concentration of material desorbing helpful gases once the spacer is formed, a sufficiently high concentration of material desorbing helpful gases may be incorporated directly into the spacer itself during its formation. For example, when hydrogen is the helpful gas to be desorbed, the spacer could comprise a metal hydride. Other gas-releasing materials encompassed by the present invention include HSQ.




In another method of increasing the concentration, a layer of the desired gas-desorbing material can be coated on the spacer. For example, after the spacer is formed, the gas-desorbing material, such as HSQ, could be coated on the spacer. Alternatively, such material could be coated on the spacer material prior to patterning and etching the conventional spacer material.




After forming the spacer and increasing the concentration of the gas-desorbing material, the display device is assembled. As depicted in

FIG. 6

, the preferred FED


34


is assembled with substrate


10


(or


10


′) functioning as a spacer. The assembled FED


34


includes base plate


36


formed with a conductive layer


38


. An array of electron-emitting emitter sites


40


is formed on the conductive layer


38


. A gate electrode structure, or grid


42


, is associated with the emitter sites


40


. The grid


42


and base plate


36


are connected to an electrical source


44


which establishes a voltage differential for initiating an electron emission from emitters


40


. Grid


42


is separated from base plate


36


by insulating layer


56


. Insulating layer


56


provides support for grid


42


and prevents the breakdown of the voltage differential applied by source


44


. Electrons


46


emitted by emitters


40


impinge on a cathodoluminescent display screen


48


. Display screen


48


includes external glass face


50


, transparent electrode


52


, and phosphors


54


.




In assembled FED


34


, substrate


10


is placed between base plate


36


and display screen


48


. Following assembly of FED


34


, substrate


10


functions as an interelectrode spacer. During the assembly process, openings


16


in the substrate


10


are precisely aligned with the emitters


40


. This allows a free flow of electrons from the emitter sites


40


to the display screen


48


.




Following assembly of FED


34


, the interior of FED


34


is evacuated to a pressure of 10


−6


Torr or less using an evacuation pump or similar apparatus. During the evacuation process, the FED


34


is typically heated to a temperature of around 400-550° C. to create a high vacuum between base plate


36


and display screen


48


of the FED


34


, thereby sealing base plate


36


and display screen


48


together. If necessary, a suitable sealing material can be provided at peripheral portions of base plate


36


and display screen


48


to aid in sealing them together. During the evacuation process, channels


18


formed in substrate


10


provide a conduit for gas removal from openings


16


and from interior of FED


34


. Channels


18


terminate at borders


32


of substrate


10


and can thus be placed in direct flow communication with the evacuation pump.




Emitters


40


in FED


34


are energized by applying a positive voltage potential to gate electrode


42


and conductive layer


38


operating as the cathode, thereby inducing an electric field which draws electrons from the tip of the emitter. The emitted electrons are accelerated toward transparent electrode


52


, which is positively biased by applying a larger positive voltage. Energy from the electrons attracted to the anode are transferred to particles of the phosphor coating


54


, resulting in luminescence.




While the preferred embodiments of the present invention have been described above, the invention defined by the appended claims is not to be limited by particular details set forth in the above description, as many apparent variations thereof are possible without departing from the spirit or scope thereof. For example, although the method of the invention has been described as forming interelectrode spacers for a FED, the skilled artisan will understand that the process and spacers described above can be used for other display devices, such as plasma displays and flat cathode ray tubes.



Claims
  • 1. A method of making a display device having at least one emitter comprising:forming at least one spacer having a high concentration of emitter-cleaning material having a sufficient concentration for desorbing in the form of a helpful gas during operation of said display device; disposing the at least one spacer within the display device.
  • 2. The method of claim 1, wherein the at least one spacer comprises a xerogel or aerogel material.
  • 3. The method of claim 1, wherein the emitter-cleaning material includes hydrogen, carbon monoxide, or methane.
  • 4. The method of claim 3, wherein the emitter-cleaning material includes hydrogen.
  • 5. The method of claim 1, wherein forming the at least one spacer includes:forming a substrate comprising the spacer material; and removing a portion of the substrate to form at least one opening through said at least one spacer.
  • 6. The method of claim 5, further comprising forming the substrate by a sol-gel process.
  • 7. The method of claim 6, wherein the sol-gel process forms spacers comprising silica.
  • 8. The method of claim 7, wherein the sol-gel process uses a TEOS solution to form the spacers comprising silica.
  • 9. The method of claim 5, further comprising removing the portion of the substrate by using a laser ablation process or a dry etch process.
  • 10. The method of claim 1, wherein the display device includes one of a field emission display and plasma display.
  • 11. The method of claim 10, wherein the display device comprises a field emission display.
  • 12. The method of claim 1, wherein the at least one spacer includes a spacer having a dual-sorption capability for chemisorbing gases affecting the emitter and physisorbing gases cleaning the emitter.
  • 13. The method of claim 1, wherein disposing the at least one spacer within the display device includes locating the at least one spacer between opposing faces of the display device and reducing the pressure between the opposing faces.
  • 14. The method of claim 13, wherein the opposing faces of the display device are a base plate and a display screen.
  • 15. The method of claim 14, wherein the base plate contains at least one emitter thereon.
  • 16. The method of claim 14, further comprising:reducing the pressure between the base plate and display screen; and sealing the base plate to the display screen.
  • 17. A display device, comprising:a base plate containing at least one emitter; a display screen; at least one spacer located between the base plate and display screen, the at least one spacer having a high concentration of emitter-cleaning material having a sufficient concentration for desorbing in the form of a helpful gas during operation of said display device.
  • 18. The device of claim 17, wherein the at least one spacer comprises a xerogel or aerogel material.
  • 19. The device of claim 17, further comprising obtaining the emitter-cleaning material from absorbed gaseous species of the emitter-cleaning material.
  • 20. The device of claim 17, further comprising obtaining the emitter-cleaning material from the material used to construct the at least one spacer.
  • 21. The device of claim 17, further comprising obtaining the emitter cleaning material from a coating on the at least one spacer.
  • 22. The device of claim 17, wherein the emitter-cleaning material includes hydrogen, carbon monoxide, or methane.
  • 23. The device of claim 22, wherein the emitter-cleaning material includes hydrogen.
  • 24. The device of claim 17, wherein the display device comprises one of a field emission display and plasma display.
  • 25. The device of claim 24, wherein the display device comprises a field emission display.
  • 26. The device of claim 17, wherein the at least one spacer includes a dual-sorption capability.
  • 27. A method for making at least one spacer for a display device containing at least one emitter, comprising:forming a sheet comprising a material having a high concentration of emitter-cleaning material having a sufficient concentration for desorbing in the form of a helpful gas during operation of said display device; and removing portions of the sheet to form the at least one spacer.
  • 28. The method of claim 27, wherein the at least one spacer comprises a xerogel or aerogel material.
  • 29. The method of claim 28, further comprising forming the sheet by a sol-gel process.
  • 30. The method of claim 29, wherein the sol-gel process forms spacers comprising silica.
  • 31. The method of claim 30, wherein the sol-gel process uses a TEOS solution to form the spacers comprising silica.
  • 32. The method of claim 27, further comprising increasing the concentration of the emitter-cleaning material by providing a processing atmosphere containing the emitter-cleaning material in a gas or a mixture of gases.
  • 33. The method of claim 27, wherein forming a sheet of a material having said emitter-cleaning material comprises forming at least a portion of said sheet from said emitter-cleaning material.
  • 34. A method for making at least one spacer for a display device containing at least one emitter, comprising:forming a sheet comprising a material having a high concentration of emitter-cleaning material having a sufficient concentration for desorbing in the form of a helpful gas during operation of said display device; increasing the concentration of the emitter-cleaning material by coating the emitter-cleaning material on the at least one spacer; and removing portions of the sheet to form the at least one spacer.
  • 35. The method of claim 27, wherein the emitter-cleaning material includes hydrogen, carbon monoxide, or methane.
  • 36. The method of claim 35, wherein the emitter-cleaning material includes hydrogen.
  • 37. The method of claim 27, further comprising removing the portions of the sheet by using a laser ablation process or a dry etch process.
  • 38. The method of claim 27, wherein the sheet material includes a dual-sorption capability.
  • 39. A spacer for a display device containing at least one emitter, the spacer having an emitter-cleaning material, said emitter-cleaning material having a sufficient concentration for desorbing in the form of a helpful gas during operation of said display device.
  • 40. The spacer of claim 39, wherein the spacer comprises a xerogel or aerogel material.
  • 41. The spacer of claim 39, further comprising obtaining the emitter-cleaning material from absorbed gaseous species of the emitter-cleaning material.
  • 42. The spacer of claim 39, further comprising obtaining the emitter-cleaning material from the material used to construct the spacer.
  • 43. The spacer of claim 39, further comprising obtaining the emitter-cleaning material from a coating on the spacer.
  • 44. The spacer of claim 39, wherein the emitter-cleaning material includes hydrogen, carbon monoxide, or methane.
  • 45. The spacer of claim 44, wherein the emitter-cleaning material includes hydrogen.
  • 46. The spacer of claim 39, wherein the display device comprises a field emission display device.
  • 47. The spacer of claim 39, further exhibiting a dual-sorption capability.
  • 48. A method of operating a display device containing at least one emitter and at least one spacer having an emitter-cleaning material, comprising causing the at least one spacer to desorb said material to clean said at least one emitter.
  • 49. The method of claim 48, wherein the at least one spacer comprises a xerogel or aerogel material.
  • 50. The method of claim 48, wherein the emitter-cleaning material includes hydrogen, carbon monoxide, or methane.
  • 51. The method of claim 50, wherein the emitter-cleaning material includes hydrogen.
  • 52. The method of claim 48, wherein the display device comprises a field emission display or plasma display.
  • 53. The method of claim 52, wherein the display device comprises a field emission display.
  • 54. The method of claim 48, wherein the at least one spacer exhibits a dual-sorption capability.
  • 55. A method for cleaning an emitter in a display device comprising causing at least spacer having an emitter-cleaning material to desorb said material to clean said emitter.
  • 56. The method of claim 55, wherein the at least one spacer comprises a xerogel or aerogel material.
  • 57. The method of claim 55, wherein the emitter-cleaning material includes hydrogen, carbon monoxide, or methane.
  • 58. The method of claim 57, wherein the emitter-cleaning material includes hydrogen.
  • 59. The method of claim 55, wherein the display device comprises a field emission display or plasma display.
  • 60. The method of claim 59, wherein the display device comprises a field emission display.
  • 61. The method of claim 55, wherein the at least one spacer exhibits a dual-sorption capability.
  • 62. The method of claim 55, further comprising:increasing the concentration of said emitter-cleaning material in said at least one spacer.
  • 63. The method of claim 62, wherein increasing the concentration of the emitter-cleaning material in said at least one spacer comprises providing a processing atmosphere containing the emitter-cleaning material in a gas or a mixture of gases.
  • 64. The method of claim 55, wherein forming the at least one spacer comprises:incorporating the emitter-cleaning material directly in said at least one spacer.
  • 65. The method of claim 62, further comprising:forming the increased concentration of the emitter-cleaning material by coating the emitter-cleaning material on the at least one spacer.
  • 66. The method of claim 55, further comprising:increasing the concentration of said emitter-cleaning material in said at least one spacer.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of application Ser. No. 09/145,831, filed Sep. 2, 1998, now U.S. Pat. No. 6,116,974.

GOVERNMENT RIGHTS

This invention was made with United States Government support under contract No. DABT63-93-C-0025 awarded by the Advanced Research Projects Agency (ARPA). The United States Government has certain rights in this invention.

US Referenced Citations (9)
Number Name Date Kind
4923421 Brodie et al. May 1990 A
5205770 Lowrey et al. Apr 1993 A
5232549 Cathey et al. Aug 1993 A
5503582 Cathey et al. Apr 1996 A
5509840 Huang et al. Apr 1996 A
5564958 Itoh et al. Oct 1996 A
5658832 Bernhardt et al. Aug 1997 A
5684356 Jeng et al. Nov 1997 A
6116974 Browning et al. Sep 2000 A
Non-Patent Literature Citations (5)
Entry
Paul H. Holloway et al., “Production and Control of Vacuum Emission Flat Panel Displays”, Dept. of Materials Science & Engineering, Aug. 1995, pp. 47, 48, 50, 53 and 54.
P.R. Schwoebel et al., “Field-Emitter-Array Performance Enhancement Using Glow Discharge Processing”, SRI International, Physical Electronics Laboratory.
E. Giorgi and B. Ferrario, “High Porosity Thick-Film Getters”, IEEE Transactions on Devices, vol. 36. No. 11, Nov. 1989, pp. 2744-2747.
P.R. Schwoebel et al., “In Situ Enhancement of Field-Emitter Array Performance:, Revue ”Le Vide, les Couches Minces:, Supplement au N 271, Mar.-Apr. 1994, pp 378.
Shigeo Itoh et al., “Influence of Various Gases on the Emission of Field Emitter Arrays”, Futuba Corporation.
Continuations (1)
Number Date Country
Parent 09/145831 Sep 1998 US
Child 09/537135 US