In general, the invention relates to the field of imaging displays, in particular, the invention relates to packaging of displays.
Displays built from mechanical light modulators are an attractive alternative to displays based on liquid crystal technology. Mechanical light modulators are fast enough to display video content with good viewing angles and with a wide range of color and grey scale. Mechanical light modulators have been successful in projection display applications. Direct-view displays using mechanical light modulators have not yet demonstrated sufficiently attractive combinations of brightness and low power. There is a need in the art for fast, bright, low-powered mechanically actuated direct-view displays. Specifically there is a need for direct-view displays that can be driven at high speeds and at low voltages for improved image quality and reduced power consumption.
Direct view displays built with MEMS-based light modulators are often packaged together with a lamp or lamps and a light guide. There is a need in the art to provide a packaging technology that is rugged, that economizes on space, and that provides for correct mechanical alignment between various components including light guide, lamp or lamps, electrical interconnections, and the display assembly.
The invention relates to display apparatuses having an array of pixels, a substrate, and a control matrix formed on the substrate. The array may include light modulators that each correspond to pixels in the array. The substrate may be transparent. The control matrix may have at least one switch or cascode corresponding to each pixel in the array.
According to one aspect of the invention, a display apparatus includes a first substrate having an aperture layer formed thereon, a light guide for guiding light towards the aperture layer, a plurality of MEMS light modulators for modulating light passing through the aperture layer from the light guide, and a spacer substantially surrounding a periphery of the light guide for keeping the light guide and the first substrate a predetermined distance apart from one another, thereby forming a gap between the first substrate and the light guide. The aperture layer may include a reflective aperture layer.
In one embodiment, the spacer includes a structural feature having a geometrical shape selected to maintain alignment between different components of the display apparatus, such as between the light guide and at least one of the first substrate, a lamp for providing light to the light guide, an electrical connection for controlling a MEMS light modulator of the plurality of MEMS light modulators, and a reflective layer for reflecting light towards the light guide. In another embodiment, the spacer includes a structural feature having a geometrical shape selected to restrict translational motion of at least one of the light guide and the first substrate. A structural feature may include a shelf on which one of the light guide and the first substrate rests. An adhesive may be disposed on the structural feature for adhering to at least one of the light guide and the first substrate.
The spacer may include a reflective surface for reflecting light into the light guide. The spacer may include a rigid material, such as polycarbonate, polyethylene, polypropylene, polyacrylate, a metal, or a metal and plastic composite. The plurality of MEMS light modulators may include shutter-based light modulators or electrowetting light modulators and may be formed on the first substrate or on a second substrate.
According to another aspect of the invention, a display apparatus includes a first substrate having a control matrix formed thereon, a light guide for guiding light towards the control matrix, a plurality of MEMS light modulators for modulating light from the light guide, and a spacer substantially surrounding a periphery of the light guide for keeping the light guide and the first substrate a predetermined distance apart from one another, thereby forming a gap between the first substrate and the light guide.
The foregoing discussion will be understood more readily from the following detailed description of the invention with reference to the following drawings:
To provide an overall understanding of the invention, certain illustrative embodiments will now be described, including apparatus and methods for displaying images. However, it will be understood by one of ordinary skill in the art that the systems and methods described herein may be adapted and modified as is appropriate for the application being addressed and that the systems and methods described herein may be employed in other suitable applications, and that such other additions and modifications will not depart from the scope hereof.
In the display apparatus 100, each light modulator 102 corresponds to a pixel 106 in the image 104. In other implementations, the display apparatus 100 may utilize a plurality of light modulators to form a pixel 106 in the image 104. For example, the display apparatus 100 may include three color-specific light modulators 102. By selectively opening one or more of the color-specific light modulators 102 corresponding to a particular pixel 106, the display apparatus 100 can generate a color pixel 106 in the image 104. In another example, the display apparatus 100 includes two or more light modulators 102 per pixel 106 to provide grayscale in an image 104. With respect to an image, a “pixel” corresponds to the smallest picture element defined by the resolution of the image. With respect to structural components of the display apparatus 100, the term “pixel” refers to the combined mechanical and electrical components utilized to modulate the light that forms a single pixel of the image.
Display apparatus 100 is a direct-view display in that it does not require imaging optics. The user sees an image by looking directly at the display apparatus 100. In alternate embodiments the display apparatus 100 is incorporated into a projection display. In such embodiments, the display forms an image by projecting light onto a screen or onto a wall. In projection applications the display apparatus 100 is substantially smaller than the projected image 104.
Direct-view displays may operate in either a transmissive or reflective mode. In a transmissive display, the light modulators filter or selectively block light which originates from a lamp or lamps positioned behind the display. The light from the lamps is optionally injected into a light guide or “backlight”. Transmissive direct-view display embodiments are often built onto transparent or glass substrates to facilitate a sandwich assembly arrangement where one substrate, containing the light modulators, is positioned directly on top of the backlight. In some transmissive display embodiments, a color-specific light modulator is created by associating a color filter material with each modulator 102. In other transmissive display embodiments colors can be generated, as described below, using a field sequential color method by alternating illumination of lamps with different primary colors.
Each light modulator 102 includes a shutter 108 and an aperture 109. To illuminate a pixel 106 in the image 104, the shutter 108 is positioned such that it allows light to pass through the aperture 109 towards a viewer. To keep a pixel 106 unlit, the shutter 108 is positioned such that it obstructs the passage of light through the aperture 109. The aperture 109 is defined by an opening patterned through a reflective or light-absorbing material.
The display apparatus also includes a control matrix connected to the substrate and to the light modulators for controlling the movement of the shutters. The control matrix includes a series of electrical interconnects (e.g., interconnects 110, 112, and 114), including at least one write-enable interconnect 110 (also referred to as a “scan-line interconnect”) per row of pixels, one data interconnect 112 for each column of pixels, and one common interconnect 114 providing a common voltage to all pixels, or at least to pixels from both multiple columns and multiples rows in the display apparatus 100. In response to the application of an appropriate voltage (the “write-enabling voltage, Vwe”), the write-enable interconnect 110 for a given row of pixels prepares the pixels in the row to accept new shutter movement instructions. The data interconnects 112 communicate the new movement instructions in the form of data voltage pulses. The data voltage pulses applied to the data interconnects 112, in some implementations, directly contribute to an electrostatic movement of the shutters. In other implementations, the data voltage pulses control switches, e.g., transistors or other non-linear circuit elements that control the application of separate actuation voltages, which are typically higher in magnitude than the data voltages, to the light modulators 102. The application of these actuation voltages then results in the electrostatic driven movement of the shutters 108.
In other cases the data drivers 154 are configured to apply only a reduced set of 2, 3, or 4 digital voltage levels to the control matrix. These voltage levels are designed to set, in digital fashion, either an open state or a closed state to each of the shutters 108.
The scan drivers 152 and the data drivers 154 are connected to digital controller circuit 156 (also referred to as the “controller 156”). The controller 156 includes an input processing module 158, which processes an incoming image signal 157 into a digital image format appropriate to the spatial addressing and the gray scale capabilities of the display 100. The pixel location and gray scale data of each image is stored in a frame buffer 159 so that the data can be fed out as needed to the data drivers 154. The data is sent to the data drivers 154 in mostly serial fashion, organized in predetermined sequences grouped by rows and by image frames. The data drivers 154 can include series to parallel data converters, level shifting, and for some applications digital to analog voltage converters.
The display 100 apparatus optionally includes a set of common drivers 153, also referred to as common voltage sources. In some embodiments the common drivers 153 provide a DC common potential to all light modulators within the array of light modulators 103, for instance by supplying voltage to a series of common interconnects 114. In other embodiments the common drivers 153, following commands from the controller 156, issue voltage pulses or signals to the array of light modulators 103, for instance global actuation pulses which are capable of driving and/or initiating simultaneous actuation of all light modulators in multiple rows and columns of the array 103.
All of the drivers (e.g., scan drivers 152, data drivers 154, and common drivers 153) for different display functions are time-synchronized by a timing-control module 160 in the controller 156. Timing commands from the module 160 coordinate the illumination of red, green and blue and white lamps (162, 164, 166, and 167 respectively) via lamp drivers 168, the write-enabling and sequencing of specific rows within the array of pixels 103, the output of voltages from the data drivers 154, and the output of voltages that provide for light modulator actuation.
The controller 156 determines the sequencing or addressing scheme by which each of the shutters 108 in the array 103 can be re-set to the illumination levels appropriate to a new image 104. Details of suitable addressing, image formation, and gray scale techniques can be found in U.S. patent application Ser. Nos. 11/326,696 and 11/643,042, incorporated herein by reference. New images 104 can be set at periodic intervals. For instance, for video displays, the color images 104 or frames of video are refreshed at frequencies ranging from 10 to 300 Hertz. In some embodiments the setting of an image frame to the array 103 is synchronized with the illumination of the lamps 162, 164, and 166 such that alternate image frames are illuminated with an alternating series of colors, such as red, green, and blue. The image frames for each respective color is referred to as a color sub-frame. In this method, referred to as the field sequential color method, if the color sub-frames are alternated at frequencies in excess of 20 Hz, the human brain will average the alternating frame images into the perception of an image having a broad and continuous range of colors. In alternate implementations, four or more lamps with primary colors can be employed in display apparatus 100, employing primaries other than red, green, and blue.
In some implementations, where the display apparatus 100 is designed for the digital switching of shutters 108 between open and closed states, the controller 156 determines the addressing sequence and/or the time intervals between image frames to produce images 104 with appropriate gray scale. The process of generating varying levels of grayscale by controlling the amount of time a shutter 108 is open in a particular frame is referred to as time division gray scale. In one embodiment of time division gray scale, the controller 156 determines the time period or the fraction of time within each frame that a shutter 108 is allowed to remain in the open state, according to the illumination level or gray scale desired of that pixel. In other implementations, for each image frame, the controller 156 sets a plurality of sub-frame images in multiple rows and columns of the array 103, and the controller alters the duration over which each sub-frame image is illuminated in proportion to a gray scale value or significance value employed within a coded word for gray scale. For instance, the illumination times for a series of sub-frame images can be varied in proportion to the binary coding series 1, 2, 4, 8 . . . The shutters 108 for each pixel in the array 103 are then set to either the open or closed state within a sub-frame image according to the value at a corresponding position within the pixel's binary coded word for gray level.
In other implementations, the controller alters the intensity of light from the lamps 162, 164, and 166 in proportion to the gray scale value desired for a particular sub-frame image. A number of hybrid techniques are also available for forming colors and gray scale from an array of shutters 108. For instance, the time division techniques described above can be combined with the use of multiple shutters 108 per pixel, or the gray scale value for a particular sub-frame image can be established through a combination of both sub-frame timing and lamp intensity. Details of these and other embodiments can be found in U.S. patent application Ser. No. 11/643,042, referenced above.
In some implementations the data for an image state 104 is loaded by the controller 156 to the modulator array 103 by a sequential addressing of individual rows, also referred to as scan lines. For each row or scan line in the sequence, the scan driver 152 applies a write-enable voltage to the write enable interconnect 110 for that row of the array 103, and subsequently the data driver 154 supplies data voltages, corresponding to desired shutter states, for each column in the selected row. This process repeats until data has been loaded for all rows in the array. In some implementations the sequence of selected rows for data loading is linear, proceeding from top to bottom in the array. In other implementations the sequence of selected rows is pseudo-randomized, in order to minimize visual artifacts. And in other implementations the sequencing is organized by blocks, where, for a block, the data for only a certain fraction of the image state 104 is loaded to the array, for instance by addressing only every 5th row of the array in sequence.
In some implementations, the process for loading image data to the array 103 is separated in time from the process of actuating the shutters 108. In these implementations, the modulator array 103 may include data memory elements for each pixel in the array 103 and the control matrix may include a global actuation interconnect for carrying trigger signals, from common driver 153, to initiate simultaneous actuation of shutters 108 according to data stored in the memory elements. Various addressing sequences, many of which are described in U.S. patent application Ser. No. 11/643,042, can be coordinated by means of the timing control module 160.
In alternative embodiments, the array of pixels 103 and the control matrix that controls the pixels may be arranged in configurations other than rectangular rows and columns. For example, the pixels can be arranged in hexagonal arrays or curvilinear rows and columns. In general, as used herein, the term scan-line shall refer to any plurality of pixels that share a write-enabling interconnect.
The display 100 is comprised of a plurality of functional blocks including the timing control module 160, the frame buffer 159, scan drivers 152, data drivers 154, and drivers 153 and 168. Each block can be understood to represent either a distinguishable hardware circuit and/or a module of executable code. In some implementations the functional blocks are provided as distinct chips or circuits connected together by means of circuit boards and/or cables. Alternately, many of these circuits can be fabricated along with the pixel array 103 on the same substrate of glass or plastic. In other implementations, multiple circuits, drivers, processors, and/or control functions from block diagram 150 may be integrated together within a single silicon chip, which is then bonded directly to the transparent substrate holding pixel array 103.
The controller 156 includes a programming link 180 by which the addressing, color, and/or gray scale algorithms, which are implemented within controller 156, can be altered according to the needs of particular applications. In some embodiments, the programming link 180 conveys information from environmental sensors, such as ambient light or temperature sensors, so that the controller 156 can adjust imaging modes or backlight power in correspondence with environmental conditions. The controller 156 also comprises a power supply input 182 which provides the power needed for lamps as well as light modulator actuation. Where necessary, the drivers 152153, 154, and/or 168 may include or be associated with DC-DC converters for transforming an input voltage at 182 into various voltages sufficient for the actuation of shutters 108 or illumination of the lamps, such as lamps 162, 164, 166, and 167.
MEMS Light Modulators
Each actuator 205 includes a compliant load beam 206 connecting the shutter 202 to a load anchor 208. The load anchors 208 along with the compliant load beams 206 serve as mechanical supports, keeping the shutter 202 suspended proximate to the surface 203. The load anchors 208 physically connect the compliant load beams 206 and the shutter 202 to the surface 203 and electrically connect the load beams 206 to a bias voltage, in some instances, ground.
Each actuator 205 also includes a compliant drive beam 216 positioned adjacent to each load beam 206. The drive beams 216 couple at one end to a drive beam anchor 218 shared between the drive beams 216. The other end of each drive beam 216 is free to move. Each drive beam 216 is curved such that it is closest to the load beam 206 near the free end of the drive beam 216 and the anchored end of the load beam 206.
The surface 203 includes one or more apertures 211 for admitting the passage of light. If the shutter assembly 200 is formed on an opaque substrate, made for example from silicon, then the surface 203 is a surface of the substrate, and the apertures 211 are formed by etching an array of holes through the substrate. If the shutter assembly 200 is formed on a transparent substrate, made for example of glass or plastic, then the surface 203 is a surface of a light blocking layer deposited on the substrate, and the apertures are formed by etching the surface 203 into an array of holes 211. The apertures 211 can be generally circular, elliptical, polygonal, serpentine, or irregular in shape.
In operation, a display apparatus incorporating the light modulator 200 applies an electric potential to the drive beams 216 via the drive beam anchor 218. A second electric potential may be applied to the load beams 206. The resulting potential difference between the drive beams 216 and the load beams 206 pulls the free ends of the drive beams 216 towards the anchored ends of the load beams 206, and pulls the shutter ends of the load beams 206 toward the anchored ends of the drive beams 216, thereby driving the shutter 202 transversely towards the drive anchor 218. The compliant members 206 act as springs, such that when the voltage across the beams 206 and 216 is removed, the load beams 206 push the shutter 202 back into its initial position, releasing the stress stored in the load beams 206.
The shutter assembly 200, also referred to as an elastic shutter assembly, incorporates a passive restoring force, such as a spring, for returning a shutter to its rest or relaxed position after voltages have been removed. A number of elastic restore mechanisms and various electrostatic couplings can be designed into or in conjunction with electrostatic actuators, the compliant beams illustrated in shutter assembly 200 being just one example. Other examples are described in U.S. patent applications Ser. Nos. 11/251,035 and 11/326,696, incorporated herein by reference. For instance, a highly non-linear voltage-displacement response can be provided which favors an abrupt transition between “open” vs “closed” states of operation, and which, in many cases, provides a bi-stable or hysteretic operating characteristic for the shutter assembly. Other electrostatic actuators can be designed with more incremental voltage-displacement responses and with considerably reduced hysteresis, as may be preferred for analog gray scale operation.
The actuator 205 within the elastic shutter assembly is said to operate between a closed or actuated position and a relaxed position. The designer, however, can choose to place apertures 211 such that shutter assembly 200 is in either the “open” state, i.e. passing light, or in the “closed” state, i.e. blocking light, whenever actuator 205 is in its relaxed position. For illustrative purposes, it is assumed below that elastic shutter assemblies described herein are designed to be open in their relaxed state.
In many cases it is preferable to provide a dual set of “open” and “closed” actuators as part of a shutter assembly so that the control electronics are capable of electrostatically driving the shutters into each of the open and closed states.
Display apparatus 100, in alternative embodiments, includes light modulators other than transverse shutter-based light modulators, such as the shutter assembly 200 described above. For example,
In one embodiment, the tap element 256 is formed as part of beam 258 of flexible, transparent material. Electrodes 260 coat portions of one side of the beam 258. Opposing electrodes 260 are disposed on the light guide 254. By applying a voltage across the electrodes 260, the position of the tap element 256 relative to the light guide 254 can be controlled to selectively extract light 252 from the light guide 254.
Each cell 272 includes a layer of water (or other transparent conductive or polar fluid) 278, a layer of light absorbing oil 280, a transparent electrode 282 (made, for example, from indium-tin oxide) and an insulating layer 284 positioned between the layer of light absorbing oil 280 and the transparent electrode 282. Illustrative implementations of such cells are described further in U.S. Patent Application Publication No. 2005/0104804, published May 19, 2005 and entitled “Display Device.” In the embodiment described herein, the electrode takes up a portion of a rear surface of a cell 272.
The light modulation array 270 also includes a light guide 288 and one or more light sources 292 which inject light 294 into the light guide 288. A series of light redirectors 291 are formed on the rear surface of the light guide, proximate a front facing reflective layer 290. The light redirectors 291 may be either diffuse or specular reflectors. The modulation array 270 includes an aperture layer 286 which is patterned into a series of apertures, one aperture for each of the cells 272, to allow light rays 294 to pass through the cells 272 and toward the viewer.
In one embodiment the aperture layer 286 is comprised of a light absorbing material to block the passage of light except through the patterned apertures. In another embodiment the aperture layer 286 is comprised of a reflective material which reflects light not passing through the surface apertures back towards the rear of the light guide 288. After returning to the light guide, the reflected light can be further recycled by the front facing reflective layer 290.
In operation, application of a voltage to the electrode 282 of a cell causes the light absorbing oil 280 in the cell to move into or collect in one portion of the cell 272. As a result, the light absorbing oil 280 no longer obstructs the passage of light through the aperture formed in the reflective aperture layer 286 (see, for example, cells 272b and 272c). Light escaping the light guide 288 at the aperture is then able to escape through the cell and through a corresponding color (for example, red, green, or blue) filter in the set of color filters 276 to form a color pixel in an image. When the electrode 282 is grounded, the light absorbing oil 280 returns to its previous position (as in cell 272a) and covers the aperture in the reflective aperture layer 286, absorbing any light 294 attempting to pass through it.
The roller-based light modulator 220, light tap 250, and electrowetting-based light modulation array 270 are not the only examples of MEMS light modulators suitable for inclusion in various embodiments of the invention. It will be understood that other MEMS light modulators can exist and can be usefully incorporated into the invention.
U.S. patent applications Ser. Nos. 11/251,035 and 11/326,696 have described a variety of methods by which an array of shutters can be controlled via a control matrix to produce images, in many cases moving images, with appropriate gray scale. In some cases, control is accomplished by means of a passive matrix array of row and column interconnects connected to driver circuits on the periphery of the display. In other cases it is appropriate to include switching and/or data storage elements within each pixel of the array (the so-called active matrix) to improve either the speed, the gray scale and/or the power dissipation performance of the display.
The control matrix 300 is fabricated as a diffused or thin-film-deposited electrical circuit on the surface of a substrate 304 on which the shutter assemblies 302 are formed. The control matrix 300 includes a scan-line interconnect 306 for each row of pixels 301 in the control matrix 300 and a data-interconnect 308 for each column of pixels 301 in the control matrix 300. Each scan-line interconnect 306 electrically connects a write-enabling voltage source 307 to the pixels 301 in a corresponding row of pixels 301. Each data interconnect 308 electrically connects a data voltage source, (“Vd source”) 309 to the pixels 301 in a corresponding column of pixels 301. In control matrix 300, the data voltage Vd provides the majority of the energy necessary for actuation of the shutter assemblies 302. Thus, the data voltage source 309 also serves as an actuation voltage source.
Referring to
In operation, to form an image, the control matrix 300 write-enables each row in the array 320 in a sequence by applying Vwe to each scan-line interconnect 306 in turn. For a write-enabled row, the application of Vwe to the gates of the transistors 310 of the pixels 301 in the row allows the flow of current through the data interconnects 308 through the transistors 310 to apply a potential to the actuator 303 of the shutter assembly 302. While the row is write-enabled, data voltages Vd are selectively applied to the data interconnects 308. In implementations providing analog gray scale, the data voltage applied to each data interconnect 308 is varied in relation to the desired brightness of the pixel 301 located at the intersection of the write-enabled scan-line interconnect 306 and the data interconnect 308. In implementations providing digital control schemes, the data voltage is selected to be either a relatively low magnitude voltage (i.e., a voltage near ground) or to meet or exceed Vat (the actuation threshold voltage). In response to the application of Vat to a data interconnect 308, the actuator 303 in the corresponding shutter assembly 302 actuates, opening the shutter in that shutter assembly 302. The voltage applied to the data interconnect 308 remains stored in the capacitor 312 of the pixel 301 even after the control matrix 300 ceases to apply Vwe to a row. It is not necessary, therefore, to wait and hold the voltage Vwe on a row for times long enough for the shutter assembly 302 to actuate; such actuation can proceed after the write-enabling voltage has been removed from the row. The capacitors 312 also function as memory elements within the array 320, storing actuation instructions for periods as long as is necessary for the illumination of an image frame.
The pixels 301 as well as the control matrix 300 of the array 320 are formed on a substrate 304. The array includes an aperture layer 322, disposed on the substrate 304, which includes a set of apertures 324 for respective pixels 301 in the array 320. The apertures 324 are aligned with the shutter assemblies 302 in each pixel. In one implementation the substrate 304 is made of a transparent material, such as glass or plastic. In another implementation the substrate 304 is made of an opaque material, but in which holes are etched to form the apertures 324.
Components of shutter assemblies 302 are processed either at the same time as the control matrix 300 or in subsequent processing steps on the same substrate. The electrical components in control matrix 300 are fabricated using many thin film techniques in common with the manufacture of thin film transistor arrays for liquid crystal displays. Available techniques are described in Den Boer, Active Matrix Liquid Crystal Displays (Elsevier, Amsterdam, 2005), incorporated herein by reference. The shutter assemblies are fabricated using techniques similar to the art of micromachining or from the manufacture of micromechanical (i.e., MEMS) devices. Many applicable thin film MEMS techniques are described in Rai-Choudhury, ed., Handbook of Microlithography, Micromachining & Microfabrication (SPIE Optical Engineering Press, Bellingham, Wash. 1997), incorporated herein by reference. Fabrication techniques specific to MEMS light modulators formed on glass substrates can be found in U.S. patent application Ser. Nos. 11/361,785 and 11/731,628, incorporated herein by reference. For instance, as described in those applications, the shutter assembly 302 can be formed from thin films of amorphous silicon, deposited by a chemical vapor deposition process.
The shutter assembly 302 together with the actuator 303 can be made bi-stable. That is, the shutters can exist in at least two equilibrium positions (e.g. open or closed) with little or no power required to hold them in either position. More particularly, the shutter assembly 302 can be mechanically bi-stable. Once the shutter of the shutter assembly 302 is set in position, no electrical energy or holding voltage is required to maintain that position. The mechanical stresses on the physical elements of the shutter assembly 302 can hold the shutter in place.
The shutter assembly 302 together with the actuator 303 can also be made electrically bi-stable. In an electrically bi-stable shutter assembly, there exists a range of voltages below the actuation voltage of the shutter assembly, which if applied to a closed actuator (with the shutter being either open or closed), holds the actuator closed and the shutter in position, even if an opposing force is exerted on the shutter. The opposing force may be exerted by a spring such as spring 207 in shutter-based light modulator 200, or the opposing force may be exerted by an opposing actuator, such as an “open” or “closed” actuator.
The light modulator array 320 is depicted as having a single MEMS light modulator per pixel. Other embodiments are possible in which multiple MEMS light modulators are provided in each pixel, thereby providing the possibility of more than just binary “on” or “off” optical states in each pixel. Certain forms of coded area division gray scale are possible where multiple MEMS light modulators in the pixel are provided, and where apertures 324, which are associated with each of the light modulators, have unequal areas.
In other embodiments the roller-based light modulator 220, the light tap 250, or the electrowetting-based light modulation array 270, as well as other MEMS-based light modulators, can be substituted for the shutter assembly 302 within the light modulator array 320.
The shutter 406 includes two shutter apertures 412 through which light can pass. The aperture layer 407 includes a set of three apertures 409. In
Each aperture has at least one edge around its periphery. For example, the rectangular apertures 409 have four edges. In alternative implementations in which circular, elliptical, oval, or other curved apertures are formed in the aperture layer 407, each aperture may have only a single edge. In other implementations the apertures need not be separated or disjoint in the mathematical sense, but instead can be connected. That is to say, while portions or shaped sections of the aperture may maintain a correspondence to each shutter, several of these sections may be connected such that a single continuous perimeter of the aperture is shared by multiple shutters.
In order to allow light with a variety of exit angles to pass through apertures 412 and 409 in the open state, it is advantageous to provide a width or size for shutter apertures 412 which is larger than a corresponding width or size of apertures 409 in the aperture layer 407. In order to effectively block light from escaping in the closed state, it is preferable that the light blocking portions of the shutter 406 overlap the apertures 409.
The electrostatic actuators 402 and 404 are designed so that their voltage—displacement behavior provides a bi-stable characteristic to the shutter assembly 400. For each of the shutter-open and shutter-close actuators there exists a range of voltages below the actuation voltage, which if applied while that actuator is in the closed state (with the shutter being either open or closed), will hold the actuator closed and the shutter in position, even after an actuation voltage is applied to the opposing actuator. The minimum voltage needed to maintain a shutter's position against such an opposing force is referred to as a maintenance voltage Vm. A number of control matrices which take advantage of the bi-stable operation characteristic are described in U.S. patent application Ser. No. 11/607,715, referenced above.
The display apparatus 500 includes an optional diffuser 512 and/or an optional brightness enhancing film 514 which separate the substrate 504 from a planar light guide 516. The light guide is comprised of a transparent, i.e. glass or plastic material. The light guide 516 is illuminated by one or more light sources 518, forming a backlight. The light sources 518 can be, for example, and without limitation, incandescent lamps, fluorescent lamps, lasers, or light emitting diodes (LEDs). A reflector 519 helps direct light from lamp 518 towards the light guide 516. A front-facing reflective film 520 is disposed behind the backlight 516, reflecting light towards the shutter assemblies 502. Light rays such as ray 521 from the backlight that do not pass through one of the shutter assemblies 502 will be returned to the backlight and reflected again from the film 520. In this fashion light that fails to leave the display to form an image on the first pass can be recycled and made available for transmission through other open apertures in the array of shutter assemblies 502. Such light recycling has been shown to increase the illumination efficiency of the display.
The light guide 516 includes a set of geometric light redirectors or prisms 517 which re-direct light from the lamps 518 towards the apertures 508 and hence toward the front of the display. The light re-directors can be molded into the plastic body of light guide 516 with shapes that can be alternately triangular, trapezoidal, or curved in cross section. The density of the prisms 517 generally increases with distance from the lamp 518.
In alternate embodiments the aperture layer 506 can be made of a light absorbing material, and in alternate embodiments the surfaces of shutter 503 can be coated with either a light absorbing or a light reflecting material. In alternate embodiments the aperture layer 506 can be deposited directly on the surface of the light guide 516. In alternate embodiments the aperture layer 506 need not be disposed on the same substrate as the shutters 503 and anchors 505 (see the MEMS-down configuration described below). These and other embodiments for a display illumination system are described in detail in the U.S. patent application Ser. Nos. 11/218,690 and 11/528,191, incorporated herein by reference.
In one implementation the light sources 518 can include lamps of different colors, for instance, the colors red, green, and blue. A color image can be formed by sequentially illuminating images with lamps of different colors at a rate sufficient for the human brain to average the different colored images into a single multi-color image. The various color-specific images are formed using the array of shutter assemblies 502. In another implementation, the light source 518 includes lamps having more than three different colors. For example, the light source 518 may have red, green, blue and white lamps or red, green, blue, and yellow lamps.
A cover plate 522 forms the front of the display apparatus 500. The rear side of the cover plate 522 can be covered with a black matrix 524 to increase contrast. In alternate implementations the cover plate includes color filters, for instance distinct red, green, and blue filters corresponding to different ones of the shutter assemblies 502. The cover plate 522 is supported a predetermined distance away from the shutter assemblies 502 forming a gap 526. The gap 526 is maintained by mechanical supports or spacers 527 and/or by an adhesive seal 528 attaching the cover plate 522 to the substrate 504.
The adhesive seal 528 seals in a working fluid 530. The working fluid 530 is engineered with viscosities preferably below about 10 centipoise and with relative dielectric constant preferably above about 2.0, and dielectric breakdown strengths above about 104 V/cm. The working fluid 530 can also serve as a lubricant. In one implementation, the working fluid 530 is a hydrophobic liquid with a high surface wetting capability. In alternate implementations the working fluid 530 has a refractive index that is either greater than or less than that of the substrate 504.
A sheet metal or molded plastic assembly bracket 532 holds the cover plate 522, the substrate 504, the backlight 516 and the other component parts together around the edges. The assembly bracket 532 is fastened with screws or indent tabs to add rigidity to the combined display apparatus 500. In some implementations, the light source 518 is molded in place by an epoxy potting compound. Reflectors 536 help return light escaping from the edges of light guide 516 back into the light guide. Not shown in
Further details and alternate configurations for the display apparatus 500, including manufacturing methods therefore, can be found in the U.S. patent application Ser. Nos. 11/361,785 and 11/731,628, incorporated herein by reference
Display apparatus 500 is referred to as the MEMS-up configuration, wherein the MEMS based light modulators are formed on a front surface of substrate 504, i.e. the surface that faces toward the viewer. The shutter assemblies 502 are built directly on top of the reflective aperture layer 506. In an alternate embodiment of the invention, referred to as the MEMS-down configuration, the shutter assemblies are disposed on a substrate separate from the substrate on which the reflective aperture layer is formed. The substrate on which the reflective aperture layer is formed, defining a plurality of apertures, is referred to herein as the aperture plate. In the MEMS-down configuration, the substrate that carries the MEMS-based light modulators takes the place of the cover plate 522 in display apparatus 500 and is oriented such that the MEMS-based light modulators are positioned on the rear surface of the top substrate, i.e. the surface that faces away from the viewer and toward the back light 516. The MEMS-based light modulators are thereby positioned directly opposite to and across a gap from the reflective aperture layer. The gap can be maintained by a series of spacer posts connecting the aperture plate and the substrate on which the MEMS modulators are formed. In some implementations the spacers are disposed within or between each pixel in the array. The gap or distance that separates the MEMS light modulators from their corresponding apertures is preferably less than 10 microns, or a distance that is less than the overlap between shutters and apertures, such as overlap 416. Further details and alternate embodiments for the MEMS-down display configuration can be found in the U.S. patent applications Ser. Nos. 11/361,785, 11/528,191, and 11/731,628 referenced above.
In other embodiments, the roller-based light modulator 220, the light tap 250, or the electrowetting-based light modulation array 270, as well as other MEMS-based light modulators, can be substituted for the shutter assemblies 502 within the display assembly 500.
A rear-facing reflective layer, reflective film 614, disposed on the substrate 606, defines a plurality of surface apertures 616 located beneath the liquid crystal light modulators 602. The reflective film 614 reflects light not passing through the surface apertures 616 back towards the rear of the display apparatus 600. The reflective aperture layer 614 can be a fine-grained metal film without inclusions formed in thin film fashion by a number of vapor deposition techniques including sputtering, evaporation, ion plating, laser ablation, or chemical vapor deposition. In another implementation, the rear-facing reflective layer 614 can be formed from a mirror, such as a dielectric mirror. A dielectric mirror is fabricated as a stack of dielectric thin films which alternate between materials of high and low refractive index.
The liquid crystal display apparatus 600 includes an optional diffuser 622 and/or an optional brightness enhancing film 624 which separates the substrate 606 from a planar light guide 616. The light guide is comprised of a transparent, i.e. glass or plastic material. The light guide 616 is illuminated by one or more light sources 618, forming a backlight. A reflector 619 helps direct light from lamp 618 towards the light guide 616. A front-facing reflective film 620 is disposed behind the light guide 616, reflecting light towards the liquid crystal modulators 602. Light rays from the backlight that do not pass through one of the shutter liquid crystal modulators 602 will be returned to the backlight and reflected again from the film 620. In this fashion light that fails to leave the display to form an image on the first pass can be recycled and made available for transmission through other open apertures in the array of liquid crystal modulators 602.
The light guide 616 includes a set of geometric light redirectors or prisms 617 which re-direct light from the lamps 618 towards the apertures 616 and hence toward the front of the display. The light re-directors can be molded into the plastic body of light guide 616 with shapes that can be alternately triangular, trapezoidal, or curved in cross section. The density of the prisms 617 generally increases with distance from the lamp 618.
A sheet metal or molded plastic assembly bracket 632 holds the cover plate 608, the substrate 606, the backlight 616 and the other component parts together around the edges. The assembly bracket 632 is fastened with screws or indent tabs to add rigidity to the combined display apparatus 600. Reflectors 636 help return light escaping from the edges of light guide 616 back into the light guide.
The combination of MEMS modulator substrate 706, cover plate 708, cell spacers, working fluid 720, and seal 722 is often referred to as cell assembly 705. Techniques for alignment, fluid filling, and sealing of the cell assembly have been previously described in U.S. patent application Ser. No. 11/731,628 and 60/930,872, the entireties of which are incorporated herein by reference.
After the components of the cell assembly are brought together, the steps for assembling the module 700 proceed as follows. First the driver circuits 710 are attached to the cell assembly 705. The driver circuits 710 can be silicon chips which comprise any or all of the functional blocks illustrated as part of block diagram 150, including timing control circuits, buffer memory, scan drivers, data drivers and common drivers. Electrical connections are made between the driver circuits 710 and interconnect wiring on the substrate 706 by means of an anisotropic conductive adhesive 726. In a second step of module assembly the flexible electrical interconnects 716 are also attached to cell assembly 705, also by means of an anisotropic conductive adhesive. In an optional third step of module assembly the lamp or lamps 702 are attached to the light guide 704. The lamps are also attached to the flexible electrical interconnect 718. In an optional fourth step of assembly the front facing reflector 728 is attached to bottom surfaces of the module spacer 712. In a fifth step of assembly the module spacer 712 is inserted into the assembly bracket 714. And in a sixth step of assembly all of the remaining components, starting with the light guide, are fitted into their places on or within the module spacer 712. In a final step of assembly, the assembly bracket 713 is fitted in place over the cell assembly 705. The assembly bracket 713 includes indent tabs that rigidly connect the bracket 713 to bracket 714, thereby completing an enclosure of the display module.
The module spacer 712 includes several features to facilitate and maintain the mechanical alignment between components of the module. For instance, the locating surfaces 730 and 732 help to restrict motion of the lamps 702 after assembly. Such surfaces in spacer 712 help to maintain proper x-y alignment between the lamps 702 and the light guide 704. By appropriate design of such locating surfaces in module spacer 712, sometimes referred to as receiving pockets, a high degree of alignment can be maintained between components even when components are to be assembled by hand. In a similar feature, the x-y alignment between the light guide 704 and the MEMS modulator substrate 706 is in part ensured by the locating surfaces 734 and 736, respectively.
Vertical alignment between the components of assembly 700 is also maintained by locating surfaces designed into the module spacer 712. The MEMS modulator substrate 706, for instance, rests on a shelf formed by the locating surface 740. The substrate 706 is supported by locating surfaces 740 at several points around the periphery of the substrate 706. Similarly, the light guide 704 rests on a locating surface 742. An air gap 744 has been established between the light guide 704 and the MEMS modulator substrate 706. This air gap is maintained because the vertical distance between the locating surfaces 740 and 742 has intentionally been made greater than the thickness of the light guide 704. The air gap 744 performs a useful function, as it enables the use of total internal reflection at the top surface of light guide 704 for distributing light within the light guide. Additionally, the air gap does not impede light rays, such as light ray 521 in display 500, from bouncing between the two reflective surfaces of the optical cavity in the display (formed for instance between the reflective film 506 and the front-facing reflector film 520).
In module assembly 700 the locating surface 742 supports the light guide 704 only along the periphery of the light guide. An open area is left in the module spacer 712 underneath the light guide 704 in the viewing area of the display. The module spacer 712 also includes a locating surface 746 along the periphery at a surface opposite to surface 742. The front-facing reflector 728 is attached with an adhesive to the locating surface 746. In this fashion, an air gap is also be provided between the front-facing reflector 728 and the light guide 704. In alternate embodiments the front-facing reflector 728 is adhered directly to the assembly bracket 714.
The module spacer 712 can be manufactured from either plastic or metal materials. Polished metal materials are useful as their surfaces reflect light escaping from the light guide 704 back into the optical cavity. In the particular embodiment of module 700, the spacer 712 is fabricated from the injection molding of polycarbonate. The polycarbonate is dyed to a white color and the edges are smooth to enhance reflection of light back into the optical cavity. Other plastic materials applicable for this component include, without limitation, polyethylene, polypropylene, acrylic, or epoxy materials. The materials can be molded through use of either thermoplastic or thermosetting characteristics. In some embodiments, the module spacer can be formed of conductive polymers or polymer composites to provide protection from electromagnetic interference.
The module spacer 712 generally supports the light guide 704 and the MEMS modulator substrate 706 only along the periphery of those substrates. The assembly brackets 713 and 714, however, are designed to completely enclose the module along the bottom, the sides, and also along non-viewing portions of the top surface. Gaps are left in sides of the assembly bracket leaving for the admission of flexible electrical interconnects 716 and 718. The assembly brackets 713 and 714, when connected by means of their indent tabs, provide mechanical rigidity to the display module. When formed from sheet metal, the assembly brackets also provide electronic shielding for the display and protection from electromagnetic interference.
In some embodiments, the functions of the module spacer 712 and the assembly bracket 714 can be combined in a composite structure. For such a composite structure, the plastic components are molded onto or around and permanently adhered to a base made of sheet metal. After plastic molding is complete, any sheet metal protrusions can be further bent or folded to form a part of an interlocking enclosure.
In some embodiments adhesives are applied along the periphery of the cell assembly and/or the light guide 704 to prevent movement of the components along their respective locating surfaces on the module spacer 712. In other embodiments elastic materials (either synthetic sponges or rubber materials) are inserted between the components, for instance between the light guide 704 and the modulator substrate 706 and/or between the cover plate 708 and the assembly bracket 714. The elastic materials can be compressed after enclosure of the assembly brackets 713 and 714, thereby preventing further movement of the components. The elastic materials also protect the display components from mechanical shock. In some embodiments protrusions are provided in the spacer 712 which align to indents or tabs in the assembly brackets 713 or 714. These locator protrusions prevent motion of the spacer 712 within the assembly bracket 714.
Although in a preferred embodiment the MEMS modulator substrate 706 comprises an array of shutter-based MEMS modulators, such as light modulators 200 and 220, substrates comprising non-shutter based MEMS light modulators can be usefully employed in the invention. Applicable non-shutter based modulators that can be arrayed on substrate 706 include the light tap 250 and the electrowetting-based light modulator 270.
In an alternate embodiment the cell components of display apparatus 600 can be substituted for the MEMS light modulators in display apparatus 700. For instance the substrate 606 can be substituted for the MEMS modulator substrate 706 and the substrate 608 can be substituted for the cover plate 708. In the liquid crystal embodiment of this invention the fluid 720 is replaced by the liquid crystal material 604. The same advantages offered by the design of module spacer 712 apply when adopted to the liquid crystal display apparatus 600.
Vertical alignment between the components of assembly 800 is also maintained by locating surfaces designed into the module spacer 812. The MEMS modulator substrate 806, for instance, rests on a shelf formed by the locating surface 840. The substrate 806 is supported by locating surfaces 840 at several points around the periphery of the substrate 806. Similarly, the light guide 804 rests on a locating surface 842, which is located directly opposite the locating surface 840 on module spacer 812. An air gap 844 has been established between the light guide 804 and the MEMS modulator substrate 806 by the insertion of the module spacer 812 between the substrates along the periphery of the display. The shape of the module spacer 812 has been designed so that at several points along the periphery of the substrates 804 and 806 the spacer material is disposed between the two substrates.
The module assembly 800 also includes elastic inserts 850 and 852. The elastic insert 850 is placed between the cover plate and the assembly bracket 813. The elastic inserts 852 are placed between the light guide 804 and the assembly bracket 814. The elastic inserts are comprised of elastic materials (either synthetic sponges or rubber materials) so that they can be compressed during enclosure of the brackets 813 and 814. The elastic inserts ensure that the light guide 804 and the modulator substrate 806 are pressed directly against the locator surfaces 842 and 840, respectively. The elastic materials also protect the display components from mechanical shock. In some embodiments the front facing reflector 828 is adhered directly to the light guide 804, such that the elastic insert 852 is positioned between the assembly bracket 814 and the reflector 828.
The combination of MEMS modulator substrate 908, aperture plate 906, cell spacers, working fluid 920 and seal 922 is referred to as cell assembly 905. For the MEMS-down configuration, however, the array of MEMS shutter assemblies is fabricated on the side of substrate 908 which is directed toward the light guide 904 and away from the viewer. As a consequence, the driver circuits 910 are also mounted on the bottom surface of modulator substrate 908.
The module spacer 912 includes several features to facilitate and maintain the mechanical alignment between components of the module. For instance, the spacer 912 includes locating surfaces 930 and 932 to help ensure the proper positioning of the lamps 902. In a similar feature, the x-y alignment between the light guide 904 and the MEMS aperture plate 906 is in part ensured by the locating surfaces 934 and 936, respectively.
Vertical alignment between the components of assembly 900 is also maintained by locating surfaces designed into the module spacer 912. The aperture plate 906, for instance, rests on a shelf formed by the locating surface 940. The substrate 906 is supported by locating surfaces 940 at several points around the periphery of the substrate 906. Similarly, the light guide 904 rests on a locating surface 942. An air gap 944 has been established between the light guide 904 and the aperture plate 906. This air gap is maintained because the vertical distance between the locating surfaces 940 and 942 has intentionally been made greater than the thickness of the light guide 904. The air gap 944 performs a useful function, as it enables the use of total internal reflection at the top surface of light guide 904 for distributing light within the light guide. Additionally, the air gap does not impede light rays, such as light ray 521 in display 500, from bouncing between the two reflective surfaces of the optical cavity in the display (formed for instance between the reflective film 506 and the front-facing reflector film 520).
In module assembly 900 the locating surface 942 supports the light guide 904 only along the periphery of the light guide. An open area is left in the module spacer 912 underneath the light guide 904 in the viewing area of the display. The module spacer 912 also includes a locating surface 946 along the periphery at a surface opposite to surface 942. The front-facing reflector 928 is attached with an adhesive to the locating surface 946. In this fashion, an air gap is also be provided between the front-facing reflector 928 and the light guide 904. In alternate embodiments the front-facing reflector 928 is adhered directly to the assembly bracket 914.
Number | Name | Date | Kind |
---|---|---|---|
4067043 | Perry | Jan 1978 | A |
4074253 | Nadir | Feb 1978 | A |
4559535 | Watkins et al. | Dec 1985 | A |
4564836 | Vuilleumier et al. | Jan 1986 | A |
4582396 | Bos et al. | Apr 1986 | A |
4673253 | Tanabe et al. | Jun 1987 | A |
4744640 | Phillips | May 1988 | A |
4958911 | Beiswenger et al. | Sep 1990 | A |
4991941 | Kalmanash | Feb 1991 | A |
5005108 | Pristash et al. | Apr 1991 | A |
5042900 | Parker | Aug 1991 | A |
5050946 | Hathaway et al. | Sep 1991 | A |
5061049 | Hornbeck | Oct 1991 | A |
5062689 | Koehler | Nov 1991 | A |
5093652 | Bull et al. | Mar 1992 | A |
5096279 | Hornbeck et al. | Mar 1992 | A |
5128787 | Blonder | Jul 1992 | A |
5136480 | Pristash et al. | Aug 1992 | A |
5136751 | Coyne et al. | Aug 1992 | A |
5142405 | Hornbeck | Aug 1992 | A |
5198730 | Vancil | Mar 1993 | A |
5202950 | Arego et al. | Apr 1993 | A |
5233385 | Sampsell | Aug 1993 | A |
5233459 | Bozler et al. | Aug 1993 | A |
5278652 | Urbanus et al. | Jan 1994 | A |
5280277 | Hornbeck | Jan 1994 | A |
5319491 | Selbrede | Jun 1994 | A |
5339116 | Urbanus et al. | Aug 1994 | A |
5339179 | Rudisill et al. | Aug 1994 | A |
5359345 | Hunter | Oct 1994 | A |
5396350 | Beeson et al. | Mar 1995 | A |
5416631 | Yagi | May 1995 | A |
5440197 | Gleckman | Aug 1995 | A |
5452024 | Sampsell | Sep 1995 | A |
5461411 | Florence et al. | Oct 1995 | A |
5465175 | Woodgate et al. | Nov 1995 | A |
5467104 | Furness, III et al. | Nov 1995 | A |
5477086 | Rostoker et al. | Dec 1995 | A |
5479279 | Barbier et al. | Dec 1995 | A |
5493439 | Engle | Feb 1996 | A |
5497172 | Doherty | Mar 1996 | A |
5504389 | Dickey | Apr 1996 | A |
5510824 | Nelson | Apr 1996 | A |
5519565 | Kalt et al. | May 1996 | A |
5523803 | Urbanus et al. | Jun 1996 | A |
5526051 | Gove et al. | Jun 1996 | A |
5528262 | McDowall et al. | Jun 1996 | A |
5548301 | Kornher et al. | Aug 1996 | A |
5559389 | Spindt et al. | Sep 1996 | A |
5568964 | Parker et al. | Oct 1996 | A |
5578185 | Bergeron et al. | Nov 1996 | A |
5579035 | Beiswenger | Nov 1996 | A |
5579240 | Buus | Nov 1996 | A |
5596339 | Furness, III et al. | Jan 1997 | A |
5613751 | Parker et al. | Mar 1997 | A |
5618096 | Parker et al. | Apr 1997 | A |
5619266 | Tomita et al. | Apr 1997 | A |
5655832 | Pelka et al. | Aug 1997 | A |
5659327 | Furness, III et al. | Aug 1997 | A |
5666226 | Ezra et al. | Sep 1997 | A |
5684354 | Gleckman | Nov 1997 | A |
5724062 | Hunter | Mar 1998 | A |
5731802 | Aras et al. | Mar 1998 | A |
5745193 | Urbanus et al. | Apr 1998 | A |
5745203 | Valliath et al. | Apr 1998 | A |
5771321 | Stern | Jun 1998 | A |
5781331 | Carr et al. | Jul 1998 | A |
5784189 | Bozler et al. | Jul 1998 | A |
5794761 | Renaud et al. | Aug 1998 | A |
5801792 | Smith et al. | Sep 1998 | A |
5835255 | Miles | Nov 1998 | A |
5835256 | Huibers | Nov 1998 | A |
5854872 | Tai | Dec 1998 | A |
5867302 | Fleming | Feb 1999 | A |
5876107 | Parker et al. | Mar 1999 | A |
5884872 | Greenhalgh | Mar 1999 | A |
5889625 | Chen et al. | Mar 1999 | A |
5894686 | Parker et al. | Apr 1999 | A |
5895115 | Parker et al. | Apr 1999 | A |
5921652 | Parker et al. | Jul 1999 | A |
5936596 | Yoshida et al. | Aug 1999 | A |
5953469 | Zhou | Sep 1999 | A |
5975711 | Parker et al. | Nov 1999 | A |
5986628 | Tuenge et al. | Nov 1999 | A |
5986796 | Miles | Nov 1999 | A |
5990990 | Crabtree | Nov 1999 | A |
6008781 | Furness, III et al. | Dec 1999 | A |
6008929 | Akimototo et al. | Dec 1999 | A |
6028656 | Buhrer et al. | Feb 2000 | A |
6030089 | Parker et al. | Feb 2000 | A |
6034807 | Little et al. | Mar 2000 | A |
6040796 | Matsugatani et al. | Mar 2000 | A |
6040937 | Miles | Mar 2000 | A |
6046840 | Huibers | Apr 2000 | A |
6055090 | Miles | Apr 2000 | A |
6079838 | Parker et al. | Jun 2000 | A |
6154586 | MacDonald et al. | Nov 2000 | A |
6158867 | Parker et al. | Dec 2000 | A |
6162657 | Schiele et al. | Dec 2000 | A |
6168395 | Quenzer et al. | Jan 2001 | B1 |
6172657 | Kamakura et al. | Jan 2001 | B1 |
6172797 | Huibers | Jan 2001 | B1 |
6174064 | Kalantar et al. | Jan 2001 | B1 |
6201633 | Peeters et al. | Mar 2001 | B1 |
6201664 | Le et al. | Mar 2001 | B1 |
6206550 | Fukushima et al. | Mar 2001 | B1 |
6219119 | Nakai | Apr 2001 | B1 |
6249269 | Blalock et al. | Jun 2001 | B1 |
6249370 | Takeuchi et al. | Jun 2001 | B1 |
6266240 | Urban et al. | Jul 2001 | B1 |
6282951 | Loga et al. | Sep 2001 | B1 |
6285270 | Lane et al. | Sep 2001 | B1 |
6288824 | Kastalsky | Sep 2001 | B1 |
6288829 | Kimura et al. | Sep 2001 | B1 |
6296383 | Henningsen | Oct 2001 | B1 |
6300154 | Clark et al. | Oct 2001 | B2 |
6317103 | Furness, III et al. | Nov 2001 | B1 |
6323834 | Colgan et al. | Nov 2001 | B1 |
6329967 | Little et al. | Dec 2001 | B1 |
6367940 | Parker et al. | Apr 2002 | B1 |
6388661 | Richards | May 2002 | B1 |
6402335 | Kalantar et al. | Jun 2002 | B1 |
6404942 | Edwards et al. | Jun 2002 | B1 |
6424329 | Okita | Jul 2002 | B1 |
6429625 | LeFevre et al. | Aug 2002 | B1 |
6471879 | Hanson et al. | Oct 2002 | B2 |
6473220 | Clikeman et al. | Oct 2002 | B1 |
6476886 | Krusius et al. | Nov 2002 | B2 |
6483613 | Woodgate et al. | Nov 2002 | B1 |
6498685 | Johnson | Dec 2002 | B1 |
6504985 | Parker et al. | Jan 2003 | B2 |
6507138 | Rodgers et al. | Jan 2003 | B1 |
6508563 | Parker et al. | Jan 2003 | B2 |
6523961 | Ilkov et al. | Feb 2003 | B2 |
6529265 | Henningsen | Mar 2003 | B1 |
6531947 | Weaver et al. | Mar 2003 | B1 |
6535256 | Ishihara et al. | Mar 2003 | B1 |
6535311 | Lindquist | Mar 2003 | B1 |
6556258 | Yoshida et al. | Apr 2003 | B1 |
6556261 | Krusius et al. | Apr 2003 | B1 |
6559827 | Mangerson | May 2003 | B1 |
6567063 | Okita | May 2003 | B1 |
6567138 | Krusius et al. | May 2003 | B1 |
6574033 | Chui et al. | Jun 2003 | B1 |
6576887 | Whitney et al. | Jun 2003 | B2 |
6582095 | Toyoda | Jun 2003 | B1 |
6583915 | Hong et al. | Jun 2003 | B1 |
6589625 | Kothari et al. | Jul 2003 | B1 |
6591049 | Williams et al. | Jul 2003 | B2 |
6593677 | Behin et al. | Jul 2003 | B2 |
6600474 | Heines et al. | Jul 2003 | B1 |
6633301 | Dallas et al. | Oct 2003 | B1 |
6639570 | Furness, III et al. | Oct 2003 | B2 |
6639572 | Little et al. | Oct 2003 | B1 |
6650455 | Miles | Nov 2003 | B2 |
6650822 | Zhou | Nov 2003 | B1 |
6671078 | Flanders et al. | Dec 2003 | B2 |
6674562 | Miles | Jan 2004 | B1 |
6677709 | Ma et al. | Jan 2004 | B1 |
6680792 | Miles | Jan 2004 | B2 |
6690422 | Daly et al. | Feb 2004 | B1 |
6701039 | Bourgeois et al. | Mar 2004 | B2 |
6707176 | Rodgers | Mar 2004 | B1 |
6710538 | Ahn et al. | Mar 2004 | B1 |
6710908 | Miles et al. | Mar 2004 | B2 |
6710920 | Mashitani et al. | Mar 2004 | B1 |
6712481 | Parker et al. | Mar 2004 | B2 |
6731355 | Miyashita | May 2004 | B2 |
6731492 | Goodwin-Johansson | May 2004 | B2 |
6733354 | Cathey et al. | May 2004 | B1 |
6738177 | Gutierrez et al. | May 2004 | B1 |
6741377 | Miles | May 2004 | B2 |
6749312 | Parker et al. | Jun 2004 | B2 |
6750930 | Yoshii et al. | Jun 2004 | B2 |
6752505 | Parker et al. | Jun 2004 | B2 |
6755547 | Parker | Jun 2004 | B2 |
6762743 | Yoshihara et al. | Jul 2004 | B2 |
6762868 | Liu et al. | Jul 2004 | B2 |
6764796 | Fries | Jul 2004 | B2 |
6774964 | Funamoto et al. | Aug 2004 | B2 |
6775048 | Starkweather et al. | Aug 2004 | B1 |
6785454 | Abe | Aug 2004 | B2 |
6787969 | Grade et al. | Sep 2004 | B2 |
6788371 | Tanada et al. | Sep 2004 | B2 |
6794119 | Miles | Sep 2004 | B2 |
6795064 | Walker et al. | Sep 2004 | B2 |
6796668 | Parker et al. | Sep 2004 | B2 |
6798935 | Bourgeois et al. | Sep 2004 | B2 |
6809851 | Gurcan | Oct 2004 | B1 |
6819465 | Clikeman et al. | Nov 2004 | B2 |
6825470 | Bawolek et al. | Nov 2004 | B1 |
6827456 | Parker et al. | Dec 2004 | B2 |
6831678 | Travis | Dec 2004 | B1 |
6835111 | Ahn et al. | Dec 2004 | B2 |
6846082 | Glent-Madsen et al. | Jan 2005 | B2 |
6847425 | Tanada et al. | Jan 2005 | B2 |
6857751 | Penn et al. | Feb 2005 | B2 |
6863219 | Jacobsen et al. | Mar 2005 | B1 |
6864618 | Miller et al. | Mar 2005 | B2 |
6867896 | Miles | Mar 2005 | B2 |
6873311 | Yoshihara et al. | Mar 2005 | B2 |
6879307 | Stern | Apr 2005 | B1 |
6886956 | Parker et al. | May 2005 | B2 |
6887202 | Currie et al. | May 2005 | B2 |
6888678 | Nishiyama et al. | May 2005 | B2 |
6889565 | DeConde et al. | May 2005 | B2 |
6897164 | Baude et al. | May 2005 | B2 |
6900072 | Patel et al. | May 2005 | B2 |
6906847 | Huibers et al. | Jun 2005 | B2 |
6911891 | Qiu et al. | Jun 2005 | B2 |
6911964 | Lee et al. | Jun 2005 | B2 |
6919981 | Clikeman et al. | Jul 2005 | B2 |
6934080 | Saccomanno et al. | Aug 2005 | B2 |
6936968 | Cross et al. | Aug 2005 | B2 |
6939013 | Asao | Sep 2005 | B2 |
6940631 | Ishikawa | Sep 2005 | B2 |
6947107 | Yoshii et al. | Sep 2005 | B2 |
6953375 | Ahn et al. | Oct 2005 | B2 |
6961167 | Prins et al. | Nov 2005 | B2 |
6962419 | Huibers | Nov 2005 | B2 |
6965375 | Gettemy et al. | Nov 2005 | B1 |
6967698 | Tanoue et al. | Nov 2005 | B2 |
6969635 | Patel et al. | Nov 2005 | B2 |
6970227 | Kida et al. | Nov 2005 | B2 |
7004610 | Yamashita et al. | Feb 2006 | B2 |
7004611 | Parker et al. | Feb 2006 | B2 |
7012726 | Miles | Mar 2006 | B1 |
7012732 | Miles | Mar 2006 | B2 |
7014349 | Shinohara et al. | Mar 2006 | B2 |
7042618 | Selbrede et al. | May 2006 | B2 |
7042643 | Miles | May 2006 | B2 |
7046221 | Malzbender | May 2006 | B1 |
7046905 | Gardiner et al. | May 2006 | B1 |
7050035 | Iisaka et al. | May 2006 | B2 |
7050141 | Yokoue et al. | May 2006 | B2 |
7050219 | Kimura | May 2006 | B2 |
7057790 | Selbrede | Jun 2006 | B2 |
7060895 | Kothari et al. | Jun 2006 | B2 |
7071611 | Yonekubo et al. | Jul 2006 | B2 |
7110158 | Miles | Sep 2006 | B2 |
7116464 | Osawa et al. | Oct 2006 | B2 |
7123216 | Miles | Oct 2006 | B1 |
7123796 | Steckl et al. | Oct 2006 | B2 |
7126738 | Miles | Oct 2006 | B2 |
7161094 | Kothari et al. | Jan 2007 | B2 |
7164250 | Boscolo et al. | Jan 2007 | B2 |
7184202 | Miles et al. | Feb 2007 | B2 |
7198982 | Patel et al. | Apr 2007 | B2 |
7227677 | Ravnkilde et al. | Jun 2007 | B2 |
7271945 | Hagood et al. | Sep 2007 | B2 |
7304785 | Hagood et al. | Dec 2007 | B2 |
7304786 | Hagood et al. | Dec 2007 | B2 |
7746529 | Hagood et al. | Jun 2010 | B2 |
20010001260 | Parker et al. | May 2001 | A1 |
20010028993 | Sanford | Oct 2001 | A1 |
20010040538 | Quanrud | Nov 2001 | A1 |
20010043208 | Furness, III et al. | Nov 2001 | A1 |
20010053075 | Parker et al. | Dec 2001 | A1 |
20020001051 | Krusius et al. | Jan 2002 | A1 |
20020009275 | Williams et al. | Jan 2002 | A1 |
20020015215 | Miles | Feb 2002 | A1 |
20020024641 | Ilkov et al. | Feb 2002 | A1 |
20020024711 | Miles | Feb 2002 | A1 |
20020047172 | Reid | Apr 2002 | A1 |
20020054424 | Miles | May 2002 | A1 |
20020054487 | Parker et al. | May 2002 | A1 |
20020056900 | Liu et al. | May 2002 | A1 |
20020063661 | Comiskey et al. | May 2002 | A1 |
20020070931 | Ishikawa | Jun 2002 | A1 |
20020075555 | Miles | Jun 2002 | A1 |
20020080598 | Parker et al. | Jun 2002 | A1 |
20020126364 | Miles | Sep 2002 | A1 |
20020126387 | Ishikawa et al. | Sep 2002 | A1 |
20020132389 | Patel et al. | Sep 2002 | A1 |
20020141174 | Parker et al. | Oct 2002 | A1 |
20020149828 | Miles et al. | Oct 2002 | A1 |
20020163482 | Sullivan | Nov 2002 | A1 |
20020163484 | Furness, III et al. | Nov 2002 | A1 |
20020171327 | Miller et al. | Nov 2002 | A1 |
20020185699 | Reid | Dec 2002 | A1 |
20020196522 | Little et al. | Dec 2002 | A1 |
20030007344 | Parker | Jan 2003 | A1 |
20030009898 | Slocum et al. | Jan 2003 | A1 |
20030029705 | Qiu et al. | Feb 2003 | A1 |
20030036215 | Reid | Feb 2003 | A1 |
20030043157 | Miles | Mar 2003 | A1 |
20030043337 | Takabayashi | Mar 2003 | A1 |
20030048036 | Lemkin | Mar 2003 | A1 |
20030058543 | Sheedy et al. | Mar 2003 | A1 |
20030063233 | Takagi | Apr 2003 | A1 |
20030076649 | Speakman | Apr 2003 | A1 |
20030085650 | Cathey et al. | May 2003 | A1 |
20030085867 | Grabert | May 2003 | A1 |
20030095081 | Furness, III et al. | May 2003 | A1 |
20030095398 | Parker et al. | May 2003 | A1 |
20030102810 | Cross et al. | Jun 2003 | A1 |
20030123245 | Parker et al. | Jul 2003 | A1 |
20030123246 | Parker | Jul 2003 | A1 |
20030123247 | Parker et al. | Jul 2003 | A1 |
20030133284 | Chipchase et al. | Jul 2003 | A1 |
20030137499 | Iisaka | Jul 2003 | A1 |
20030152872 | Miles | Aug 2003 | A1 |
20030174422 | Miller et al. | Sep 2003 | A1 |
20030174931 | Rodgers et al. | Sep 2003 | A1 |
20030183008 | Bang et al. | Oct 2003 | A1 |
20030184189 | Sinclair | Oct 2003 | A1 |
20030190535 | Fries | Oct 2003 | A1 |
20030190536 | Fries | Oct 2003 | A1 |
20030202338 | Parker | Oct 2003 | A1 |
20030231160 | Yoshihara et al. | Dec 2003 | A1 |
20040012946 | Parker et al. | Jan 2004 | A1 |
20040027636 | Miles | Feb 2004 | A1 |
20040051929 | Sampsell et al. | Mar 2004 | A1 |
20040058532 | Miles et al. | Mar 2004 | A1 |
20040080240 | Miller et al. | Apr 2004 | A1 |
20040080484 | Heines et al. | Apr 2004 | A1 |
20040080927 | Parker et al. | Apr 2004 | A1 |
20040085749 | Parker et al. | May 2004 | A1 |
20040090144 | Miller et al. | May 2004 | A1 |
20040095739 | Parker et al. | May 2004 | A1 |
20040100677 | Huibers et al. | May 2004 | A1 |
20040114346 | Parker et al. | Jun 2004 | A1 |
20040122328 | Wang et al. | Jun 2004 | A1 |
20040125346 | Huibers | Jul 2004 | A1 |
20040135273 | Parker et al. | Jul 2004 | A1 |
20040135951 | Stumbo et al. | Jul 2004 | A1 |
20040136204 | Asao | Jul 2004 | A1 |
20040145580 | Perlman | Jul 2004 | A1 |
20040157664 | Link | Aug 2004 | A1 |
20040165372 | Parker | Aug 2004 | A1 |
20040171206 | Rodgers | Sep 2004 | A1 |
20040179146 | Nilsson | Sep 2004 | A1 |
20040196215 | Duthaler et al. | Oct 2004 | A1 |
20040196525 | Fujii et al. | Oct 2004 | A1 |
20040207768 | Liu | Oct 2004 | A1 |
20040218149 | Huibers | Nov 2004 | A1 |
20040218154 | Huibers | Nov 2004 | A1 |
20040218292 | Huibers | Nov 2004 | A1 |
20040218293 | Huibers | Nov 2004 | A1 |
20040223088 | Huibers | Nov 2004 | A1 |
20040223240 | Huibers | Nov 2004 | A1 |
20040227428 | Sinclair | Nov 2004 | A1 |
20040233392 | Huibers | Nov 2004 | A1 |
20040240032 | Miles | Dec 2004 | A1 |
20040246275 | Yoshihara et al. | Dec 2004 | A1 |
20040263502 | Dallas et al. | Dec 2004 | A1 |
20040263944 | Miles et al. | Dec 2004 | A1 |
20050002082 | Miles | Jan 2005 | A1 |
20050002086 | Starkweather et al. | Jan 2005 | A1 |
20050007759 | Parker | Jan 2005 | A1 |
20050024849 | Parker et al. | Feb 2005 | A1 |
20050059184 | Sniegowski et al. | Mar 2005 | A1 |
20050062708 | Yoshihara et al. | Mar 2005 | A1 |
20050063037 | Selebrede et al. | Mar 2005 | A1 |
20050072032 | McCollum et al. | Apr 2005 | A1 |
20050073471 | Selbrede | Apr 2005 | A1 |
20050088404 | Heines et al. | Apr 2005 | A1 |
20050093465 | Yonekubo et al. | May 2005 | A1 |
20050094240 | Huibers et al. | May 2005 | A1 |
20050094418 | Parker | May 2005 | A1 |
20050104804 | Feenstra et al. | May 2005 | A1 |
20050111238 | Parker | May 2005 | A1 |
20050111241 | Parker | May 2005 | A1 |
20050116798 | Bintoro et al. | Jun 2005 | A1 |
20050122560 | Sampsell et al. | Jun 2005 | A1 |
20050122591 | Parker et al. | Jun 2005 | A1 |
20050123243 | Steckl et al. | Jun 2005 | A1 |
20050128370 | Moon | Jun 2005 | A1 |
20050134805 | Conner et al. | Jun 2005 | A1 |
20050141076 | Bausenwein et al. | Jun 2005 | A1 |
20050151940 | Asao | Jul 2005 | A1 |
20050157365 | Ravnkilde et al. | Jul 2005 | A1 |
20050157376 | Huibers et al. | Jul 2005 | A1 |
20050168431 | Chui | Aug 2005 | A1 |
20050168789 | Glent-Madsen | Aug 2005 | A1 |
20050171408 | Parker | Aug 2005 | A1 |
20050179977 | Chui et al. | Aug 2005 | A1 |
20050195467 | Kothari et al. | Sep 2005 | A1 |
20050195468 | Sampsell | Sep 2005 | A1 |
20050206991 | Chui et al. | Sep 2005 | A1 |
20050207154 | Parker | Sep 2005 | A1 |
20050207178 | Parker | Sep 2005 | A1 |
20050212738 | Gally | Sep 2005 | A1 |
20050213183 | Miles | Sep 2005 | A9 |
20050213322 | Parker | Sep 2005 | A1 |
20050213323 | Parker | Sep 2005 | A1 |
20050213349 | Parker | Sep 2005 | A1 |
20050219679 | Ishikawa | Oct 2005 | A1 |
20050219680 | Ishikawa | Oct 2005 | A1 |
20050225501 | Srinivasan et al. | Oct 2005 | A1 |
20050225519 | Naugler, Jr. | Oct 2005 | A1 |
20050225732 | Conner et al. | Oct 2005 | A1 |
20050225827 | Kastalsky | Oct 2005 | A1 |
20050237596 | Selbrede | Oct 2005 | A1 |
20050242710 | Yamazaki et al. | Nov 2005 | A1 |
20050243023 | Reddy et al. | Nov 2005 | A1 |
20050244099 | Pasch et al. | Nov 2005 | A1 |
20050244949 | Miles | Nov 2005 | A1 |
20050245313 | Yoshino et al. | Nov 2005 | A1 |
20050247477 | Kothari et al. | Nov 2005 | A1 |
20050249966 | Tung et al. | Nov 2005 | A1 |
20050253779 | Feenstra et al. | Nov 2005 | A1 |
20050254115 | Palmateer et al. | Nov 2005 | A1 |
20050258571 | Dumond et al. | Nov 2005 | A1 |
20050259198 | Lubart et al. | Nov 2005 | A1 |
20050285816 | Glass | Dec 2005 | A1 |
20050286113 | Miles | Dec 2005 | A1 |
20050286114 | Miles | Dec 2005 | A1 |
20060001942 | Chui et al. | Jan 2006 | A1 |
20060028708 | Miles | Feb 2006 | A1 |
20060028817 | Parker | Feb 2006 | A1 |
20060028840 | Parker | Feb 2006 | A1 |
20060028841 | Parker | Feb 2006 | A1 |
20060028843 | Parker | Feb 2006 | A1 |
20060028844 | Parker | Feb 2006 | A1 |
20060033975 | Miles | Feb 2006 | A1 |
20060044246 | Mignard | Mar 2006 | A1 |
20060044298 | Mignard et al. | Mar 2006 | A1 |
20060044928 | Chui et al. | Mar 2006 | A1 |
20060061559 | King | Mar 2006 | A1 |
20060066934 | Selbrede | Mar 2006 | A1 |
20060066937 | Chui | Mar 2006 | A1 |
20060077125 | Floyd | Apr 2006 | A1 |
20060077153 | Cummings et al. | Apr 2006 | A1 |
20060077533 | Miles et al. | Apr 2006 | A1 |
20060092490 | McCollum et al. | May 2006 | A1 |
20060132383 | Gally et al. | Jun 2006 | A1 |
20060132404 | Hayes et al. | Jun 2006 | A1 |
20060139734 | Selebrede et al. | Jun 2006 | A1 |
20060146389 | Selbrede | Jul 2006 | A1 |
20060172745 | Knowles | Aug 2006 | A1 |
20060187190 | Hagood et al. | Aug 2006 | A1 |
20060187191 | Hagood et al. | Aug 2006 | A1 |
20060187528 | Hagood et al. | Aug 2006 | A1 |
20060238443 | Derichs | Oct 2006 | A1 |
20060250325 | Hagood et al. | Nov 2006 | A1 |
20060250676 | Hagood | Nov 2006 | A1 |
20060256039 | Hagood et al. | Nov 2006 | A1 |
20060262060 | Amundson | Nov 2006 | A1 |
20060262380 | Miles | Nov 2006 | A1 |
20060268386 | Selbrede et al. | Nov 2006 | A1 |
20060270179 | Yang | Nov 2006 | A1 |
20060291034 | Patry et al. | Dec 2006 | A1 |
20070002156 | Hagood et al. | Jan 2007 | A1 |
20070002413 | Psaltis et al. | Jan 2007 | A1 |
20070030555 | Barton | Feb 2007 | A1 |
20070031097 | Heikenfeld et al. | Feb 2007 | A1 |
20070035808 | Amundson et al. | Feb 2007 | A1 |
20070040982 | Nakano et al. | Feb 2007 | A1 |
20070047051 | Selbrede et al. | Mar 2007 | A1 |
20070047887 | Selbrede | Mar 2007 | A1 |
20070052660 | Montbach et al. | Mar 2007 | A1 |
20070053652 | Mignard et al. | Mar 2007 | A1 |
20070086078 | Hagood | Apr 2007 | A1 |
20070091011 | Selbrede | Apr 2007 | A1 |
20070091038 | Hagood et al. | Apr 2007 | A1 |
20070150813 | Selebrede et al. | Jun 2007 | A1 |
20070159679 | Hagood et al. | Jul 2007 | A1 |
20070172171 | Van Ostrand et al. | Jul 2007 | A1 |
20070195026 | Hagood et al. | Aug 2007 | A1 |
20070205969 | Hagood et al. | Sep 2007 | A1 |
20070216987 | Hagood et al. | Sep 2007 | A1 |
20070223080 | Hagood | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
0 359 450 | Nov 1994 | EP |
0 495 273 | Sep 1996 | EP |
0 415 625 | Jan 1997 | EP |
0786 679 | Jul 1997 | EP |
0 884 525 | Dec 1998 | EP |
0 751 340 | May 2000 | EP |
1 091 342 | Apr 2001 | EP |
1 202 096 | May 2002 | EP |
1 426 190 | Jun 2004 | EP |
2 726 135 | Oct 1994 | FR |
03-142409 | Jun 1991 | JP |
04-249203 | Sep 1992 | JP |
09-198906 | Jul 1997 | JP |
11-015393 | Jan 1999 | JP |
2002-318564 | Oct 2002 | JP |
2003-162904 | Jun 2003 | JP |
WO 9401716 | Jan 1994 | WO |
WO 9804950 | Feb 1998 | WO |
WO 9901696 | Jan 1999 | WO |
WO 0050807 | Aug 2000 | WO |
WO 03008860 | Jan 2003 | WO |
WO 03050448 | Jul 2003 | WO |
WO 03061329 | Jul 2003 | WO |
WO 2004019120 | Mar 2004 | WO |
WO 2004086098 | Oct 2004 | WO |
WO 2005001892 | Jan 2005 | WO |
WO 2005062908 | Jul 2005 | WO |
WO-2006017129 | Feb 2006 | WO |
WO 2006023077 | Mar 2006 | WO |
WO 2006039315 | Apr 2006 | WO |
WO 2006052755 | May 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090103164 A1 | Apr 2009 | US |