Spacing device for releasing active substances in the paranasal sinus

Information

  • Patent Grant
  • 8740929
  • Patent Number
    8,740,929
  • Date Filed
    Wednesday, February 6, 2002
    22 years ago
  • Date Issued
    Tuesday, June 3, 2014
    10 years ago
Abstract
A spacing device for use in fenestrations of the paranasal sinus, the device including a sheath which forms a hollow body defining at least two apertures. The sheath includes at least one layer loaded with an active substance. The ratio q of the external diameter ra of the hollow body to the internal diameter ri of the hollow body is about 1.2 to 3.0.
Description
BACKGROUND

1. Technical Field


The present invention relates to a spacing device (stent) for use in fenestrations of the paranasal sinus.


2. Related Art


About 5% of our population suffer from a chronic mucous membrane inflammation of the paranasal sinuses. In the course of an inflammation of this type, nasal polyps occur in every fifth patient. If corresponding symptoms occur and an attempt at medicinal treatment remains unsuccessful, the chronic sinusitis is approached surgically.


The paranasal sinus system consists of a series of cavities lined with mucous membrane and filled with air. The interruption of the natural secretion drainage from the remote paranasal sinus portions and the removal of natural ventilation are important in the occurrence of chronic sinusitis. The remote, diseased paranasal sinus portions are accordingly reventilated during cleaning-up interventions through newly created or extended accesses (“windows”). After healing, the natural secretion drainage of these reventilated compartments reappears.


Surgical treatment of chronic sinusitis has been transformed after the introduction of modern optical aids (rigid endoscopes, microscope). Nowadays, the “minimally invasive” clearing exclusively of those mucous membrane parts which have undergone an obviously irreversible change owing to the inflammation process predominates. Other reversibly changed or unaffected mucous membrane areas are spared as far as possible (Hosemann W G, Weber R K, Keerl R E, Lund V J: Minimally invasive endonasal sinus surgery. Thieme, Stuttgart, New York 2000).


If the frontal sinus mucous membrane is involved in the inflammatory modification of the sinus a surgical fenestration takes place towards the nose. This is carried out with special instruments (bent sharp spoons, special stamps, drills). Accesses of about 5 to a maximum of 10 mm in diameter are produced by routine “fenestration” of the frontal sinus. During healing of the wound these accesses narrow by about 1.5 mm.


If certain health factors are present, such as, for example intolerance of analgesics, a disproportionate tendency to scarred narrowing has to be taken into account (Hosemann W, Th. Kühnel, P. Held, W. Wagner, A. Felderhoff: Endonasal frontal sinusotomy in surgical management of chronic sinusitis—a critical evaluation. Am. J. Rhinology 11: 1-9 (1997)). In such cases it is advised to maximise the surgical access as a precaution. This “widened frontal sinus surgery” is subdivided into specific types (Draf W: Endonasal micro-endoscopic frontal sinus surgery: the Fulda concept. Op Tech Otolaryngol Head Neck Surg 2: 234-240 (1991); May M, Schaitkin B: Frontal sinus surgery: endonasal drainage instead of an external osteopolstic approach. Op Tech Otolaryngo Head Neck Surg 6: 184-192 (1995)).


As stated, the neo-ostium to the front sinus narrows to a greater or lesser extent, according to experience. To prevent this scarred stenosis it was already proposed at the start of the last century, i.e. long before the introduction of minimally invasive endoscopic surgery to insert a spacing device (stent). These spacing devices usually had the form of a small tube and were made of various materials: at the beginning rolled metal or metal braided in wires was used (Fletscher Ingals E: New operation and instruments for draining the frontal sinus. Ann Otol Rhinol Laryngol 14: 515-519 (1905), Good R H: An intranasal method for opening the frontal sinus establishing the largest possible drainage. Laryngoscope 18: 266-274 (1908)). In the last two decades silicone tubes were preferred (Stammberger H: Komplikationen entzündlicher Nasennebenhöhlenerkrankungen eischlieβlich iatrogen bedingter Komplikationen. Eur Arch Oto-Rhino-Laryngol Suppl 1993/1: 61-186).


Experience with spacing devices for stabilising the newly created frontal sinus access was not always, however, encouraging, apart from individual reports (Jacobs J B: 100 years of frontal sinus surgery. Laryngoscope 107: 1-36 (1997); Weber, R, W. Hosemann, W. Draf, R. Keerl, B. Schick, S. Schinzel: Denonasale Stirnhöhlenchirugie mit Langzeiteinlage eines Platzhalters. Laryngol. Rhinol. Otol. 76: 728-734 (1997).


Initially it remained unclear as to how long a spacing device of this type was required in the area of the operation. From animal experiments on wound healing, it became clear that a scarred narrowing of the frontal sinus access for a post-operative period of at least three months has to be assumed (Hosemann, M. E. Wigand, U. Göde, F. Länger, I. Dunker: Normal wound healing of the paranasal sinuses—clinical and experimental investigations, Eur. Arch, Otorhinolarylgol. 248: 390-394 (1991)). Accordingly, the spacing device would have to be used over eight to twelve weeks. Even with the correct duration in position a spacing device will often only delay and possibly reduce in scope the undesired scarred narrowing, without being able to prevent it completely. An additional medicinal treatment to reduce excessive wound reactions would have to take place here.


According to the present level of knowledge about wound healing processes in the nose the administration of medicinal substances such as, for example, corticosteroids, seems to be in a position to counteract, with a certain reliability, this tendency to regenerating mucous membrane for scarred stricture of the front sinus nose passage (Hosemann, M. E. Wigand, U. Göde, F. Länger, I. Dunker: Normal wound healing of the paranasal sinuses—clinical and experimental investigations. Eur. Arch. Otorhinolaryngol. 248: 390-394 (1991); Hosemann W, Göde U, Länger F, Wigan M E: Experimentelle Untersuchungen zur Wundheilung in den Nasennebenhöhlen. II. Spontaner Wundschluss und medikamentöse Effekte im standardisierten Wundmodell. HNO 39{umlaut over ( )}48-54 (1991); Hosemann W, Kühnel Th, Allert M H: Weiterbehandlung nach Nasennebenhöhleneingriffen, part 2: Theapeutische Maβnahmen, HNO aktuell 7: 291-302 (1999).


Unfortunately, conventional medicine forms such as salves or sprays do not reach into the problem region of the transition of frontal sinus and nose during routine application (Prince M E P, Lemckert R J: Analysis of the intranasal distribution of ointment. J Otolaryngol 26: 357-360 (1997); Weber R, Keerl R, Radziwill R, Schick B, Haspersen D, Dshambazov K, Mlynski G, Draf W: Videoendoscopic analysis of nasal steroid distribution. Rhinology 37: 69-73 (1999)).


Postoperative systemic administration of corticosteroids is certainly usual in rhinosurgery (Bumm P: Hals-Nasen-Ohrenkrankheiten. In: Kaiser H, Kley H K (Hrsg.) Cortizontherapie, Corticoide in Klinik und Praxis. Thieme, Stuttgart 1992, pages 390-401), but the treatment plans do not usually extend over the required duration of 8 weeks. Moreover, with longer-term systemic corticosteroid administration side effects of the treatment have to be increasingly taken into account.


The presently described problems show the need for systems which can in a controlled manner dispense the active substances such as, for example, corticosteroids over a longer period directly to the operation site.


A series of systems have been proposed for the controlled release of medicinal substances such as, for example implants of polymers loaded with a medicinal substance. U.S. Pat. No. 5,633,000 thus describes implants for the release of pain killers. The polymers used there release the active substance via diffusion. U.S. Pat. No. 5,019,372 describes that this release can be modulated by incorporation of magnetic particles and by application of alternating magnetic fields. If this formed body is designed with a correspondingly defined geometry the release of the active substances can be optimised such that they are released over the application period at a constant speed (U.S. Pat. No. 4,803,076).


The polymers used for such applications include, apart from biodegradable materials, non-biodegradable materials, i.e. those which do not decompose on contact with body fluids. Examples of such polymers are silicone, polyacrylate and ethylene vinyl acetate copolymer (U.S. Pat. No. 4,069,307). The last polymer group, in particular, was used for a series of systems for controlled release of active substances.


U.S. Pat. No. 3,393,073 thus describes a so-called reservoir system consisting of a medicinal substance reservoir which is surrounded by a polymer sheath regulating the release rate of the medicinal substance. Such systems were successfully used for the development of “intra-uterine devices” which release the active substance in the uterus (U.S. Pat. No. 3,967,618 and U.S. Pat. No. 4,016,251) and for producing therapeutic systems which release medicinal substances to the eye (U.S. Pat. No. 4,052,505).


Such systems were also described, as carrier systems with a microporous membrane controlling the discharge of the active substance, for introduction into various body cavities, such as for example, the ear, nose or the rectum (U.S. Pat. No. 3,948,254).


Those made of plastics are described in the area of “stents” for the treatment of paranasal sinuses, such as, for example in U.S. Pat. No. 5,693,065 or U.S. Pat. No. 5,336,163. U.S. Pat. No. 5,693,065 describes a stent for the nose area made of silicone rubber having a cylindrical shaft of which the leading end to be inserted into the nose is designed in the shape of the point of a spear, the base of the point connected to the shaft having a wider diameter than the shaft. The point is closed at the front and laterally has ribs with slits therebetween, the ribs expanding in the inserted state and thus ensuring the hold of the stent in the nose area.


An external diameter of 0.157 inches and an internal diameter of 0.118 inches is given as the dimensions for the shaft. The firm seat of the stent in the nose passage is only ensured, however, by the spreading of the spear-shaped point.


U.S. Pat. No. 5,336,163 relates to a stent for the nose area formed from a porous material and having a non-adhering, but slightly porous outer surface. The stent is formed from a material here which expands on contact with liquid.


U.S. Pat. No. 5,601,594 describes a stent for insertion into a nose aperture, the stent having a bent shape and being formed from a compressible material.


However, these are systems which are free of medicinal substances and the action of which only aims to keep open the accesses to the frontal sinus by physical/mechanical effects.


Despite this progress in the area of controlled release of active substances there has previously not been any indications that this technology could be usable for the post-operative care of sinus systems after minimally invasive clearing. Although so-called “stents” which prevent a tissue reconstruction are known these are described exclusively for the treatment of blood vessels and are accordingly geared to other biological needs.


U.S. Pat. No. 5,980,551 describes a stent for blood vessels, the stent having an inner support structure which may be formed from a wire and the support structure is surrounded by a biodegradable resorbable substrate. Biologically active microparticles which release active substances in a controlled manner can be embedded into this substrate.


Stents for suppressing the restenosis of coronary arteries have design features which clearly differ from the subject of the invention and therefore also make them unsuitable for application in the frontal sinus.


In many cases the “coronary stents” also require application aids. Such application aids are described in combination with a stent in U.S. Pat. No. 6,080,190 and U.S. Pat. No. 5,843,089. A serious problem of coronary stents to release active substances is the construction of the medicinal substance release system. Coronary stents generally consist of a stent body such as, for example, a wire braiding covered with medicinal substance-carrying polymers or sheathed in thin polymer films (U.S. Pat. No. 5,824,048, U.S. Pat. No. 5,700,286, U.S. Pat. No. 5,837,313, U.S. Pat. No. 5,679,400). The mechanical stability of these stents is geared to the needs of arteries and makes them unsuitable for application in the nasal sinus, as they are not mechanically stable enough.


Coronary stents are rotationally symmetrical hollow bodies and preferably have the geometry of a hollow cylinder. They can therefore not be fixed via thickenings at the cylinder end in a fenestration of the paranasal sinus. Moreover, a fenestration of the paranasal sinus is generally not uniformly round, but more or less irregular which creates additional problems with respect to anchoring. In general, coronary stents cannot have large wall thicknesses so as not to impede the blood flow.


Moreover, coronary stents differ from spacing devices for paranasal sinuses due to their function. The coronary stent is intended to expand the vessel in many cases. The front sinus spacing device, on the other hand, is inserted in a surgically applied passage which has bony (stable) walls. This passage was surgically newly formed; the coronary artery, on the other hand is left as a tube, but expanded.


A coronary stent is a permanent implant, it is completely absorbed by the body. The frontal sinus spacing device, on the other hand, is removed after a period of about 8 weeks.


The coronary stent is completely absorbed by the body. Blood flows in the interior of the coronary stent; the wall is completely colonised in the most favourable case by the body's own cells (endothelial cells). With the frontal sinus spacing device, complete absorption into the body is not desirable. Secretion from the mucous membrane surface should drain in the interior of the frontal sinus spacing device and ventilation should simultaneously be ensured. Colonisation of the interior of the spacing device with the body's own cells is neither anticipated nor desired.


On the other hand, the mucous membrane should widen at the outside of the frontal sinus spacing device. In this manner, once the spacing device has been removed, a passage lined with intact mucous membrane should remain.


A problem in the coronary stent is the formation of a clot with the risk of an occlusion which has to be suppressed by the administration of special medication. The frontal sinus spacing device does not require the administration of special medication.


It has been proposed to produce medical devices used in the body from a material loaded with active substance or to coat them therewith.


WO 96/29071 describes medical devices such as catheters or stents, on the surface of which antibacterial means are applied, the antibacterial means adhering to the surface owing to adhesive forces, without further aids being required.


It is proposed in general in WO 92/15286 to form medical devices from a polymer loaded with medicinal substance or to provide them with a coating thereof, stents also being mentioned for use in the nasal area, without more detail about the configuration of a stent of this type.


SUMMARY

It is the object of the invention to provide a spacing device suitable, in particular, for use in the paranasal sinus having not only adequate stability and a firm hold but simultaneously able to release in situ a desired active substance in a controlled manner, a controlled release of the required amount of active substance with the desired time course also being ensured over an adequately long period for the treatment.


In addition, the spacing device according to the invention allows an adequately large quantity of active substance to be received and stored, without impairment of the controlled release owing to interactions of the active substance contents.


According to the invention, this object is achieved by a spacing device as described herein.


In keeping with the above-mentioned requirements the ratio q of the external diameter ra to the internal diameter ri of the stent body is a value of 1.2 and more.


According to the invention the ratio q is selected in a range of 1.2≦q≦3.0, in particular of 1.2<q≦2.8, preferably of 1.5≦q≦2.5 and particularly preferably 1.8≦q≦2.2.


In contrast to this, for coronary stents the value q is typically in a range of less than 1.2.


It has been shown, however, that with the smaller wall thicknesses of the coronary stent in comparison to the stent according to the invention for the paranasal sinus, the controlled release of active substance as desired according to the invention cannot be achieved.


The quotient q can thus serve as the calculation basis here. For example, for a hollow cylinder the volume V can be calculated from the height h, the internal diameter ri and q:

V=π·h·ri2(q2−1)  [1]


Formula 1 makes it clear that the volume of a coronary stent (with q=1.2), with the same internal diameter ri and the same height h is a maximum of about 15% of the volume of a paranasal sinus spacing device according to the invention (with q=2). It follows from this that stents with q=1.2 or less can receive a maximum of 1/7 of the active substance dose of a paranasal sinus spacing device according to the invention.


The quotient q has serious consequences for the release periods over which active substances can be released. To estimate the release duration t as a function of the thickness of a material I and the diffusion coefficients D, in the literature the dimensionless expression:









t
=


I
2

D





[
2
]








is used (Cussler, E. L.; Diffusion: Mass Transfer in Fluid Systems, Cambridge Univ. Press, 1996). The diffusion section in a hollow cylinder can be estimated as half the difference between external diameter ra and external diameter ri. In a stent with a constant internal diameter ri the release duration is reduced to 4% when q is reduced from 2 to 1.2. For the above-mentioned reasons, for the described paranasal sinus spacing device the value q is preferably above 1.2 and in particular in a range 1.2<q≦2.8, particularly preferably 1.5≦q≦2.5 and particularly preferably the range is 1.8≦q≦2.2.


According to a further aspect, the invention relates to a spacing device for the paranasal sinus in which the layer or layers loaded with active substance are separated towards the inner cavity by a layer consisting of a material which is impermeable or at least virtually impermeable for the active substance. Active substance losses are thus avoided and the duration over which the active substance is released is simultaneously increased.


Serious differences also exist with respect to the mechanical properties. Coronary stents which are introduced via a catheter into the blood vessels have to be plastically, i.e. irreversibly deformable. Owing to an irreversible widening of the stent, they have to be fixed to the vessel wall.


The spacing device developed in the course of this invention for use in the paranasal sinus, in contrast thereto, is distinguished by elastic properties and therefore reversible deformability; the paranasal sinus spacing device can be fixed simply in the apertures to the paranasal sinus, inter alia owing to this elasticity.


It is possible with the spacing device (stent) loaded with active substance according to the invention to keep the frontal sinus accesses open not only by a physical/mechanical mechanism, but also by a pharmacological mechanism. These spacing devices are adapted to the surgically created accesses to the paranasal sinus and fulfil two functions:

    • 1. They keep physically open the newly created “fenestration” of the front sinus in the course of the minimally invasive clearing. On the one hand, this is achieved by the application of the spacing device to the surgically changed tissue and assisted by the encouragement of the secretion drainage from the sinus.
    • 2. The developed spacing devices may release active substances such as medicinal substances such as, for example corticosteroids which suppress tissue formation or overshooting wound healing and therefore keep open the surgically newly created fenestration.


In order to be able to fulfil both functions in an optimal manner, the “stent” has some design features which will be described in more detail hereinafter with the aid of the figures.


The spacing device according to the invention is a hollow body which is composed of a sheath surrounding an inner cavity and having a respective aperture at two opposing ends.


The hollow body is preferably based on a cylindrical shape wherein it can deviate from the ideal cylindrical form with an in particular uniform diameter along the shaft.


The external diameter along the cylinder shaft may thus vary, for example the external diameter in the end regions close to the apertures may be selected to be larger than in the central shaft region.


Starting from the end regions, the external diameter may continuously reduce in the direction of the central shaft region, may be reduced in the manner of an hourglass in the central region, wherein the specific shape of the cylindrical basic body can be adapted in any way as necessary.


The wall thickness of the cylinder may also be selected to be variable.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 shows a preferred configuration according to the invention of the spacing device in cylindrical form,



FIG. 2 shows a cross section through a spacing device loaded with active substance according to the invention.



FIG. 3. shows a cross-section of another preferred configuration of the spacing device according to the invention as a reservoir system with a plurality of layers,



FIG. 4 shows a further configuration of the spacing device according to the invention with perforations in the sheath,



FIG. 5 shows a configuration of the spacing device according to the invention, wherein the external diameter of the cylindrical shaft in the end regions is greater than towards the centre and furthermore the wall thickness increases towards the centre of the cylinder shaft,



FIG. 6 shows a further configuration of the spacing device according to the invention as a matrix system with a plurality of layers, and



FIG. 7 is a graph with the release curve of an active substance from a preferred layer material according to the invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The geometry of the spacing device is preferably that of a hollow cylinder as can be seen in FIG. 1, wherein a sheath 1 surrounds an inner cavity having apertures 2 at the two opposing ends of the cylinder shaft. This cylinder form encourages the secretion drainage from the sinuses owing to its tubular design.


The length of the cylinder is preferably selected here in a range of 5 to 30 mm and its external diameter in a range of 1 to 30 mm. The wall thickness is to be selected according to need as a function of the physical properties of the polymer materials used and the active substances used and the desired release profile within the above-mentioned ranges for the ratio q of external diameter to internal diameter.


The at least two inner apertures 2 typically have a diameter in a range of 0.5 to 25 mm.



FIG. 2 shows an example of a spacing device with a monolithic construction, wherein the sheath 1 is composed of a single layer and the layer material forms the matrix for the active substance.



FIG. 3 shows an example of a configuration of the spacing device according to the invention as a reservoir system, wherein the active substance is contained in a reservoir 4. In this case the active substance is not contained in a matrix material, unlike in the matrix system. The active substance may here directly form the layer forming the reservoir or the active substance may be provided in a corresponding cavity. The latter case is suitable in particular for liquid or semi-solid active substances or for liquid or semi-solid carriers containing the active substance. The active substance to be released may also be dissolved or suspended in the reservoir system.


The release-controlling material forming the cavity, for example a reservoir 4 is surrounded by an outer membrane 5 which preferably consists of a polymer material through which the active substance can diffuse.


The cavity forming the reservoir 4 is preferably separated on the inside to the inner cavity 3 by an inner wall 6 preferably consisting of a material which is impermeable or virtually impermeable to the active substance.


An inner layer (inner wall 6) which is as impermeable as possible to the active substance is suitable in principle for any active substance-carrying systems for avoiding active substance losses in the direction of the inner cavity 3.


The inner wall 6 may consist of a corresponding polymer material, but also of an inorganic material, such as a metal, etc.


The sheath 1 may have perforations 7, as shown in FIG. 4, which connect the inner cavity 3 to the outer surface of the stent. The secretion drainage can also be assisted by this measure.


The form and number of perforations 7 can be freely selected here as required.


A configuration according to the invention with a varying external diameter is shown in FIG. 5. In the embodiment shown in FIG. 5, the external diameter of the stent is selected to be greater at the end regions with the apertures 2 than in the central region and decreases continuously towards the centre.


As shown here, the wall thickness may also vary, wherein it decreases in this case towards the end regions.


The wall thickness, in other words the ratio q of external diameter to internal diameter may, as required, in particular in the end regions or else in short central sections be outside the value to be adjusted according to the invention for q, if the usability of the stent is not impaired. Thus, at least in the wound regions q should be within the above-mentioned value range according to the invention of 1.2≦q≦3.0. In the event that in individual regions of the hollow body the wall thickness has a value q outside the value range according to the invention, these regions or this range should not be more than 30% of the hollow body.


The stent according to the invention may be formed from one or more layers, wherein the layers may consist of the identical and/or different polymers. Individual regions of a layer, for example the end regions close to the apertures 2 may be manufactured from a material which is different from the material for the remaining layer regions. In other words one layer may contain at least one region which is formed from a different material than the remaining layer.


In addition, the stent according to the invention may have layers which are free of active substance in addition to layers which are loaded with active substance.


If necessary, the stent according to the invention may be surrounded by a suitable outer coating.


In contrast to coronary stents, the spacing device according to the invention does not necessarily lie homogenously and in a planar manner on the tissue. This circumstance requires a particular construction so that, for example, secretion cannot build up in the long term between the spacing device and the sinus wall. Secretion drainage can be facilitated by perforations 7 in the wall of the spacing device (see cross-section shown in FIG. 4). With respect to its form the spacing device may show an “hourglass-shaped” transition zone from the front sinus to the nasal interior (FIG. 5) and permits endoscopy of the sinus through a central aperture.


According to a further configuration, the space holder may have irregularities such as humps etc. on its outer surface. In this case, contact with the nasal wall is via these irregularities, wherein, on the one hand, the contact face can be reduced and an adequately firm hold is nevertheless ensured. The developing cavities between the outer surface of the stent and nasal wall simultaneously encourage secretion drainage.


The spacing device is moreover advantageously provided such that suction of the paranasal sinus remains possible owing to the spacing device. This is made possible owing to a relatively small length. The spacing device is therefore preferably constructed such that it can be cut to the desired length directly prior to application.


The spacing device must be “anchored” counter to gravity in the frontal sinus entry. This anchoring can be achieved by a “ballooning” of the implant, i.e. a widening of the spacing device end in the frontal sinus or fixing by means of a seam on the nasal septum. Moreover, the stent may consist of materials which favour anchoring and shape adaptation. In this context “shape memory polymers” (for example U.S. Pat. No. 5,139,832, U.S. Pat. No. 5,189,110) or swelling polymers can be used (for example DE 4 032 096).


While the former change their shape at body temperature, with swelling substances there is a volume increase of the material owing to water absorption and therefore an increase in the stent diameter after its application. The materials adapt optimally here to the defect and thus prevent slipping of the stent. Owing to their good permeability to water, swelling polymers prevent a build up of secretion at the contact face to the tissue.


An example of this is shown in FIG. 6, wherein the outer layer 9 consists of a deformable polymer and surrounds a polymer layer 8 loaded with active substance.


The spacing device in the nose, in contrast to spacing devices in vessels, is exposed to a bacteria-loaded environment (mucous membrane wounds with free contact to the outside air). Owing to corresponding shaping, scab formation and bacterial contamination is delayed. This may, for example, be achieved by an adequately large internal diameter of the spacing device encouraging secretion drainage. The materials used may moreover be modified at the surface in such a way that secretion drainage is encouraged and bacterial contamination is avoided. An example is the hydrophilising of the surface. For this purpose the interior of the hollow body can be lined with a polymer layer which is highly wettable and preferably has water contact angles <45°.


As an alternative thereto, polymers can be used, the surfaces of which have been chemically modified, such as, for example, by the chemical bonding of hydrophilic substances or by treatment with gas plasma.


To avoid any bacterial contamination the spacing device may also be loaded with bactericidally or bacteriostatically active substances.


In order to ensure the diverse functions of the stent, the design of the matrix system may above all consist of a plurality of polymer layers, as the cross-section in FIG. 6 shows by way of example. The number of layers is not limited to two as shown in the figure. Thus, a plurality of layers which fulfill different functions can be combined with one another. Individual layers may be fee of medicinal substance or be loaded with one or more medicinal substances. In loading different layers with various medicinal substances, the latter may be released from the spacing device with different kinetics. The thickness of individual polymer layers may be thin, as desired, for example in the range of a few micrometers.


The spacing device may also be already preformed prior to application or else be shaped to its final geometry by processing a precursor. Methods, such as, for example, extrusion or injection moulding are excellently suited to producing preformed spacing devices. For production from precursors polymer films may for example be rolled to form hollow bodies and fixed by a seam.


The materials from which the spacing device can be produced may be biodegradable or else non-biodegradable materials or a combination thereof.


Examples of possible biodegradable materials are polymers of lactic acid or glycolic acid and their copolymers. Further suitable examples are to be found in the literature (K. Park, W. S. W. Shalaby, H. Park, Biodegradable Hydrogels for Medicinal substance Delivery, Technomic Publishing Inc. Lancaster 1993; A. Domb, J. Kost, D. M. Wiseman, Handbook of Biodegradable Polymers, Harwood Academic Publishers, 1997).


While biodegradable materials have the advantage of not having to be removed after application, non-biodegradable materials can be better fixed in the region of use of the spacing device. Examples of such materials are silicones, polyacrylates and polymethacrylates and the copolymers thereof (Eudragit®)), poly(ethylene vinyl acetate) copolymer and other compositions as described in the polymer literature and known for medical applications.


The polymers should preferably be flexible so that they adapt to the wound area. Moreover, they should be elastic enough to remain in the fenestration and should be biocompatible, in other words have good tolerability with respect to cells and tissues. To ensure the mechanical adherence of the spacing device to the fenestration, the polymers mentioned can be combined with other materials, such as for example metals to ensure a reliable seat of the “stent” with smaller wall thicknesses. These metals can be incorporated into the wall of the cylinder.


The polymers can be processed by various industrial methods to form the spacing devices shown in FIGS. 1 and 2, thus, for example by extrusion or injection moulding or by polymerisation in suitable moulds.


The casting of polymer solutions is a simple production method (solvent casting). For this purpose the polymers are dissolved in organic solvents and the solution is poured or sprayed onto an inert surface. After evaporation of the solvent dry polymer films loaded with active substance are obtained which can be cut into any, for example rectangular forms.


While tubes are directly obtained by extrusion or injection moulding, small individually adapted tubes can be formed from rectangular polymer films directly before insertion into the patient. This may take place by repeated rolling of the polymer film or by mechanical adhesion or sticking of opposing film edges.


Owing to the type of production, the polymer properties can be controlled such that either smooth or porous surfaces are produced. This influences the rate of active substance administration and optionally the interaction between the spacing device and wound edges.


The surfaces of the spacing device towards the tissue and the secretion side may also be changed such that they optimally do justice to the requirements of their functions. The inside of the cylinder to the cavity of the spacing device may, for example be physico-chemically changed on its surface such that there can be improved wetting with secretion and therefore improved secretion drainage. Examples are the above-mentioned hydrophilising of surfaces or the covalent bonding of hydrophilic substances to the polymer surfaces.


The surface to the tissue side may be chemically changed such that the tissue compatibility is improved. This can be achieved by a coating with materials in the form of thin films or connection or application of functional groups or whole molecules which interact with the biological system. Thus the anchoring of polyethylene glycol chains to the surface leads to a reduced cell attachment and this facilitates the removal of the spacing device and increases it compatibility with the wound tissue.


The active substances can be selected according to need, application, desired property etc. They can also be used in combination. In particular, the stents according to the invention are loaded with medicinal substances.


Substances are generally used as medicinal substances which may influence the behaviour of cells and tissues, in particular they should prevent uncontrolled tissue growth. For this purpose, representatives of the group of glycocorticosteroids are suitable, such as for example cortisol, corisone, prednisone, prednisolone, 6-methylprednisolone, dexamethasone, fludrocortisone, desoxycorticoacetate. Further examples are proteins from the area of cytokines and growth factors which are also said to have some cell growth-inhibiting properties. Moreover, tyrosine kinase inhibitors, antisense-oligonucleotides and mitosis inhibitors such as mitomycin are suitable for eliminating the proliferative influence of growth factors during wound healing.


The active substances can be released from the spacing device over a long time period. Depending on the design and the material used, releases can be carried out for up to several years. Release preferably extends over a time period of 2 to 12 weeks. Principles controlling the release include, apart from the wall thickness expressed as the ratio q, primarily diffusion and polymer swelling for non-biodegradable polymers. When using biodegradable materials, i.e. those which dissolve during use, polymer erosion also plays an important part (Göpferich, Polymer Degradation and Erosion: Mechanismus and Applications, Eur. J. Pharm. Biopharm., 42 (1996) 1-11).


If the spacing device is produced from the preferred non-degradable materials, the active substance is preferably released from the reservoir or a matrix system. In both cases, the active substance is released in the process by diffusion. The release of active substance can be influence by a plurality of factors. By changing the geometry the active substance can be released over different lengths of time. Furthermore, it is possible to control the kinetics of the active substance release by the degree of loading.


The loading, in particular in the embodiment as a matrix system, is preferably in a range up to 30% by weight based on the total system. The minimum loading depends inter alia on the potency of the active substance and on the desired duration of release.


To further influence diffusion additives can be added to the polymer matrix or the polymers. Inert inorganic materials such as, for example silicone dioxide thus lead to a reduction in the rate of release. Depending on the type of polymer the rate of release can be increased by plasticiser additives. During polymer swelling, swelling can be increased by osmotic additives into the polymer and the rate of release can therefore be increased depending on the active substance properties.


To control the active substance release by erosion, the type of biodegradable polymer can be geared to the application. Thus, for example, it is known with poly(D,L-lactide-co-glycolide) that the rate of release and the rate of erosion can be controlled by the increase in the glycolide content.


The subject of the invention is a spacing device (stent) which after surgical opening of the paranasal sinus (mainly the frontal sinus) is inserted into the created fenestration to the nose. The newly developed spacing device prevents a post-operative scarred narrowing in that it combines two conventional treatment attempts for the surgically newly created frontal sinus access:

    • 1. The spacing device acts as a physical barrier which mechanically keeps the access to the frontal sinus open.
    • 2. The spacing device releases medicinal substances which control the growth of the tissue around the newly created access to the front sinus.


The material of the spacing device preferably has the mechanical properties of an elastomer such as, for example silicone, a proven material in ENT surgery for spacing devices. Owing to the preferred geometry which corresponds substantially to that of a hollow cylinder, secretion can drain from the sinuses. Moreover, the material acts as a local release system for medicinal substances such as for example corticosteroids. Owing to the shape and function the stent ensures a firm seat and simultaneously allows optimum secretion drainage. The continuous release of a defined quantity of medicinal substance is preferably ensured over a period of 8 weeks. The anticipated duration in position of the implant is preferably also 8 weeks. For production, films loaded with medicinal material, for example, can be rolled to form a cylinder and stabilised with a surgical seam. The spacing device is inserted intra operationem into the newly created frontal sinus access. If necessary, it is fixed in the operation area by its particular form, the materials used, its construction and/or by a surgical seam to prevent displacement. Apart from the use in fenestrations to the paranasal sinus, use is possible in the middle ear and the trachea.


1st Example
Production of a Dexamethasone-Loaded Polymer Film

The film has the following composition:


















Evatane 40-55 (purified with acetone)
17.955
g



Dexamethasone DAB 10/Ph. Eur.
0.045
g



Dichloromethane p.A.
98
ml



Acetone p.A.
4.5
ml









The polymer used, a poly(ethylene-vinyl acetate) copolymer, is initially freed of additives which were added during the production of Evatane 40-55. Fifty g of Evatane 400-55 are also weighted out into a 500 ml iodine measuring cylinder with a magnetic stirring rod. Two hundred fifty ml acetone p.a. are measured with a measuring cylinder and added to the polymer. The batch is stirred on the magnetic stirrer for about a week and the acetone is then decanted. The polymer is washed three times with 80 ml acetone p.a. and the washing liquid discarded. The extraction and washing procedure is repeated once with acetone and twice with ethanol using the same volumes. The polymer is then dried in a crystallising dish in a laminar airflow box for 48 h and then in a desiccator under vacuum.


17.955 g Evatane 40-55 are then weighed out into a 250 ml iodine value vessel. The dichloromethane is added thereto and stirred on the magnetic stirrer over 12 h. The dexamethasone is dissolved in acetone and added to the polymer solution. The batch is then left to stand for 10 min without stirring to remove air bubbles. The solution is poured into a planar Teflon mould with an area of 15 cm2 and dried in a laminar airflow box over 4 days.


The dried film is drawn from the Teflon mould and cut into pieces of any size. The film thickness is about 0.8 to 1 mm. The polymer films are rolled to form a hollow cylinder and preferably fixed by a seam with a biocompatible seam material at the contact points in such a way that the cylinder does not unwind owing to the elasticity of the material. The small tube formed in this way is then inserted into the fenestration to the paranasal sinus.


2nd Example
Release of Dexamethasone from the Polymer Film in Example 1

Round pieces with a diameter of 1.2 cm in diameter were cut from the film described in Example 1 and the release determined in vitro. The polymer platelets loaded with 0.25% dexamethasone were also stored in closable glass vessels in 10 ml phosphate buffer at 37° C. Samples were removed from the batch at regular intervals and replaced by fresh buffer. The dexamethasone content was determined per HPLC. FIG. 7 shows the release of dexamethasone over the time.


LIST OF REFERENCE NUMERALS




  • 1 sheath


  • 2 aperture


  • 3 inner cavity


  • 4 reservoir area


  • 5 membrane


  • 6 layer impermeable to active substance


  • 7 perforation


  • 8 polymer layer loaded with active substance


  • 9 deformable polymer layer


Claims
  • 1. A substance delivering spacer device for implantation in an opening of a paranasal sinus, said device comprising: a tubular body having a wall, a hollow passage extending therethrough and being open at either end and perforations formed in the wall through which bodily secretions may flow into the hollow passage, the wall of said tubular body comprising:an inner layer comprising a polymer that is devoid of therapeutic substance;an outer layer comprising a polymer that is devoid of therapeutic substance; anda therapeutic substance containing layer located between the inner and outer layers, said therapeutic substance containing layer being substantially solid and comprising a polymer combined with a therapeutic substance such that the therapeutic substance will elute therefrom when the device is implanted;wherein said outer layer is constructed to allow a therapeutically effective amount of the therapeutic substance to elute through the outer layer and from the device while implanted,wherein said inner layer is substantially impervious to the therapeutic substance,wherein said therapeutic substance comprises at least one steroid;said tubular body being flexible and sufficiently elastic to frictionally engage and remain in the opening following its insertion into the opening; and the device having an outer diameter ra and an inner diameter ri, wherein the ratio Q of the outer diameter ra to the inner diameter ri is greater than or equal to 1.2 but less than or equal to 3.0.
  • 2. A device according to claim 1 wherein the substance elutes from the device over a period of from 2-12 weeks following implantation of the device.
  • 3. A device according to claim 1 wherein at least a portion of the device is biodegradable.
  • 4. A device according to claim 3 wherein erosion of a biodegradable portion of the device results in release of the substance from the device.
  • 5. A device according to claim 1 wherein the device has a substantially constant outer diameter over its entire length.
  • 6. A device according to claim 1 wherein the device has regions of differing outer diameter.
  • 7. A device according to claim 6 wherein the ends of the device are larger in outer diameter than the remainder of the device.
  • 8. A device according to claim 1 wherein the polymeric material comprises poly(ethylene-vinyl acetate) copolymer.
  • 9. A device according to claim 8 wherein the polymeric material also contains one or more additives to affect the rate at which the substance is released from the substance containing layer.
  • 10. A device according to claim 8 wherein the therapeutic substance accounts for up to 30% of the total weight of the substance containing layer.
  • 11. A device according to claim 1 wherein at least the outer surface of the device is formed from a material selected from biodegradable polymers, non-biodegradable polymers, shape memory materials and formable materials.
  • 12. A device according to claim 1 wherein the inner layer, the substance containing layer and the outer layer each comprises a substantially solid polymer.
  • 13. A device according to claim 12 wherein the substance containing layer and the outer layer are formed substantially of the same polymer.
  • 14. A device according to claim 12 wherein the substance containing layer and the outer layer are formed of different polymers.
  • 15. A device according to either of claim 13 or 14 wherein the polymer or polymers is/are selected from the group consisting of: poly(alpha-hydroxy esters), polyacrylates, ethylene vinyl acetate copolymer and silicone.
  • 16. A device according to claim 1 wherein the therapeutic substance further comprises at least one additional agent selected from the group consisting of: bacteriocides, bacteriostats and mixtures thereof.
  • 17. A device according to claim 1 further comprising a coating disposed on the device to improve biocompatibility.
  • 18. A device according to claim 1 wherein said at least one steroid comprises a glucocorticoid.
  • 19. A device according to claim 1 wherein said at least one steroid comprises a steroid selected from the group consisting of: cortisol, corisone, prednisone, prednisolone, 6-methylprednisolone, dexamethasone, fludrocortisone, desoxycorticoacetate.
  • 20. A method for treating a disorder that affects a paranasal sinus, middle ear or trachea, said method comprising the steps of A) providing a substance delivering spacer device for implantation in an opening of a paranasal sinus, said device comprising: a tubular body having a side wall, a hollow passage extending therethrough and being open at either end and perforations formed in the wall through which bodily secretions may flow into the hollow passage, the wall of said tubular body comprising:an inner layer comprising a polymer that is devoid of therapeutic substance;an outer layer comprising a polymer that is devoid of therapeutic substance; anda therapeutic substance containing layer located between the inner and outer layers, said therapeutic substance containing layer being solid and comprising a polymer combined with a therapeutic substance such that the therapeutic substance will elute therefrom when the device is implanted;wherein said outer layer is constructed to allow a therapeutically effective amount of the therapeutic substance to elute through the outer layer and from the device while implanted,wherein said inner layer is substantially impervious to the therapeutic substance,wherein said therapeutic substance comprises at least one steroid;said tubular body being flexible and sufficiently elastic to frictionally engage and remain in the opening following its insertion into the opening; andthe device having an outer diameter ra and an inner diameter ri, wherein the ratio Q of the outer diameter ra to the inner diameter ri is greater than or equal to 1.2 but less than or equal to 3.0; andB) implanting the device in an opening of a paranasal sinus such that a therapeutic amount of the therapeutic substance is delivered to the opening of a paranasal sinus in which the device is implanted.
  • 21. A method according to claim 20 wherein Step B comprises implanting the device in an opening of a frontal sinus.
  • 22. A method according to claim 20 wherein Step B comprises implanting the device in an opening of a paranasal sinus that has been dilated.
  • 23. A method according to claim 20 wherein Step B comprises implanting the device in an opening of a paranasal sinus that has been surgically altered.
  • 24. A method according to claim 20 wherein the device is implanted in a surgically created fenestration.
  • 25. A method according to claim 20 wherein the device is capable of being radially expanded and wherein Step B comprises radially expanding the device at an intended site of implantation.
  • 26. A method according to claim 25 wherein the device is radially expanded by inflating a balloon positioned within the device.
  • 27. A method according to claim 20 further comprising the step of: C) removing the device.
  • 28. A method according to claim 27 wherein the device is removed approximately 2 to 12 weeks after implantation.
  • 29. A system comprising a substance delivering spacer device according to claim 1 in combination with a balloon that is positionable and inflatable within the hollow passage of the substance delivering spacer device to widen at least a portion of the substance delivering spacer device.
Priority Claims (1)
Number Date Country Kind
101 05 592 Feb 2001 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP02/01228 2/6/2002 WO 00 2/4/2004
Publishing Document Publishing Date Country Kind
WO02/062269 8/15/2002 WO A
US Referenced Citations (839)
Number Name Date Kind
446173 Hancock Feb 1891 A
504424 De Pezzer Sep 1893 A
513667 Buckingham Jan 1894 A
705346 Hamilton Jul 1902 A
798775 Forsyth Sep 1905 A
816792 Green et al. Apr 1906 A
1080934 Shackleford Dec 1913 A
1200267 Sunnergren Oct 1916 A
1650959 Pitman Nov 1927 A
1735519 Vance Nov 1929 A
1828986 Stevens Oct 1931 A
1878671 Cantor Sep 1932 A
2201749 Vandegrift May 1940 A
2525183 Robison Mar 1947 A
2493326 Trinder Jan 1950 A
2847997 Tibone Aug 1958 A
2899227 Gschwend Aug 1959 A
2906179 Bower Sep 1959 A
2995832 Alderson Aug 1961 A
3009265 Bezark Nov 1961 A
3037286 Bower Jun 1962 A
3173418 Baran Mar 1965 A
3347061 Stuemky Oct 1967 A
3376659 Asin et al. Apr 1968 A
3384970 Avalear May 1968 A
3393073 Reutenauer et al. Jul 1968 A
3435826 Fogarty Apr 1969 A
3469578 Bierman Sep 1969 A
3481043 Esch Dec 1969 A
3486539 Jacuzzi Dec 1969 A
3506005 Gilio et al. Apr 1970 A
3509638 Macleod May 1970 A
3515888 Lewis Jun 1970 A
3527220 Summers Sep 1970 A
3531868 Stevenson Oct 1970 A
3552384 Pierie et al. Jan 1971 A
3624661 Shebanow et al. Nov 1971 A
3731963 Pond May 1973 A
3792391 Ewing Feb 1974 A
3800788 White Apr 1974 A
3802096 Matern Apr 1974 A
3804081 Kinoshita Apr 1974 A
3834394 Hunter et al. Sep 1974 A
3850176 Gottschalk Nov 1974 A
3856000 Chikama Dec 1974 A
3859993 Bitner Jan 1975 A
3871365 Chikama Mar 1975 A
3894538 Richter Jul 1975 A
3903893 Scheer Sep 1975 A
3910617 Scalza et al. Oct 1975 A
3921636 Zaffaroni Nov 1975 A
3948254 Zaffaroni Apr 1976 A
3948262 Zaffaroni Apr 1976 A
3967618 Zaffaroni Jul 1976 A
3993069 Buckles et al. Nov 1976 A
3993072 Zaffaroni Nov 1976 A
3993073 Zaffaroni Nov 1976 A
4016251 Higuchi et al. Apr 1977 A
4052505 Higuchi et al. Oct 1977 A
4053975 Olbrich et al. Oct 1977 A
4069307 Higuchi et al. Jan 1978 A
4102342 Akiyama et al. Jul 1978 A
4138151 Nakao Feb 1979 A
4184497 Kolff et al. Jan 1980 A
4198766 Camin et al. Apr 1980 A
4207890 Mamajek et al. Jun 1980 A
4209919 Kirikae et al. Jul 1980 A
4213095 Falconer Jul 1980 A
4217898 Theeuwes Aug 1980 A
4249531 Heller et al. Feb 1981 A
4268115 Slemon et al. May 1981 A
4299226 Banka Nov 1981 A
4299227 Lincoff Nov 1981 A
4312353 Shahbabian Jan 1982 A
4338941 Payton Jul 1982 A
D269204 Trepp May 1983 S
4388941 Riedhammer Jun 1983 A
RE31351 Falconer Aug 1983 E
4435716 Zandbergen Mar 1984 A
4437856 Valli Mar 1984 A
4450150 Sidman May 1984 A
4459977 Pizon et al. Jul 1984 A
4464175 Altman et al. Aug 1984 A
4471779 Antoshkiw et al. Sep 1984 A
4499899 Lyons, III Feb 1985 A
4554929 Samson et al. Nov 1985 A
4564364 Zaffaroni et al. Jan 1986 A
4571239 Heyman Feb 1986 A
4571240 Samson et al. Feb 1986 A
4581017 Sahota Apr 1986 A
4585000 Hershenson Apr 1986 A
D283921 Dyak May 1986 S
4589868 Dretler May 1986 A
4596528 Lewis et al. Jun 1986 A
D284892 Glassman Jul 1986 S
4603564 Kleinhany et al. Aug 1986 A
4606346 Berg et al. Aug 1986 A
4607622 Fritch et al. Aug 1986 A
4637389 Heyden Jan 1987 A
4639244 Rizk et al. Jan 1987 A
4645495 Vaillancourt Feb 1987 A
4669469 Gifford, III Jun 1987 A
4672961 Davies Jun 1987 A
4675613 Naegeli et al. Jun 1987 A
4691948 Austin, Jr. et al. Sep 1987 A
4708434 Tsuno Nov 1987 A
4708834 Cohen et al. Nov 1987 A
4726772 Amplatz Feb 1988 A
4736970 McGourty et al. Apr 1988 A
4737141 Spits Apr 1988 A
4748869 Ohtsuka Jun 1988 A
4748969 Wardle Jun 1988 A
4748986 Morrison et al. Jun 1988 A
4755171 Tennant Jul 1988 A
4771776 Powell et al. Sep 1988 A
4793359 Sharrow Dec 1988 A
4795439 Guest Jan 1989 A
4796629 Grayzel Jan 1989 A
4803076 Ranade Feb 1989 A
4811743 Stevens Mar 1989 A
4815478 Buchbinder et al. Mar 1989 A
4819619 Augustine et al. Apr 1989 A
4846186 Box et al. Jul 1989 A
4847258 Sturm et al. Jul 1989 A
4851228 Zentner et al. Jul 1989 A
4854330 Evans, III et al. Aug 1989 A
4862874 Kellner Sep 1989 A
4867138 Kubota et al. Sep 1989 A
4883465 Brennan Nov 1989 A
4897651 DeMonte Jan 1990 A
4898577 Badger et al. Feb 1990 A
4917419 Mora, Jr. et al. Apr 1990 A
4917667 Jackson Apr 1990 A
4919112 Siegmund Apr 1990 A
4920967 Cottonaro et al. May 1990 A
4925445 Sakamoto et al. May 1990 A
4940062 Hampton et al. Jul 1990 A
4943275 Stricker Jul 1990 A
4946466 Pinchuk et al. Aug 1990 A
4961433 Christian Oct 1990 A
4966163 Kraus et al. Oct 1990 A
4984581 Stice Jan 1991 A
4994033 Shockey et al. Feb 1991 A
4998916 Hammerslag et al. Mar 1991 A
4998917 Gaiser et al. Mar 1991 A
5001825 Halpern Mar 1991 A
5002322 Fukumoto Mar 1991 A
5019075 Spears et al. May 1991 A
5019372 Folkman et al. May 1991 A
5020514 Heckele Jun 1991 A
5021043 Becker et al. Jun 1991 A
5024650 Hagiwara et al. Jun 1991 A
5024658 Kozlov et al. Jun 1991 A
5026384 Farr et al. Jun 1991 A
5030227 Rosenbluth et al. Jul 1991 A
5041089 Mueller et al. Aug 1991 A
5044678 Detweiler Sep 1991 A
5053007 Euteneuer Oct 1991 A
5055051 Duncan Oct 1991 A
5060660 Gambale et al. Oct 1991 A
5067489 Lind Nov 1991 A
5069226 Yamauchi et al. Dec 1991 A
5087244 Wolinsky et al. Feb 1992 A
5087246 Smith Feb 1992 A
5090595 Vandoninck Feb 1992 A
5090910 Narlo Feb 1992 A
5112228 Zouras May 1992 A
5116311 Lofstedt May 1992 A
5127393 McFarlin et al. Jul 1992 A
5137517 Loney et al. Aug 1992 A
5139510 Goldsmith, III et al. Aug 1992 A
5139832 Hayashi et al. Aug 1992 A
D329496 Wotton Sep 1992 S
5152747 Olivier Oct 1992 A
5156595 Adams Oct 1992 A
5163989 Campbell et al. Nov 1992 A
5167220 Brown Dec 1992 A
5168864 Shockey Dec 1992 A
5169043 Catania Dec 1992 A
5169386 Becker et al. Dec 1992 A
5171233 Amplatz et al. Dec 1992 A
5180368 Garrison Jan 1993 A
5183470 Wettermann Feb 1993 A
5189110 Ikematu et al. Feb 1993 A
5195168 Yong Mar 1993 A
5197457 Adair Mar 1993 A
5207695 Trout, III May 1993 A
5211952 Spicer et al. May 1993 A
5215105 Kizelshteyn et al. Jun 1993 A
5221260 Burns et al. Jun 1993 A
5226302 Anderson Jul 1993 A
5230348 Ishibe et al. Jul 1993 A
5236422 Eplett, Jr. Aug 1993 A
5243996 Hall Sep 1993 A
D340111 Yoshikawa Oct 1993 S
5250059 Andreas et al. Oct 1993 A
5251092 Brady et al. Oct 1993 A
5252183 Shaban et al. Oct 1993 A
5255679 Imran Oct 1993 A
5256144 Kraus et al. Oct 1993 A
5263926 Wilk Nov 1993 A
5264260 Saab Nov 1993 A
5267965 Deniega Dec 1993 A
5270086 Hamlin Dec 1993 A
5273052 Kraus et al. Dec 1993 A
5275593 Easley et al. Jan 1994 A
5286254 Shapland et al. Feb 1994 A
5290310 Makower et al. Mar 1994 A
5295694 Levin Mar 1994 A
5300085 Yock Apr 1994 A
5304123 Atala et al. Apr 1994 A
5308326 Zimmon May 1994 A
5313967 Lieber et al. May 1994 A
5314417 Stephens et al. May 1994 A
5315618 Yoshida May 1994 A
5324306 Makower et al. Jun 1994 A
5333620 Moutafis et al. Aug 1994 A
5334167 Cocanower Aug 1994 A
5336163 DeMane et al. Aug 1994 A
5341818 Abrams et al. Aug 1994 A
5342296 Persson et al. Aug 1994 A
5343865 Gardineer et al. Sep 1994 A
5345945 Hodgson et al. Sep 1994 A
5346075 Nichols et al. Sep 1994 A
5346508 Hastings Sep 1994 A
5348537 Wiesner et al. Sep 1994 A
5350396 Eliachar Sep 1994 A
5356418 Shturman Oct 1994 A
5368049 Raman et al. Nov 1994 A
5368558 Nita Nov 1994 A
5368566 Crocker Nov 1994 A
5372138 Crowley et al. Dec 1994 A
5372584 Zink et al. Dec 1994 A
D355031 Yoshikawa Jan 1995 S
5386817 Jones Feb 1995 A
5391147 Imran et al. Feb 1995 A
5391179 Mezzoli Feb 1995 A
5402799 Colon et al. Apr 1995 A
5409444 Kensey Apr 1995 A
5411475 Atala et al. May 1995 A
5411476 Abrams et al. May 1995 A
5411477 Saab May 1995 A
5415633 Lazarus May 1995 A
5425370 Vilkomerson Jun 1995 A
5439446 Barry Aug 1995 A
5441494 Ortiz Aug 1995 A
5441497 Narciso, Jr. Aug 1995 A
5443458 Eury Aug 1995 A
5450853 Hastings et al. Sep 1995 A
5451221 Cho et al. Sep 1995 A
5454817 Katz Oct 1995 A
5458572 Campbell et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5465733 Hinohara et al. Nov 1995 A
5478565 Geria Dec 1995 A
5486181 Cohen et al. Jan 1996 A
5496338 Miyagi et al. Mar 1996 A
5497783 Urick et al. Mar 1996 A
5507301 Wasicek et al. Apr 1996 A
5507725 Savage et al. Apr 1996 A
5507766 Kugo et al. Apr 1996 A
5512055 Domb et al. Apr 1996 A
5514128 Hillsman et al. May 1996 A
5519532 Broome May 1996 A
5531676 Edwards et al. Jul 1996 A
5533985 Wong Jul 1996 A
5538008 Crowe Jul 1996 A
5546964 Stangerup Aug 1996 A
5549542 Kovalcheck Aug 1996 A
5558073 Pomeranz et al. Sep 1996 A
5558652 Henke Sep 1996 A
5562619 Mirarchi et al. Oct 1996 A
5568809 Ben-Haim Oct 1996 A
5571086 Kaplan et al. Nov 1996 A
5578007 Imran Nov 1996 A
5578048 Pasqualucci et al. Nov 1996 A
5584827 Korteweg et al. Dec 1996 A
5591194 Berthiaume Jan 1997 A
5599284 Shea Feb 1997 A
5599304 Shaari Feb 1997 A
5599576 Opolski Feb 1997 A
5601087 Gunderson et al. Feb 1997 A
5601594 Best Feb 1997 A
5607386 Flam Mar 1997 A
5617870 Hastings et al. Apr 1997 A
5626374 Kim May 1997 A
5633000 Grossman et al. May 1997 A
5634908 Loomas Jun 1997 A
5638819 Manwaring et al. Jun 1997 A
5643251 Hillsman et al. Jul 1997 A
5645789 Roucher, Jr. Jul 1997 A
5647361 Damadian Jul 1997 A
5656030 Hunjan et al. Aug 1997 A
5662674 Debbas Sep 1997 A
5664567 Linder Sep 1997 A
5664580 Erickson et al. Sep 1997 A
5665052 Bullard Sep 1997 A
5669388 Vilkomerson Sep 1997 A
5673707 Chandrasekaran Oct 1997 A
5676673 Ferre et al. Oct 1997 A
5679400 Tuch Oct 1997 A
5682199 Lankford Oct 1997 A
5685838 Peters et al. Nov 1997 A
5685847 Barry Nov 1997 A
5690373 Luker Nov 1997 A
5693065 Rains, III Dec 1997 A
5694945 Ben-Haim Dec 1997 A
5697159 Linden Dec 1997 A
5697400 Pfeifer Dec 1997 A
5700286 Tartaglia et al. Dec 1997 A
5707389 Louw et al. Jan 1998 A
5708175 Koyanagi et al. Jan 1998 A
5711315 Jerusalmy Jan 1998 A
5713839 Shea Feb 1998 A
5713946 Ben-Haim Feb 1998 A
5718702 Edwards Feb 1998 A
5720300 Fagan et al. Feb 1998 A
5722401 Pietroski et al. Mar 1998 A
5722984 Fischell et al. Mar 1998 A
5729129 Acker Mar 1998 A
5730128 Pomeranz et al. Mar 1998 A
5733248 Adams et al. Mar 1998 A
5741333 Frid Apr 1998 A
5752513 Acker et al. May 1998 A
5762604 Kieturakis Jun 1998 A
5766158 Opolski Jun 1998 A
5775327 Randolph et al. Jul 1998 A
5776158 Chou Jul 1998 A
5779699 Lipson Jul 1998 A
5789391 Jacobus et al. Aug 1998 A
5792100 Shantha Aug 1998 A
5797878 Bleam Aug 1998 A
5803089 Ferre et al. Sep 1998 A
5814016 Valley et al. Sep 1998 A
5819723 Joseph Oct 1998 A
5820568 Willis Oct 1998 A
5824044 Quiachon et al. Oct 1998 A
5824048 Tuch Oct 1998 A
5824173 Fontirroche et al. Oct 1998 A
5827224 Shippert Oct 1998 A
5830188 Abouleish Nov 1998 A
5833608 Acker Nov 1998 A
5833645 Lieber et al. Nov 1998 A
5833650 Imran Nov 1998 A
5833682 Amplatz et al. Nov 1998 A
5836638 Slocum Nov 1998 A
5836935 Ashton et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5843089 Sahatjian et al. Dec 1998 A
5843113 High Dec 1998 A
5846259 Berthiaume Dec 1998 A
5857998 Barry Jan 1999 A
5862693 Myers et al. Jan 1999 A
5865767 Frechette et al. Feb 1999 A
5872879 Hamm Feb 1999 A
5873835 Hastings Feb 1999 A
5887467 Butterwreck et al. Mar 1999 A
5902247 Coe et al. May 1999 A
5902333 Roberts et al. May 1999 A
5904701 Daneshvar May 1999 A
5908407 Frazee et al. Jun 1999 A
5916193 Stevens et al. Jun 1999 A
5928192 Maahs Jul 1999 A
5931811 Haissaguerre et al. Aug 1999 A
5931818 Werp et al. Aug 1999 A
5932035 Koger et al. Aug 1999 A
5935061 Acker et al. Aug 1999 A
5941816 Barthel et al. Aug 1999 A
D413629 Wolff et al. Sep 1999 S
5947988 Smith Sep 1999 A
5949929 Hamm Sep 1999 A
5954693 Barry Sep 1999 A
5954694 Sunseri Sep 1999 A
5957842 Littmann et al. Sep 1999 A
5968085 Morris et al. Oct 1999 A
5971975 Mills et al. Oct 1999 A
5979290 Simeone Nov 1999 A
5980503 Chin Nov 1999 A
5980551 Summers et al. Nov 1999 A
5984945 Sirhan Nov 1999 A
5985307 Hanson et al. Nov 1999 A
5997562 Zadno-Azizi Dec 1999 A
6006126 Cosman Dec 1999 A
6006130 Higo et al. Dec 1999 A
6007516 Burbank et al. Dec 1999 A
6007991 Sivaraman et al. Dec 1999 A
6010511 Murphy Jan 2000 A
6013019 Fischell et al. Jan 2000 A
6015414 Werp et al. Jan 2000 A
6016429 Khafizov et al. Jan 2000 A
6016439 Acker Jan 2000 A
6019736 Avellanet et al. Feb 2000 A
6019777 Mackenzie Feb 2000 A
6021340 Randolph et al. Feb 2000 A
6022313 Ginn et al. Feb 2000 A
6027461 Walker et al. Feb 2000 A
6027478 Katz Feb 2000 A
6039699 Viera Mar 2000 A
6042561 Ash et al. Mar 2000 A
6048299 Hoffmann Apr 2000 A
6048358 Barak Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6056702 Lorenzo May 2000 A
6059752 Segal May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6079755 Chang Jun 2000 A
6080190 Schwartz Jun 2000 A
6083148 Williams Jul 2000 A
6083188 Becker et al. Jul 2000 A
6086585 Hovda et al. Jul 2000 A
6092846 Fuss et al. Jul 2000 A
6093150 Chandler et al. Jul 2000 A
6093195 Ouchi Jul 2000 A
6109268 Thapliyal et al. Aug 2000 A
6113567 Becker Sep 2000 A
6117105 Bresnaham et al. Sep 2000 A
6122541 Cosman et al. Sep 2000 A
6123697 Shippert Sep 2000 A
6136006 Johnson et al. Oct 2000 A
6139510 Palermo Oct 2000 A
6142957 Diamond et al. Nov 2000 A
6148823 Hastings Nov 2000 A
6149213 Sokurenko et al. Nov 2000 A
6159170 Borodulin et al. Dec 2000 A
6171298 Matsuura et al. Jan 2001 B1
6171303 Ben-Haim Jan 2001 B1
6174280 Oneda et al. Jan 2001 B1
6176829 Vilkomerson Jan 2001 B1
6179788 Sullivan Jan 2001 B1
6179811 Fugoso et al. Jan 2001 B1
6183461 Matsuura et al. Feb 2001 B1
6183464 Sharp et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6190381 Olsen et al. Feb 2001 B1
6193650 Ryan, Jr. Feb 2001 B1
6195225 Komatsu et al. Feb 2001 B1
6200257 Winkler Mar 2001 B1
6206870 Kanner Mar 2001 B1
6213975 Laksin Apr 2001 B1
6221042 Adams Apr 2001 B1
6231543 Hegde et al. May 2001 B1
6234958 Snoke et al. May 2001 B1
6238364 Becker May 2001 B1
6238391 Olsen et al. May 2001 B1
6241519 Sedelemayer Jun 2001 B1
6249180 Maalej et al. Jun 2001 B1
6254550 McNamara et al. Jul 2001 B1
6268574 Edens Jul 2001 B1
6293957 Peters et al. Sep 2001 B1
6302875 Makower et al. Oct 2001 B1
6306105 Rooney et al. Oct 2001 B1
6306124 Jones et al. Oct 2001 B1
D450382 Nestenborg Nov 2001 S
6322495 Snow et al. Nov 2001 B1
6328564 Thurow Dec 2001 B1
6332089 Acker et al. Dec 2001 B1
6332891 Himes Dec 2001 B1
6340360 Lyles et al. Jan 2002 B1
6348041 Klint Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6375629 Muni et al. Apr 2002 B1
6383146 Klint May 2002 B1
6386197 Miller May 2002 B1
6389313 Marchitto et al. May 2002 B1
6390993 Cornish et al. May 2002 B1
6394093 Lethi May 2002 B1
6398758 Jacobsen et al. Jun 2002 B1
6409863 Williams et al. Jun 2002 B1
6423012 Kato et al. Jul 2002 B1
6425877 Edwards Jul 2002 B1
6432986 Levin Aug 2002 B2
6440061 Wenner et al. Aug 2002 B1
6443947 Marko et al. Sep 2002 B1
6445939 Swanson et al. Sep 2002 B1
6450975 Brennan et al. Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6464650 Jafari et al. Oct 2002 B2
6468202 Irion et al. Oct 2002 B1
6468297 Williams et al. Oct 2002 B1
6485475 Chelly Nov 2002 B1
6491940 Levin Dec 2002 B1
6494894 Mirarchi Dec 2002 B2
6500130 Kinsella et al. Dec 2002 B2
6500189 Lang et al. Dec 2002 B1
6503087 Eggert et al. Jan 2003 B1
6503185 Waksman et al. Jan 2003 B1
6511418 Shahidi et al. Jan 2003 B2
6514249 Maguire et al. Feb 2003 B1
6517478 Khadem Feb 2003 B2
6524299 Tran et al. Feb 2003 B1
6526302 Hassett Feb 2003 B2
6527753 Sekine et al. Mar 2003 B2
6529756 Phan et al. Mar 2003 B1
6533754 Hisamatsu et al. Mar 2003 B1
6536437 Dragisic Mar 2003 B1
6537294 Boyle et al. Mar 2003 B1
6543452 Lavigne Apr 2003 B1
6544230 Flaherty et al. Apr 2003 B1
6549800 Atalar et al. Apr 2003 B1
6551239 Renner et al. Apr 2003 B2
6569146 Werner et al. May 2003 B1
6569147 Evans et al. May 2003 B1
6571131 Nguyen May 2003 B1
6572538 Takase Jun 2003 B2
6572590 Stevens et al. Jun 2003 B1
6579285 Sinofsky Jun 2003 B2
6585639 Kotmel et al. Jul 2003 B1
6585717 Wittenberger et al. Jul 2003 B1
6585794 Shimoda et al. Jul 2003 B2
6596009 Jelic Jul 2003 B1
6607546 Murken Aug 2003 B1
6613066 Fukaya et al. Sep 2003 B1
6616601 Hayakawa Sep 2003 B2
6616659 de la Torre et al. Sep 2003 B1
6616678 Nishtala et al. Sep 2003 B2
6616913 Mautone Sep 2003 B1
6619085 Hsieh Sep 2003 B1
6634684 Spiessl Oct 2003 B2
6638233 Corvi et al. Oct 2003 B2
6638268 Niazi Oct 2003 B2
6638291 Ferrera et al. Oct 2003 B1
6652472 Jafari et al. Nov 2003 B2
6652480 Imran et al. Nov 2003 B1
6652575 Wang Nov 2003 B2
6663589 Halevy Dec 2003 B1
6669689 Lehmann et al. Dec 2003 B2
6669711 Noda Dec 2003 B1
6672773 Glenn et al. Jan 2004 B1
6673025 Richardson et al. Jan 2004 B1
6685648 Flaherty et al. Feb 2004 B2
6689096 Loubens et al. Feb 2004 B1
6689146 Himes Feb 2004 B1
6702735 Kelly Mar 2004 B2
6712757 Becker et al. Mar 2004 B2
6714809 Lee et al. Mar 2004 B2
6716216 Boucher et al. Apr 2004 B1
6716813 Lim et al. Apr 2004 B2
6719749 Schweikert et al. Apr 2004 B1
6755812 Peterson et al. Jun 2004 B2
6776772 Vrijer et al. Aug 2004 B1
6780168 Jellie Aug 2004 B2
6783522 Fischell Aug 2004 B2
6783536 Vilsmeier et al. Aug 2004 B2
6786864 Matsuura et al. Sep 2004 B2
6796960 Cioanta et al. Sep 2004 B2
6817976 Rovengo Nov 2004 B2
6832715 Eungard et al. Dec 2004 B2
D501677 Becker Feb 2005 S
6851290 Meier et al. Feb 2005 B1
6860264 Christopher Mar 2005 B2
6860849 Matsushita et al. Mar 2005 B2
6878106 Herrmann Apr 2005 B1
6890329 Carroll et al. May 2005 B2
6899672 Chin et al. May 2005 B2
6902556 Grimes et al. Jun 2005 B2
6927478 Paek Aug 2005 B2
6939361 Kleshinski Sep 2005 B1
6955657 Webler Oct 2005 B1
6966906 Brown Nov 2005 B2
6979290 Mourlas et al. Dec 2005 B2
6991597 Gellman et al. Jan 2006 B2
6997931 Sauer et al. Feb 2006 B2
6997941 Sharkey et al. Feb 2006 B2
7011654 Dubrul et al. Mar 2006 B2
7022105 Edwards Apr 2006 B1
7043961 Pandey May 2006 B2
7052474 Castell et al. May 2006 B2
7056284 Martone et al. Jun 2006 B2
7056303 Dennis et al. Jun 2006 B2
7074197 Reynolds et al. Jul 2006 B2
7074426 Kochinke Jul 2006 B2
7097612 Bertolero et al. Aug 2006 B2
7108706 Hogle Sep 2006 B2
7128718 Hojeibane et al. Oct 2006 B2
7131969 Hovda et al. Nov 2006 B1
7140480 Drussel et al. Nov 2006 B2
D534216 Makower et al. Dec 2006 S
7160255 Saadat Jan 2007 B2
7169140 Kume Jan 2007 B1
7169163 Becker Jan 2007 B2
7172562 McKinley Feb 2007 B2
7174774 Pawar et al. Feb 2007 B2
7182735 Shireman et al. Feb 2007 B2
7184827 Edwards Feb 2007 B1
7233820 Gilboa Jun 2007 B2
7235099 Duncavage et al. Jun 2007 B1
7237313 Skujins et al. Jul 2007 B2
7252677 Burwell et al. Aug 2007 B2
7282057 Surti et al. Oct 2007 B2
7294345 Haapakumpu et al. Nov 2007 B2
7294365 Hayakawa et al. Nov 2007 B2
7316168 van der Knokke et al. Jan 2008 B2
7318831 Alvarez et al. Jan 2008 B2
7322934 Miyake et al. Jan 2008 B2
7326235 Edwards Feb 2008 B2
7338467 Lutter Mar 2008 B2
7361168 Makower et al. Apr 2008 B2
7366562 Dukesherer Apr 2008 B2
7371210 Brock et al. May 2008 B2
7381205 Thommen Jun 2008 B2
7410480 Muni et al. Aug 2008 B2
7419497 Muni et al. Sep 2008 B2
7442191 Hovda et al. Oct 2008 B2
7452351 Miller et al. Nov 2008 B2
7454244 Kassab et al. Nov 2008 B2
7462175 Chang et al. Dec 2008 B2
D586465 Faulkner et al. Feb 2009 S
D586916 Faulkner et al. Feb 2009 S
7488313 Segal et al. Feb 2009 B2
7493156 Manning et al. Feb 2009 B2
7500971 Chang et al. Mar 2009 B2
D590502 Geisser et al. Apr 2009 S
7520876 Ressemann et al. Apr 2009 B2
7532920 Ainsworth et al. May 2009 B1
7559925 Goldfarb et al. Jul 2009 B2
7625335 Deichmann et al. Dec 2009 B2
7641668 Perry et al. Jan 2010 B2
7645272 Chang et al. Jan 2010 B2
7648367 Makower et al. Jan 2010 B1
7654997 Makower et al. Feb 2010 B2
7717933 Becker May 2010 B2
7720521 Chang et al. May 2010 B2
7736301 Webler et al. Jun 2010 B1
7740642 Becker Jun 2010 B2
7753929 Becker Jul 2010 B2
7799048 Hudson et al. Sep 2010 B2
7803150 Chang et al. Sep 2010 B2
7837672 Intoccia Nov 2010 B2
D630321 Hamilton, Jr. Jan 2011 S
D632791 Murner Feb 2011 S
7988705 Galdonik et al. Aug 2011 B2
8123722 Chang et al. Feb 2012 B2
8197552 Mandpe Jun 2012 B2
20010004644 Levin Jun 2001 A1
20010016684 Shahidi Aug 2001 A1
20010023332 Hahnen Sep 2001 A1
20010027307 Dubrul et al. Oct 2001 A1
20010029317 Hayakawa Oct 2001 A1
20010034530 Malackowski et al. Oct 2001 A1
20010051761 Khadem Dec 2001 A1
20010051802 Woloszko et al. Dec 2001 A1
20020002349 Flaherty et al. Jan 2002 A1
20020006961 Katz et al. Jan 2002 A1
20020010384 Shahidi et al. Jan 2002 A1
20020010426 Clayman et al. Jan 2002 A1
20020016564 Courtney et al. Feb 2002 A1
20020026155 Mangosong Feb 2002 A1
20020029030 Lurie et al. Mar 2002 A1
20020031941 Cote et al. Mar 2002 A1
20020038130 Adams Mar 2002 A1
20020055746 Burke et al. May 2002 A1
20020062133 Gilson et al. May 2002 A1
20020077852 Ford et al. Jun 2002 A1
20020082558 Samson et al. Jun 2002 A1
20020082583 Lerner Jun 2002 A1
20020090388 Humes et al. Jul 2002 A1
20020103459 Sparks et al. Aug 2002 A1
20020107475 Maginot Aug 2002 A1
20020116011 Chee Chung et al. Aug 2002 A1
20020116043 Garibaldi et al. Aug 2002 A1
20020165521 Cioanta et al. Nov 2002 A1
20030013985 Saadat Jan 2003 A1
20030014008 Jacques Jan 2003 A1
20030014036 Varner et al. Jan 2003 A1
20030017111 Rabito Jan 2003 A1
20030018291 Hill et al. Jan 2003 A1
20030032942 Theeuwes et al. Feb 2003 A1
20030040697 Pass et al. Feb 2003 A1
20030069521 Reynolds et al. Apr 2003 A1
20030069549 MacMahon et al. Apr 2003 A1
20030073955 Otawara Apr 2003 A1
20030073972 Rosenman et al. Apr 2003 A1
20030083608 Evans et al. May 2003 A1
20030083613 Schaer May 2003 A1
20030100886 Segal et al. May 2003 A1
20030109810 Brennan et al. Jun 2003 A1
20030114732 Webler et al. Jun 2003 A1
20030120339 Banik et al. Jun 2003 A1
20030130598 Manning et al. Jul 2003 A1
20030163154 Miyata et al. Aug 2003 A1
20030164952 Deichmann et al. Sep 2003 A1
20030171650 Tartaglia et al. Sep 2003 A1
20030181827 Hojeibane et al. Sep 2003 A1
20030185872 Kochinke Oct 2003 A1
20030208194 Hovda et al. Nov 2003 A1
20030209096 Pandey et al. Nov 2003 A1
20030212446 Kaplan et al. Nov 2003 A1
20030225329 Rossner et al. Dec 2003 A1
20040015150 Zadno-Azizi Jan 2004 A1
20040018980 Gurney et al. Jan 2004 A1
20040034311 Mihalcik Feb 2004 A1
20040043052 Hunter et al. Mar 2004 A1
20040058992 Marinello et al. Mar 2004 A1
20040064083 Becker Apr 2004 A1
20040064105 Capes et al. Apr 2004 A1
20040064150 Becker Apr 2004 A1
20040097788 Mourlas et al. May 2004 A1
20040098017 Saab et al. May 2004 A1
20040116958 Gopferich et al. Jun 2004 A1
20040122471 Toby et al. Jun 2004 A1
20040127820 Clayman et al. Jul 2004 A1
20040158229 Quinn Aug 2004 A1
20040167440 Sharrow Aug 2004 A1
20040167442 Shireman et al. Aug 2004 A1
20040167443 Shireman et al. Aug 2004 A1
20040181175 Clayman et al. Sep 2004 A1
20040193073 DeMello et al. Sep 2004 A1
20040193139 Armstrong et al. Sep 2004 A1
20040230095 Stefanchik et al. Nov 2004 A1
20040230131 Kassab et al. Nov 2004 A1
20040230156 Schreck et al. Nov 2004 A1
20040236231 Knighton et al. Nov 2004 A1
20040249243 Kleiner Dec 2004 A1
20040249267 Gilboa Dec 2004 A1
20040254625 Stephens et al. Dec 2004 A1
20040267347 Cervantes Dec 2004 A1
20050027249 Reifart et al. Feb 2005 A1
20050043706 Eaton et al. Feb 2005 A1
20050049486 Urquhart et al. Mar 2005 A1
20050055077 Marco et al. Mar 2005 A1
20050059931 Garrison et al. Mar 2005 A1
20050089670 Large et al. Apr 2005 A1
20050107720 Burmeister et al. May 2005 A1
20050107738 Slater et al. May 2005 A1
20050113686 Peckham May 2005 A1
20050113687 Herweck et al. May 2005 A1
20050113850 Tagge May 2005 A1
20050119590 Burmeister et al. Jun 2005 A1
20050124856 Fujikura et al. Jun 2005 A1
20050131316 Flagle et al. Jun 2005 A1
20050143687 Rosenblatt et al. Jun 2005 A1
20050182319 Glossop Aug 2005 A1
20050228260 Burwell et al. Oct 2005 A1
20050228412 Surti Oct 2005 A1
20050234507 Geske et al. Oct 2005 A1
20050240147 Makower et al. Oct 2005 A1
20050244472 Hughes et al. Nov 2005 A1
20050245906 Makower et al. Nov 2005 A1
20050273132 Shluzas et al. Dec 2005 A1
20050283221 Mann et al. Dec 2005 A1
20050288549 Mathis Dec 2005 A1
20050288759 Jones et al. Dec 2005 A1
20060004286 Chang et al. Jan 2006 A1
20060004323 Chang et al. Jan 2006 A1
20060063973 Makower et al. Mar 2006 A1
20060067982 Haapakumpu et al. Mar 2006 A1
20060074318 Ahmed et al. Apr 2006 A1
20060085027 Santin et al. Apr 2006 A1
20060095066 Chang et al. May 2006 A1
20060106361 Muni et al. May 2006 A1
20060107957 Djupesland May 2006 A1
20060116749 Willink et al. Jun 2006 A1
20060149310 Becker Jul 2006 A1
20060161255 Zarowski et al. Jul 2006 A1
20060173291 Glossop Aug 2006 A1
20060173382 Schreiner Aug 2006 A1
20060190022 Beyar et al. Aug 2006 A1
20060210605 Chang et al. Sep 2006 A1
20060211752 Kohn et al. Sep 2006 A1
20060271024 Gertner et al. Nov 2006 A1
20070005094 Eaton et al. Jan 2007 A1
20070020196 Pipkin et al. Jan 2007 A1
20070049929 Catanese, III et al. Mar 2007 A1
20070073269 Becker Mar 2007 A1
20070112358 Abbott May 2007 A1
20070129751 Muni et al. Jun 2007 A1
20070135789 Chang et al. Jun 2007 A1
20070167682 Goldfarb et al. Jul 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208252 Makower Sep 2007 A1
20070208301 Evard et al. Sep 2007 A1
20070233036 Madpe Oct 2007 A1
20070250105 Ressemann et al. Oct 2007 A1
20070269385 Yun et al. Nov 2007 A1
20070293727 Goldfarb et al. Dec 2007 A1
20070293946 Gonzales et al. Dec 2007 A1
20080015540 Muni et al. Jan 2008 A1
20080015544 Keith et al. Jan 2008 A1
20080033519 Burwell et al. Feb 2008 A1
20080051804 Cottler et al. Feb 2008 A1
20080082045 Goldfarb et al. Apr 2008 A1
20080097154 Makower et al. Apr 2008 A1
20080097239 Chang et al. Apr 2008 A1
20080097295 Makower et al. Apr 2008 A1
20080097400 Chang et al. Apr 2008 A1
20080097514 Chang et al. Apr 2008 A1
20080097515 Chang et al. Apr 2008 A1
20080097516 Chang et al. Apr 2008 A1
20080103361 Makower et al. May 2008 A1
20080103521 Makower et al. May 2008 A1
20080119693 Makower et al. May 2008 A1
20080125046 Deng et al. May 2008 A1
20080125626 Chang et al. May 2008 A1
20080154250 Makower et al. Jun 2008 A1
20080154345 Taylor Jun 2008 A1
20080187098 Gertner et al. Aug 2008 A1
20080188870 Andre et al. Aug 2008 A1
20080195041 Goldfarb et al. Aug 2008 A1
20080208242 Becker Aug 2008 A1
20080208243 Becker Aug 2008 A1
20080215082 Becker Sep 2008 A1
20080215083 Becker Sep 2008 A1
20080228085 Jenkins et al. Sep 2008 A1
20080234720 Chang et al. Sep 2008 A1
20080243140 Gopferich Oct 2008 A1
20080262508 Clifford et al. Oct 2008 A1
20080262509 Clifford et al. Oct 2008 A1
20080275483 Makower et al. Nov 2008 A1
20080281156 Makower et al. Nov 2008 A1
20080287908 Muni et al. Nov 2008 A1
20080319424 Muni et al. Dec 2008 A1
20090017090 Arensdorf et al. Jan 2009 A1
20090028923 Muni et al. Jan 2009 A1
20090030274 Goldfarb et al. Jan 2009 A1
20090047326 Eaton et al. Feb 2009 A1
20090088677 Cohen Apr 2009 A1
20090088728 Dollar et al. Apr 2009 A1
20090093823 Chang et al. Apr 2009 A1
20090156980 Eaton et al. Jun 2009 A1
20090163890 Clifford et al. Jun 2009 A1
20090187089 Say et al. Jul 2009 A1
20090187098 Makower et al. Jul 2009 A1
20090192492 Eaton et al. Jul 2009 A1
20090198216 Muni et al. Aug 2009 A1
20090227945 Eaton et al. Sep 2009 A1
20090240112 Goldfarb et al. Sep 2009 A1
20090240237 Goldfarb et al. Sep 2009 A1
20090312745 Goldfarb et al. Dec 2009 A1
20100087811 Herrin et al. Apr 2010 A1
20100114066 Makower et al. May 2010 A1
20100121308 Muni et al. May 2010 A1
20100174308 Chang et al. Jul 2010 A1
20100174366 Avior Jul 2010 A1
20100198191 Clifford et al. Aug 2010 A1
20100198302 Shalev Aug 2010 A1
20100274188 Chang et al. Oct 2010 A1
20100290244 Nath Nov 2010 A1
20110166190 Anderson et al. Jul 2011 A1
Foreign Referenced Citations (101)
Number Date Country
668188 Dec 1988 CH
2151720 Jan 1994 CN
2352818 Dec 1999 CN
03202878 Aug 1983 DE
4032096 Apr 1992 DE
04032096 Apr 1992 DE
04406077 Sep 1994 DE
08810044 Nov 1998 DE
29923582 Dec 2000 DE
10104663 Aug 2002 DE
10105592 Aug 2002 DE
0129634 Jan 1985 EP
0257605 Mar 1988 EP
0355996 Feb 1990 EP
0418391 Mar 1991 EP
0427852 May 1991 EP
0 585 757 Mar 1994 EP
0623582 Nov 1994 EP
0624349 Nov 1994 EP
0744400 Nov 1996 EP
0585757 Jun 1997 EP
0893426 Jan 1999 EP
1042998 Oct 2000 EP
1166710 Jan 2002 EP
1413258 Apr 2004 EP
1944053 Jul 2008 EP
2859377 Mar 2005 FR
2916144 Nov 2008 FR
2125874 Mar 1984 GB
2305174 Apr 1997 GB
53-067935 Jun 1978 JP
10-24098 Jan 1989 JP
3-503011 Jul 1991 JP
3-504935 Oct 1991 JP
4-221313 Aug 1992 JP
5-211985 Aug 1993 JP
6-277296 Oct 1994 JP
7-327916 Dec 1995 JP
8-317989 Dec 1996 JP
11-507251 Jun 1999 JP
2000-501634 Feb 2000 JP
2001-501846 Feb 2001 JP
2001-095815 Apr 2001 JP
2001-526077 Dec 2001 JP
2002-028166 Jan 2002 JP
2002-508214 Mar 2002 JP
2002-537908 Nov 2002 JP
2002-538850 Nov 2002 JP
2003-062080 Mar 2003 JP
2003-521327 Jul 2003 JP
2004-357728 Dec 2004 JP
2005-532869 Nov 2005 JP
2213530 Oct 2003 RU
1662571 Jul 1991 SU
WO 9011053 Oct 1990 WO
WO 9014865 Dec 1990 WO
WO 9117787 Nov 1991 WO
WO 9215286 Sep 1992 WO
WO 9215286 Sep 1992 WO
WO 9222350 Dec 1992 WO
WO 9412095 Jun 1994 WO
WO 9629071 Sep 1996 WO
WO 9724161 Jun 1997 WO
WO 9924106 May 1999 WO
WO 9930655 Jun 1999 WO
WO 9932041 Jul 1999 WO
WO 0009192 Feb 2000 WO
WO 0023009 Apr 2000 WO
WO 0051672 Sep 2000 WO
WO 0053252 Sep 2000 WO
WO 0145572 Jun 2001 WO
WO 0154558 Aug 2001 WO
WO 0156481 Aug 2001 WO
WO 0170325 Sep 2001 WO
WO 0174266 Oct 2001 WO
WO 0197895 Dec 2001 WO
WO 02062269 Aug 2002 WO
WO 03049603 Jun 2003 WO
WO 03063703 Aug 2003 WO
WO 03105657 Dec 2003 WO
WO 2004006788 Jan 2004 WO
WO 2004018980 Mar 2004 WO
WO 2004026391 Apr 2004 WO
WO 2004082525 Sep 2004 WO
WO 2004082525 Sep 2004 WO
WO 2005018730 Mar 2005 WO
WO 2005077450 Aug 2005 WO
WO 2005089670 Sep 2005 WO
WO 2005117755 Dec 2005 WO
WO 2006034008 Mar 2006 WO
WO 2006078884 Jul 2006 WO
WO 2006107957 Oct 2006 WO
WO 2006116597 Nov 2006 WO
WO 2006118737 Nov 2006 WO
WO 2006135853 Dec 2006 WO
WO 2007111636 Oct 2007 WO
WO 2007124260 Nov 2007 WO
WO 2008036149 Mar 2008 WO
WO 2008045242 Apr 2008 WO
WO 2008051918 May 2008 WO
WO 2008134382 Nov 2008 WO
Non-Patent Literature Citations (271)
Entry
Argon Medical. Maxxim Medical. Ad for Sniper EliteTM Hydrophilic Ni—Ti Alloy Guidewire (2001).
Aust, R., et al ‘The Functional Size of the Human Maxillary Ostium in Vivo’ Acta. Otolaryn. (1978) vol. 78 pp. 432-435.
Baim, D.S., MD Grossman's Cardiac Catheterization, Angiography, and Intervention (2000) Lippincott Williams & Wilkins pp. 76, 84 & 214.
Barrett, S. ‘Be Wary of Neurocranial Restructuring (NCR)’ Chirobase (available at: http://www.chirobase.org/06DD/ncr.html) (Jul. 2003.).
Bartal, N. ‘An Improved Stent for Use in the Surgical Management of Congenital Posterior Choanal Atresia’ J. Laryngol. Otol. (1988) vol. 102 pp. 146-147.
Becker, A.E. ‘Restenosis After Angioplasty’ The Lancet (1988) vol. 331, No. 8584 p. 532.
Benninger et al. Adult Chronic Rhinosinusitis: Definitions, Diagnosis, Epidemiology, and Pathophysiology' Arch Otolarygol Head and Neck Surg. (Sep. 2003) vol. 129 pp. S1-S32.
Bent et al. ‘The Frontal Cell as a Cause of Frontal Sinus Obstruction’ American Journal of Rhinology. (1994) vol. 8, No. 4 pp. 185.
Binner et al. ‘Fibre-Optic Transillumination of the Sinuses: A Comparison of the Value of Radiography and Transillumination in Antral Disease’ Clinical Otolaryngology. (1978) vol. 3 pp. 1-11.
Brown, C.L. et al ‘Safety and Feasibility of Balloon Catheter Dilation of Paranasal Sinus Ostia: A Preliminary Investigation’ Annals of Otology, Rhinology & Laryngology (2006) vol. 115, No. 4 pp. 293-299.
Bumm, P., H. Kaiser et al ‘Cortizontherapie, Corticoide in Klinik and Praxis’ Thieme, Stuggart (1992) pp. 390-401 [Summary of textbook].
Casiano et al. ‘Endoscopic Lothrop Procedure: the University of Miami Experience’ American Journal of Rhinology (1998) vol. 12, No. 5 pp. 335-339.
Casserly, I.P. et al Chapter 7. ‘Guides and Wires in Percutaneous Coronary Intervention’ Strategic Approaches in Coronary Intervention (2006) Lippincott Williams & Wilkins pp. 91-99.
Chien, Y.W. et al. Nasal Systemic Drug Delivery, Drugs and the Pharmaceutical Sciences (1989) Marcel Dekker, Inc. Chapter 3, pp. 39-88.
Cohen et al ‘Endoscopic Sinus Surgery: Where we are and where we're going’ Current Opinion in Otolaryngology & Head and Neck Surgery (2005) vol. 13 pp. 32-38.
Colla, A. et al ‘Trihaloacetylated Enol Ethers—General Synthetic Procedure and Heterocyclic Ring Closure Reactions with Hydroxylamine’ Synthesis. (Jun. 1991) pp. 483-486.
Costa, M.N. et al ‘Endoscopic Study of the Intranasal Ostium in External Dacryocystorhinostomy Postoperative. Influence of Saline Solution and 5-Flurorouracil’ Clinics. (2007) vol. 62, Issue 1 pp. 41-46. http://www.scielo.br/scielo.php?pid=S1807-59322007000100007&script=sci—arttext.
Cussler, E.L. Diffusion: Mass Transfer in Fluid Systems Cambridge University Press (1996) [Summary of Txtbook].
Davis, G.E. et al., ‘A Complication From Neurocranial Restructuring’ Arch Otolaryngology Head Neck Surg. (Apr. 2003) vol. 129 pp. 472-474.
Deutschmann, R. et al. ‘A Contribution to the Topical Treatment of [Maxillary] Sinusitis Preliminary Communication’ Stomat DDR 26, (1976) pp. 585-592.
Domb, A. et al Handbook of Biodegradable Polymers Harwood Academic Publishers (1997) [Summary of textbook].
Draf, W. ‘Endonasal Micro-Endoscopic Frontal Sinus Surgery: the Fulda Concept’ Op Tech Otolaryngol Head Neck Surg. (1991) vol. 2 pp. 234-240.
Edmond et al ‘ENT Surgical Stimulator’ Nov. 1998 Final Report Cooperative Agreement No. DAMD17-95-2-5023.
Eremychev, V.A. ‘Needles for Puncture and Drainage of the Maxillary Sinus’ Meditsinskaya Tekhnika, No. 5 (1974) pp. 54-55.
Feldman, R.L. et al ‘New Steerable, Ultra-Low-Profile, Fixed Wire Angioplasty Catheter: Initial Experience With the Cordis Orion™ Steerable PTCA Balloon Catheter’ Cathet. Cardiovasc. Diagn. (1990) vol. 19, No. 2 pp. 142-145.
Ford, C.N. ‘A Multipurpose Laryngeal Injector Device’ Otolaryngol. Head Neck Surg. (1990) vol. 103, No. 1 pp. 135-137.
Friedman, M. M.D., et al ‘Frontal Sinus Surgery: Endoscopic Technique’ Operative Techniques in Otolarynology—Head and Neck Surgery. (Jun. 2001) vol. 12, No. 2 pp. 60-65.
Friedman, et al ‘Intraoperative and Postoperative Assessment of Frontal Sinus Patency by Transillumination’ Laryngoscope. (Apr. 2000) vol. 110 pp. 683-684.
Friedman et al ‘Middle Turbinate Medialization and Preservation in Endoscopic Surgery’ Otolaryngol. Head Neck Surg. (2000) vol. 123, No. 1, Part 1. pp. 76-80.
Fung, M.K.T. ‘How I Do It—Head and Neck and Plasic Surgery. A Targeted Problem and its Solution. Template for Frontal Osteoplastic Flap’ Laryngoscope. (1986) vol. 96 pp. 578-579.
Gatot, A. et al., ‘Early Treatment of Orbital Floor Fractures with Catheter Balloon in Children’ Int. J. Pediatric Otorhinolaryngol (1991) vol. 21 pp. 97-101.
Gerus, I.I. et al ‘β-Ethoxyvinyl Polyfluroroalkyl Ketones—Versatile Synthones in Fluoroorganic Chemistry’ Journal of Fluorine Chemistry. (1994) vol. 69 pp. 195-198. Elsevier Science S.A.
Good, R.H. ‘An Intranasal Method for Opening the Frontal Sinus Establishing the Largest Possible Drainage’ Laryngoscope. (1908) vol. 18 pp. 266-274.
Gopferich ‘Polymer Degradation and Erosion: Mechanisms and Applications’ Eur. J. Pharm. Biophar. (1996) vol. 42 pp. 1-11.
Gorlov, D.V. et al ‘Acylation of 2-Methoxypropene with Anhydrides and Halides of Perflurocarboxylic Acids in the Presence of Tertiary Amines’ Russian Chemical Bulletin. (Sep. 1999) vol. 48 No. 9 pp. 1791-1792. Kluwer Academic/Plenum Publishers.
Gottman, et al. ‘Balloon Dilatation in the Nasal Cavity and Paranasal Sinuses’ CIRSE. (Sep. 25, 2004) pp. 1-27.
Gottman, et al. ‘Balloon Dilatation of Recurrent Ostial Occlusion of the Front Sinus’ Abstract No. B-04353. European Congress of Radiology. (Mar. 2, 2001).
Gottman, et al. ‘Successful Treatment of Recurrent Post-Operative Frontal Sinus Stenoses by Balloon Dilatation’ CIRSE. (Oct. 5, 2002).
Gupta, D. et al ‘Dacryocystitis Secondary to an Iatrogenic Foreign Body in the Lacrimal Apparatus’ Ear, Nose & Throat Journal (2009) http://findarticles.com/p/articles/mi—m0BUM/is—7—88/ai—n32428620/.
Hashim, et al ‘Balloon Compression of the Intermaxillary Sinus for Intractable Post Traumatic Bleeding from the Maxillary Artery’ Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery (1999) vol. 33 pp. 321-324.
Hojo, M. et al ‘Electrophilic Substitutions of Olefinic Hydrogens II. Acylation of Vinyl Ethers and N Vinyl Amides’ Chemistry Letters (1976) pp. 499-502.
Hopf, J.U.G. et al ‘Miniature Endoscopes in Otorhinolaryngologic Applications’ Min Invas Ther & Allied Technol. (1998) vol. 7, No. 3 pp. 209-218.
Hosemann, W. et al A Dissection Course on Endoscopic Endonasal Sinus Surgery (2005) Endo-Press, Tuttlingen pp. 4-37.
Hosemann, W. et al ‘Endonasal Frontal Sinusotomy in Surgical Management of Chronic Sinusitis: A Critical Evaluation’ American Journal of Rhinology (1997) vol. 11, No. 1 pp. 1-9.
Hosemann, M.E. et al ‘Experimentelle Untersuchungen zur Wundheilung in den Nasennebenholhlen. II. Spontaner Wundschluss und medikamentose Effekte im standardisierten Wundmodell.’ HNO 39 (1991) pp. 48-54.
Hosemann W.G. et al Minimally Invasive Endonasal Sinus Surgery Thieme, Stuttgart, New York (2000) [Summary of textbook].
Hosemann, M.E. et al ‘Normal Wound Healing of the Paranasal Sinuses—Clinical and Experimental Investigations’ Eur Arch Otorhinolarygol. (1991) vol. 248 pp. 390-394.
Hosemann, W. et al ‘Weiterbehandlung nach Nasennebenhohleneingriffen, Part 2: Theapeutische Maβnahmen’ HNO akutell 7 (1999) pp. 291-302.
Hospital Corpsman Sickcall Screener's Handbook. Naval Hospital Great Lakes (Apr. 1999) http://www.brooksidepress.org/Products/Operationa.Medicine/DATA. 2001 pp. 1-6.
Hybels, R.L. ‘Transillumination During Osteoplastic Frontal Sinusotomy’ The Laryngoscope (Sep. 1981) vol. 91 pp. 1560.
Ijaduola, T.G.A. ‘Use of a Foley Catheter for Short-Term Drainage in Frontal Sinus Surgery’ The Journal of Laryngology and Otology. (1989) vol. 103 pp. 375-378.
Ingals, F. ‘New Operation and Instruments for Draining the Frontal Sinus’ Ann. Otol Rhinol Laryngol. (1905) vol. 14 pp. 515-519.
Iro, H. et al ‘A New Device for Frontal Sinus Endoscopy: First Clinical Report’ Otolaryngol. Head Neck Surg. (2001) vol. 125 No. 6 pp. 613-616.
Jacobs, J.B. ‘100 Years of Frontal Sinus Surgery’ Laryngoscope. (1997) vol. 107 pp. 1-36.
Kennedy, D.W., M.D. et al Diseases of the Sinuses Diagnosis and Management (Copyright 2001) by B.C. Decker Inc.
Khomutov, S.M. et al ‘Dissolution of a Mixture of Steroids in Cyclodextrin Solutions: a Model Description’ Pharmaceutical Chemistry Journal. (Nov. 2001) vol. 35, No. 11 pp. 627-629.
Kingdom, T.T. et al ‘Image-Guided Surgery of the Sinuses: Current Technology and Applications’ Otolaryngol. Clin. North Am. (Apr. 2004) vol. 37, No. 2 pp. 381-400.
Klossek, J.M. et al ‘Local Safety of Intranasal Triamcinolone Acetonide: Clinical and Histological Aspects of Nasal Mucosa in the Long-Term Treatment of Perennial Allergic Rhinitis’ Rhinology (2001) vol. 39, No. 1 pp. 17-22.
Kozlov et al ‘Diagnosis and Treatment of Sinusitis by Yamik Sinus Catheters’ Rhinology (1996) vol. 34. pp. 123-124.
Kuhn, et al. ‘The Agger Nasi Cell in Frontal Recess Obstruction: An Anatomic, Radiology and Clinical Correlation’ Operative Techniques in Otolaryngology—Head and Neck Surgery (1991) vol. 2, No. 4 pp. 226-231.
Laliberte F. et al ‘Clinical and Pathologic Methods to Assess the Long-Term Safety or Nasal Corticosteroids’ Allergy (2000) vol. 55, No. 8 pp. 718-722.
Lang, E.V. et al ‘Access Systems for Puncture at an Acute Angle’ J. Vasc. Interv. Radiol. (1995) vol. 6, No. 5 pp. 711-713.
Lanza, D.C. ‘Postoperative Care and Avoiding Frontal Recess Stenosis’ International Advanced Sinus Symposium. General Session Abstracts. Jul. 21-24, 1993.
Large, G.C. ‘Crystalline Tetracycline Hydrochloride in the Treatment of Acute and Chronic Maxillary Sinusitis’ Canad. M. A. J. (1958) vol. 79 pp. 15-16.
Lund, V.J. ‘Maximal Medical Therapy for Chronic Rhinosinusitis’ Otolaryngol Clin N Am. (2005) vol. 38 pp. 1301-1310.
Maran, A.G.D. et al ‘The Use of the Foley Catheter in the Tripod Fracture’ J. Laryngol. Otol (1971) vol. 85, Issue 9 pp. 897-902.
May, M. et al ‘Frontal Sinus Surgery: Endonasal Drainage Instead of an External Osteopolstic Approach’ Op Tech Otolaryngo Head Neck Surgery (1995) vol. 6, No. 3 pp. 184-192.
Medtronic, xomed.com-MicroFrance Catalog Browser. http://www.xomcat.com/xomfrance/index.php?zone=both&cat=18&sub=58&prodline=1272 (Dec. 31, 2003) pp. 1-2.
Mehan, V.K. et al ‘Coronary Angioplasty through 4 French Diagnostic Catheters’ Cathet. Cardiovasc. Diagn. (1993) vol. 30, No. 1 pp. 22-26.
Mellor, J.M. et al ‘Synthesis of Trifluromethylnaphthalenes’ Tetrahedron (2000) vol. 56 pp. 10067-10074. Elseview Science Ltd.
Metson, R. et al ‘Endoscopic Treatment of Sphenoid Sinusitis’ Otolaryngol. Head Neck Surg. (1996) vol. 114, No. 6 pp. 736-744.
Metson, R. ‘Holmium: YAG Laser Endoscopic Sinus Surgery: A Randomized Controlled Study’ Laryngoscope (Jan. 1996) vol. 106, Issue 1, Supplement 77 pp. 1-18.
Miller et al. ‘Management of Fractures of the Supraorbital Rim’ Journal of Trauma (Jul. 1978) vol. 18, No. 7 pp. 507-512.
Min, Y-G et al. ‘Mucociliary Activity and Histopathology of Sinus Mucosa in Experimental Maxilary Sinusitis: A Comparison of Systemic Administration of Antibiotic and Antibiotic Delivery by Polylactic Acid Polymer’ Laryngoscope (Aug. 1995) vol. 105 pp. 835-842.
Mols, B. ‘Moveable Tool Tip for Keyhole Surgery’ Delft Outlook (2005) vol. 3 pp. 13-17.
Mooney, M.R. et al ‘Monorail™ Piccolino Catheter: A New Rapid Exchange/Ultralow Profile Coronary Angioplasty System’ Cathet. Cardiovasc. Diagn. (1990) vol. 20, No. 2 pp. 114-119.
Moriguchi, T. et al ‘Addition-Elimination Reaction in the Trifluoroacetylation of Electron-Rich Olefins’ J. Org. Chem. (1995) vol. 60, No. 11 pp. 3523-3528. American Chemical Society.
Park, K. et al Biodegreadable Hydrogels for Medicinal Substance Delivery (1993) Technomic Publishing Inc. Lancaster.
Piccirillo, J.F. et al ‘Psychometric and Clinimetric Validity of the 20-Item Sino-Nasal Outcome Test (SNOT-20)’ Otolaryngol. Head Neck Surg (2002) vol. 126, No. 1 pp. 41-47.
Piers, et al ‘A Flexible Distal Tip with Two Degrees of Freedom for Enhanced Dexterity in Endoscopic Robot Surgery’ Proceedings 13th Micromechanics Europe Workshop (2002) pp. 271-274.
Podoshin, L. et al ‘Balloon Technique for Treatment of Frontal Sinus Fractures’ The Journal of Laryngology & Otology (1967), vol. 81. pp. 1157-1161.
Pownell, P.H. et al ‘Diagnostic Nasal Endoscopy’ Plastic & Reconstructive Surgery (1997) vol. 99, Iss. 5 pp. 1451-1458.
Prince et al ‘Analysis of the Intranasal Distribution of Ointment’ J Otolaryngol. (1997) vol. 26 pp. 357-360.
Ramsdale, D.R. Illustrated Coronary Intervention A case-oriented approach (2001) Martin Dunitz Ltd. pp. 1-5.
Ritter, F.N. et al Atlas of Paranasal Sinus Surgery (1991) Igaku-Shoin Medical Pub. pp. 1-81.
Robison, J. Mathews, M.D. ‘Pressure Treatment of Maxillary Sinusitis’ J.A.M.A. (May 31, 1952) pp. 436-440.
Robison, J. Mathews, M.D. ‘Pressure Treatment of Purulent Maxillary Sinusitis’ Texas State Journal of Medicine. (May 1951) pp. 281-288.
Sama, A. et al ‘Current Opinions on the Surgical Management of Frontal Sinus Disease’ ENT News. www.pinpointmendical.com/ent-news (2009) vol. 17 No. 6 pp. 60-63.
Sanborn, T.A., et al ‘Percutaneous Endocardial Transfer and Expression of Genes to the Myocardium Utilizing Fluropscopic Guidance’ Catheter Cardiovasc. Interv. (2001) vol. 52, No. 2 pp. 260-266.
Sawbones Catalog 2001, Pacific Research Laboratories, Inc., Vashon, Washington 98070 USA.
Saxon, R.R., et al ‘Technical Aspects of Accessing the Portal Vein During the TIPS Procedure’ J. Vasc. Interv. Radiol. (1997) vol. 8, No. 5 pp. 733-744.
Schaefer, S.D., M.D. Rhinology and Sinus Disease A Problem-Oriented Approach (Copyright 1988) by Mosby, Inc.
Shah, N.J. et al ‘Endoscopic Pituitary Surgery—A Beginner's Guide’ Indian Journal of Otolaryngology and Head and Neck Surgery (2004) vol. 56, No. 1 pp. 71-78.
Shah, N.J. ‘Functional Endoscopic Sinus Surgery’ (1999); found at www.bhj.org/journal/1999—4104—oct99/sp—659.htm.
Single-Pole and Multi-Pole Lightguides for UV Spot Light Curing Systems. http://www.dymax.com/products/curing—equipment/lightguids/light. (2004) pp. 1-2.
Sobol, et al ‘Sinusitis, Maxillary, Acute Surgical Treatment.’ eMedicine. Retrieved from the Internet: <<http://emedicine.medscape.com/article/862030-print>> (Nov. 16, 2010) pp. 1-11.
St. Croix, et al ‘Genes Expressed in Human Tumor Endothelium’ Science (May 15, 2000) vol. 289 pp. 1197-1202.
Stammberger H. ‘Komplikationen entzundlicher Nasennebenhohlenerkrankungen eischlieβlich iatrogen bedingter Komplikationen.’ Eur Arch Oti-Rhino-Laryngol Suppl. (Jan. 1993) pp. 61-102.
Stammberger, et al ‘Special Endoscopic Anatomy of the Lateral Nasal Wall and Ethmoidal Sinuses’ Functional Endoscopic Sinus Surgery. (1991) Ch. 3, pp. 49-87.
Strohm et al Die Behandlung von Stenosen der oberen Luftwege mittels rontgenologisch gesteuerter Ballondilation (Sep. 25, 1999).
Strohm, et al ‘Le Traitenment Des Stenoses Voies Aeriennes Superieures Par Dilation Au Balloon’ Sep. 25, 1999.
Strohm, et al ‘Treatment of the Stenoses of the Upper Air Routes by Balloon Dilation’ Sudwestdeutscher (Sep. 25, 1999) Abstract 45 pp. 1-3.
SurgTrainer Product Information ‘Incisive Human Nasal Model for ESS Training’ Surg Trainer, Ltd. Ibaraki, Japan (2204) http://www1.accsnet.ne.jp/˜juliy/st/en/partslist.html.
Tabor, M.H. et al ‘Symptomatic Bilateral Nasolacrimal Duct Cysts in a Newborn-Rhinoscopic Clinic’ Ear, Nost & Throat Journal (2003) http://findarticles.com/p/articles/mi—m0BUM/is—2—82/ai—98248244 pp. 1-3.
Tarasov, D.I. et al. ‘Application of Drugs Based on Polymers in the Treatment of Acute and Chronic Maxillary Sinusitis’ Vestn Otorinolaringol. (1978) vol. 6 pp. 45-47.
Terumo. Medi-Tech. Boston Scientific. (1993) Ad for Glidewire.
The Operating Theatre Journal (www.otjonline.com) ‘Disposable Medical Device for Wound Disclosure/The Tristel Purple Promotion—A Collaboration between Tristel plc and Karl Storz Endoscopy (UK) Ltd.’ pp. 4 [retrieved on Nov. 30, 2010]. Retrieved from the Internet.
Weber, R. et al ‘Endonasale Stirnhohlenchirugie mit Langzeiteinlage eines Platzhalters’ Laryngol. Rhinol. Otol. (1997) vol. 76 pp. 728-734. (English Abstract).
Weber, R. et al ‘Videoendscopic Analysis of Nasal Steroid Distribution’ Rhinology (1999) vol. 37 pp. 69-73.
Weiner, R.I., D.O. et al ‘Development and Application of Transseptal Left Heart Catheterization’ Cathet. Cardiovasc. Diagn. (1988) vol. 15, No. 2 pp. 112-120.
Wiatrak, B.J. et al ‘Unilateral Choanal Atresia: Initial Presentation and Endoscopic Repair’ International Journal of Pediatric Otorhinolaryngology (1998) vol. 46 pp. 27-35.
Woog, et al. ‘Paranasal Sinus Endoscopy and Orbital Fracture Repair’ Arch Ophthalmol. (May 1998) vol. 116 pp. 688-691.
Wormald, P.J. et al ‘The ‘Swing-Door’ Technique for Uncinectomy in Endoscopic Sinus Surgery’ The Journal of Laryngology and Otology (1998) vol. 112 pp. 547-551.
Yamauchi, Y. et al ‘Development of a Silicone Model for Endoscopic Sinus Surgery’ proc International Journal of Computer Assisted Radiology and Surgery (1999) vol. 99 pp. 1039.
Yamauchi, Y. et al ‘A Training System for Endoscopic Sinus Surgery with Skill Evaluation’ Computer Assisted Radiology and Surgery (2001) with accompanying poster presentation.
Yanagisawa et al ‘Anterior and Posterior Fontanelles.’ Ear, Nose & Throat Journal (2001) vol. 80. p. 10-12.
Zimarino, M., MD et al ‘Initial Experience with the Europass™: A New Ultra-Low Profile Monorail Balloon Catheter’ Cathet. Cardiovasc. Diagn. (1994) vol. 33, No. 1 pp. 76-79.
http://www.invotec.net/rhinology/ksplint.html. K-Splint Internal Nasal Splints; Jan. 25, 2007.
http://www.doylemedical.com/nasalsplints.htm; Doyle Nasal Splints; Jan. 25, 2007.
http://www.technologyforlife.com.au/ent/nasal.html; Nasal Surgery and Accessories; Jan. 25, 2007.
EP Communication dated Sep. 4, 2008 re: EP 05773189.
EP Communication dated Jun. 19, 2009 re: EP 05773189.
Examination Report dated Feb. 22, 2006 re: 02716734.5.
Examination Report dated Feb. 8, 2007 re: 02716734.5.
Examiners First Report dated Apr. 8, 2010 re: AU2005274794.
European Search Report and Search Opinion dated Sep. 11, 2009 from EP06815174.
European Search Report dated Sep. 27, 2011 re: EP10182961.
European Search Report dated Sep. 29, 2011 re: EP10182893.
International Preliminary Report on Patentability dated Aug. 25, 2006 from PCT/US05/25371.
International Preliminary Report on Patentability dated Oct. 4, 2007 from PCT/US06/002004.
International Preliminary Report on Patentability dated Nov. 27, 2008 from PCT/US07/11449.
International Preliminary Report on Patentability dated Apr. 16, 2009 from PCT/US07/021170.
International Preliminary Report on Patentability dated May 14, 2009 from PCT/US06/36960.
International Preliminary Report on Patentability dated Oct. 22, 2009 from PCT/US08/059786.
International Preliminary Report on Patentability dated Nov. 5, 2009 from PCT/US08/061343.
International Search Report dated May 23, 2002 from PCT/EP02/01228.
International Search Report dated Jun. 3, 2002 from PCT/EP02/01228.
International Search Report and Written Opinion dated Apr. 10, 2006 from PCT/US05/25371.
International Search Report dated May 8, 2007 from PCT/US2006/16026.
International Search Report and Written Opinion dated Aug. 17, 2007 from PCT/US05/13617.
International Search Report and Written Opinion dated Aug. 29, 2007 from PCT/US06/002004.
International Search Report dated Sep. 25, 2007 from PCT/US06/37167.
International Search Report dated Oct. 19, 2007 from PCT/US07/03394.
International Search Report and Written Opinion dated May 29, 2008 from PCT/US07/021170.
International Search Report dated May 29, 2008 from PCT/US07/21922.
International Search Report and Written Opinion dated Jul. 1, 2008 from PCT/US06/22745.
International Search Report dated Jul. 3, 2008 from PCT/US2006/029695.
International Search Report dated Jul. 7, 2008 from PCT/US07/16213.
International Search Report dated Jul. 8, 2008 from PCT/US07/11474.
International Search Report and Written Opinion dated Jul. 17, 2008 from PCT/US06/36960.
International Search Report and Written Opinion dated Jul. 21, 2008 from PCT/US05/33090.
International Search Report dated Aug. 25, 2008 from PCT/US2008/000911.
International Search Report dated Sep. 10, 2008 dated PCT/US07/16212.
International Search Report and Written Opinion dated Sep. 12, 2008 from PCT/US07/16214.
International Search Report and Written Opinion dated Sep. 17, 2008 from PCT/US08/059786.
International Search Report and Written Opinion dated Sep. 17, 2008 from PCT/US08/061343.
International Search Report and Written Opinion dated Oct. 1, 2008 from PCT/US07/11449.
International Search Report dated Oct. 15, 2008 from PCT/US2008/061048.
International Search Report dated Nov. 30, 2009 re: PCT/US2009/057203.
International Search Report from PCT Application No. PCT/US2009/057203 dated Nov. 30, 2009 as issued by the European Patent Office as searching authority.
International Search Report dated Dec. 10, 2009 re: PCT/US2009/052236.
International Search Report dated Dec. 16, 2009 re: PCT/US2009/050800.
International Search Report dated Mar. 31, 2010 re: PCT/US2009/069143.
International Search Report dated Jul. 8, 2010 re: PCT/US2010/027837.
International Search Report dated Oct. 6, 2010 re: PCT/US2010/040548.
International Search Report dated Mar. 25, 2011 re: PCT/US2010/062161.
International Search Report dated Mar. 28, 2011 re: PCT/US2010/061850.
International Search Report dated Mar. 31, 2011 re: PCT/US2010/060898.
International Search Report dated Aug. 9, 2011 re: PCT/US2011/038751.
International Search Report dated May 18, 2012 re: PCT/US2011/052321.
Partial European Search Report dated Sep. 20, 2007 re: 07252018.
Partial European Search Report dated Mar. 25, 2008 re: 07252018.
Partial International Search Report dated Feb. 7, 2012 re: PCT/US2011/052321.
Supplemental European Search Report dated Jun. 2, 2008 re: EP05773189.
Supplemental European Search Report dated Jul. 1, 2009 re: EP06815285.
Supplemental European Search Report dated Jan. 29, 2010 from EP07836108.
Supplemental European Search Report dated Feb. 2, 2010 re: EP07836109.
Supplemental European Search Report dated Feb. 17, 2010 re: EP07836110.
Supplemental European Search Report dated Mar. 1, 2010 re: EP05778834.
Supplemental European Search Report dated Mar. 16, 2010 from EP06718986.
Supplemental European Search Report dated Jun. 22, 2010 re: EP06784759.
Supplemental European Search Report dated Sep. 23, 2010 re: EP08746715.
Supplemental Partial European Search Report dated Nov. 19, 2010 re: EP06751637.
Supplemental European Search Report dated Jan. 28, 2011 re: 07777004.
Supplemental European Search Report dated Mar. 31, 2011 re: EP05798331.
Supplemental European Search Report dated Aug. 30, 2011 re: EP06800540.
Supplemental European Search Report dated Sep. 29, 2011 re: EP07750248.
U.S. Appl. No. 10/259,300, filed Sep. 30, 2002.
U.S. Appl. No. 10/259,630, filed Sep. 30, 2002.
U.S. Appl. No. 10/470,881, filed Feb. 4, 2004.
U.S. Appl. No. 10/829,917, filed Apr. 21, 2004.
U.S. Appl. No. 10/912,578, filed Aug. 4, 2004.
U.S. Appl. No. 10/944,270, filed Sep. 17, 2004.
U.S. Appl. No. 11/037,548, filed Jan. 18, 2005.
U.S. Appl. No. 11/116,118, filed Apr. 26, 2005.
U.S. Appl. No. 11/150,847, filed Jun. 10, 2005.
U.S. Appl. No. 11/193,020, filed Jul. 29, 2005.
U.S. Appl. No. 11/234,395, filed Sep. 23, 2005.
U.S. Appl. No. 11/347,147, filed Feb. 2, 2006.
U.S. Appl. No. 11/355,512, filed Feb. 16, 2006.
U.S. Appl. No. 11/436,892, filed May 17, 2006.
U.S. Appl. No. 11/436,897, filed May 17, 2006.
U.S. Appl. No. 11/438,090, filed May 18, 2006.
U.S. Appl. No. 11/522,497, filed Sep. 15, 2006.
U.S. Appl. No. 11/527,773, filed Sep. 25, 2006.
U.S. Appl. No. 11/544,009, filed Oct. 4, 2006.
U.S. Appl. No. 11/647,530, filed Dec. 27, 2006.
U.S. Appl. No. 11/648,159, filed Dec. 29, 2006.
U.S. Appl. No. 11/655,794, filed Jan. 18, 2007.
U.S. Appl. No. 11/725,151, filed Mar. 15, 2007.
U.S. Appl. No. 11/789,704, filed Apr. 24, 2007.
U.S. Appl. No. 11/789,705, filed Apr. 24, 2007.
U.S. Appl. No. 11/803,695, filed May 14, 2007.
U.S. Appl. No. 11/925,540, filed Oct. 26, 2007.
U.S. Appl. No. 11/926,326, filed Oct. 29, 2007.
U.S. Appl. No. 11/926,565, filed Oct. 29, 2007.
U.S. Appl. No. 11/928,097, filed Oct. 30, 2007.
U.S. Appl. No. 12/011,100, filed Jan. 23, 2008.
U.S. Appl. No. 12/100,361, filed Apr. 9, 2008.
U.S. Appl. No. 12/117,582, filed May 8, 2008.
U.S. Appl. No. 12/117,672, filed May 8, 2008.
U.S. Appl. No. 12/117,961, filed May 9, 2008.
U.S. Appl. No. 12/118,931, filed May 12, 2008.
U.S. Appl. No. 12/120,902, filed May 15, 2008.
U.S. Appl. No. 12/122,884, filed May 19, 2008.
U.S. Appl. No. 12/340,226, filed Dec. 19, 2008.
U.S. Appl. No. 12/341,602, filed Dec. 22, 2008.
U.S. Appl. No. 12/502,101, filed Jul. 13, 2009.
U.S. Appl. No. 60/844,874, filed Sep. 15, 2006.
U.S. Appl. No. 60/922,730, filed Apr. 9, 2007.
U.S. Appl. No. 61/052,413, filed May 12, 2008.
U.S. Appl. No. 61/084,949, filed Jul. 30, 2008.
USPTO Office Action dated Sep. 16, 2005 in U.S. Appl. No. 10/259,300.
USPTO Office Action dated Jul. 7, 2006 in U.S. Appl. No. 10/259,300.
USPTO Office Action dated Feb. 13, 2007 in U.S. Appl. No. 10/259,300.
USPTO Office Action dated May 29, 2007 in U.S. Appl. No. 10/912,578.
USPTO Office Action dated Oct. 9, 2007 in U.S. Appl. No. 10/259,300.
USPTO Office Action dated Oct. 18, 2007 in U.S. Appl. No. 11/037,548.
USPTO Office Action dated Nov. 14, 2007 in U.S. Appl. No. 10/912,578.
USPTO Office Action dated Nov. 28, 2007 in U.S. Appl. No. 11/234,395.
USPTO Office Action dated Dec. 6, 2007 in U.S. Appl. No. 11/037,548.
USPTO Office Action dated Dec. 10, 2007 in U.S. Appl. No. 10/912,578.
USPTO Office Action dated Jan. 24, 2008 in U.S. Appl. No. 10/259,300.
USPTO Office Action dated Apr. 9, 2008 in U.S. Appl. No. 11/037,548.
USPTO Office Action dated Sep. 12, 2008 in U.S. Appl. No. 10/829,917.
USPTO Office Action dated Oct. 6, 2008 in U.S. Appl. No. 10/259,300.
USPTO Office Action dated Oct. 29, 2008 in U.S. Appl. No. 11/347,147.
USPTO Office Action dated Nov. 7, 2008 in U.S. Appl. No. 10/944,270.
USPTO Office Action dated Nov. 17, 2008 in U.S. Appl. No. 10/829,917.
USPTO Office Action dated Nov. 17, 2008 in U.S. Appl. No. 12/117,582.
USPTO Office Action dated Nov. 17, 2008 in U.S. Appl. No. 12/118,931.
USPTO Office Action dated Nov. 25, 2008 in U.S. Appl. No. 12/117,961, filed May 9, 2008.
USPTO Office Action dated Dec. 5, 2008 in U.S. Appl. No. 12/120,902, filed May 15, 2008.
USPTO Office Action dated Jan. 28, 2009 in U.S. Appl. No. 10/944,270.
USPTO Office Action dated Feb. 4, 2009 in U.S. Appl. No. 11/347,147.
USPTO Office Action dated Mar. 3, 2009 in U.S. Appl. No. 12/117,582.
USPTO Office Action dated Mar. 4, 2009 in U.S. Appl. No. 12/118,931.
USPTO Office Action dated Mar. 17, 2009 in U.S. Appl. No. 11/690,127.
USPTO Office Action dated Mar. 18, 2009 in U.S. Appl. No. 10/829,917.
USPTO Office Action dated Mar. 23, 2009 in U.S. Appl. No. 11/804,309.
USPTO Office Action dated Mar. 23, 2009 in U.S. Appl. No. 11/926,326.
USPTO Office Action dated Apr. 21, 2009 in U.S. Appl. No. 10/944,270.
USPTO Office Action dated Jul. 30, 2009 in U.S. Appl. No. 12/118,931.
USPTO Office Action dated Aug. 6, 2009 in U.S. Appl. No. 11/347,147.
USPTO Office Action dated Aug. 6, 2009 in U.S. Appl. No. 12/117,582.
USPTO Office Action dated Aug. 6, 2009 in U.S. Appl. No. 12/117,961.
USPTO Office Action dated Aug. 28, 2009 in U.S. Appl. No. 11/150,847.
USPTO Office Action dated Oct. 21, 2009 in U.S. Appl. No. 12/120,902.
USPTO Office Action dated Nov. 9, 2009 in U.S. Appl. No. 10/829,917.
Shikani A. “A New Middle Meatal Antrostomy Stent for Functional Endoscopic Sinus Surgery”. May 1994. Larynoscope 104: May 1994. pp. 638-641.
US Office Action Final dated Aug. 29, 2013 for U.S. Appl. No. 12/138,364.
Related Publications (1)
Number Date Country
20040116958 A1 Jun 2004 US