This disclosure relates to the fabrication of hard disk drives (HDD), particularly to a method of measuring and controlling the spacing between a head and a disk.
As magnetic read/write heads have been required to deal with magnetic media having increasingly higher area density of recorded information, various methods have been developed to improve the capabilities of the head to read and write at those levels. Traditionally, the direction taken in trying to achieve the reading and writing of this high density information has been to decrease the spacing (i.e. the static fly height) between the disk and the slider in each new generation of products.
Consistent and rapid increase in the recording area density of hard disk drives requires a corresponding continuous decrease in the flying height of the slider or mechanical spacing between magnetic recording head and disk. After the FH was reduced to about 10 nm, further decrease in FH became extremely difficult. Now that the thermal expansion based technique of DFH has emerged, dynamic control of the flying height during disk rotation has become possible. This technology has been widely applied in the past several years. As the recording density approaches 150 Gbit/cm2 (1 Tbit/in2), the spacing must now be decreased to a range of 1 nm.
In order to reliably control the spacing through activation of the heater, it is necessary to have a feasible way of measuring the spacing while applying the power to the heater. Relative spacing change can be calculated based on the well-known Wallace equation that relates signal loss to spacing as a function of frequency. However, to determine the actual spacing, a reference point is needed. The reference point is usually taken as the point where the head touches the disk. It is defined as the zero of the spacing. The process of finding this reference point is called touch down (TD) detection. For better TD detection and potential real time monitoring of head/disk spacing, the head element typically also includes a head-disk interference (HDI) sensor (or, HDIs). This sensor is a resistive temperature sensor used to detect a temperature change in the head that is induced by changes in clearance during head vibrations or by a direct contact caused by contacting with disk asperities. Note that different sensor types exist, including PZT and LDV sensors. The HDIs signal (from whatever type sensor being utilized) has DC (low frequency) and AC (high frequency) components. When the slider flies at a low clearance, low frequency oscillation (the DC component) appears. When the slider contacts the disk and afterwards, a strong high frequency (the AC component) HDIs signal appears. Thus, the AC component of the HDIs signal is more sensitive to the slider/disk contact, and, therefore, it could be more effective for TD detection. After a reference point is found, a desired spacing can be set to a specified value, such as 1.5 nm for the current generation of drives, by adjusting the DFH power during reading and writing.
In the current generation of HDD's, the TD power and spacing at each zone is a constant. Unfortunately, the TD power and the spacing are actually not constant even along the same track. They fluctuate because the disk within the disk drive does not present a perfectly flat surface. For example, the disk typically has an initial distortion from disk manufacturing. After the disk is assembled into the drive, additional distortions or imperfections can be induced. At an inner diameter (ID) region, due to forces applied in clamping the disk, the disk might have a large local distortion. At an outer diameter (OD) region, due to a poor alignment, the disk might have a tilting relative to the slider. Both the force-induced distortion of the disk and its tilting due to misalignment will induce a spacing fluctuation at the same track. The fluctuation amplitude (max spacing-min spacing in one revolution at the same track) is dependent on the disk condition (distortion/tilting) and the slider air bearing surface design. It could range between 0.5 nm and 2 nm. When the spacing approaches the 1 nm range, this fluctuation becomes very significant. At the minimum spacing position, the slider might actually contact the disk, which causes a system failure if the contact occurs during a writing process. At the maximum spacing position, the total spacing is too large, and it can cause a “weak write” failure due to a large magnetic spacing and a magnetic field that is insufficient at the disk to create a proper write transition. For these reasons, the spacing fluctuation needs to be under control or compensated.
Mak et al. (U.S. Pat. No. 7,508,617), Schreck et al. (U.S. Pat. No. 7,486,459), Suk (U.S. Pat. No. 7,224,547) and Baumgart et al. (U.S. Pat. No. 7,233,451) have each commented on the need to provide such control or compensation, but do not appear to have provided such control or compensation in an effective manner or in the manner to be provided by the present disclosure.
In a related disclosure (Docket No. SM11-004, which is fully incorporated herein by reference), a technique to measure and characterize the spacing fluctuation inside of disk drives was disclosed by the present inventors. The technique provided in that disclosure can form the basis of an effective method to provide the spacing fluctuation control and compensation.
A first object of the present disclosure is to provide a method of compensating for head-to-disk spacing fluctuations between a DFH read/write head and a disk rotating beneath it.
A second object of the present disclosure is to provide such a method that is based on measured touchdown (TD) power profiles determined by the analysis of power levels between the onset of touchdowns and complete touchdowns between the head and the disk.
A third object of the present disclosure is to provide a HDD in which the method resides in a HDD memory and can be regularly applied to provide compensation.
The measurement of TD power profiles, which is a prerequisite for the compensation of spacing fluctuations in accord with the present disclosure, will be achieved by using heat producing elements in a DFH-type slider mounted read/write head. These elements, when provided with a proper range of power levels, will provide systematic clearance variations to produce touchdowns between the head and disk surface during disk rotations, while an HDI sensor, also mounted within the slider, provides a response signal to indicate when and where touchdowns occur during those variations. The processing and analysis of these signals gives quantitative and qualitative evidence of the surface shape of the disk. The surface variations obtained in such a manner can be defined for all tracks in a disk. Then, these same variations can be used to adjust the power levels of the DFH head during read and write operations so that the head maintains a constant clearance and so that clearance fluctuations are effectively compensated. In the discussion below, we will present a brief description (see related application SM11-004, which is fully incorporated herein by reference, for a more detailed description) of how the method can be used to obtain a TD response contour and then we will describe fully how the TD response contour is used in the present disclosure to provide a compensatory mechanism.
Referring to
Referring to
For the first 1.4 seconds, the amplitude of sensor signal is very small (at a low DHF power). The signal indicates that there is no slider disk contact. As the power increases to about 52 mW, small spikes begin to appear. This indicates that the slider contacts the disk intermittently, or the slider contacts some local spots on the disk at this power level. This is the first TD.
Referring next to
When the DFH power is about 58 mW (at about 2.5 seconds), individual spikes can no longer be differentiated and the sensor signal appears continuous at its full height. This means that the slider is now contacting the disk all locations on the track. This is the full TD.
At each of the power steps described in
Ratio=(Max. amplitude)/(RMS value)
Typically, one knows the DHF power efficiency, i.e. the spacing change per mW, such as 0.13 nm/mW. Then, the spacing fluctuation range can be obtained. In this case, the TD power fluctuation is about 6 mW (58 mW-52 mW), so the spacing fluctuation is: 0.13 nm/mW×6 mW, or about 0.8 nm.
With even more sophisticated processing of the signal, more information about the spacing fluctuation profile is obtained. At each power step, the signal was divided into the number of revolutions made by the disk during that power step: eg., 9 revolutions for the 0.1 sec power step. The elapsed time for each revolution, Tr, is approximately: Tr=11.11 ms, for 5400 rpm rotation rate of the disk.
Next, each revolution can be sub-divided into Ns sectors, Ns=200 sectors in this instance for illustrative purposes. Within each sector, the ratio was calculated, so each revolution will have Ns ratio values corresponding to the Ns sectors. Averaging all ratio values over the 9 revolutions gave an averaged Ns ratio values for each power steps. Plotting all the ratio values for each of the power steps in one chart, produces a contour plot, as shown
Referring to
The objects, features, and advantages of the present disclosure are understood within the context of the Detailed Description as set forth below. The Detailed Description is understood within the context of the accompanying figures, wherein:
a and
a and
Ratio=(Max. amplitude)/(RMS value plotted vs. the DHF power.
a, 8b and 8c are plots of TD power profiles vs. sector, taken along an inner diameter track (8a), a middle diameter track (8b) and an outer diameter track (8c). The profiles display the variation in DFH energy required for a touchdown around the track.
Using the technique discussed above where a disk track was subdivided into 200 sectors, for ease of discussion we will now use a TD response contour as shown in
Referring now to
After combining TD power values of all 100 sectors into a single chart, a TD power profile was obtained for an inner diameter track as shown
Now, instead of having only a single TD power for each track (or zone), we have created a TD power profile for each track (or zone). At different tracks/zones, there are different profiles.
In current techniques, at a specified disk zone, there is a corresponding TD power, TDc, which is a constant. Assuming the DFH efficiency is E (nm/mW), if we want to have (for example) a 1.5 nm back-off in the spacing during writing (or reading), we would set the DFH power during writing, DFHw, as a constant value:
DFHw=TDc−1.5/E(mW) (1)
Then, based on the results of
Using the measured TD power profile (TDprof) of
DFHwprof=TDprof−1.5/E (2)
Then, for DFHwprof taken from the
DFHwprof=TDprof−s/E (3)
In order to compensate correctly, the TD profile measurement and corresponding compensation need to have a “time” or “location” reference to initiate the compensation process. That reference can be the electrical signal of the spindle index or servo sector number. Either choice should be easy to implement in HDD drives.
The entire compensation process may be summed up in the following steps:
1. Divide disk into Nz zones radially, 10 to 30 zones being preferred. Each zone has two boundary tracks (inner and outer radius), so the divided disk has N2+1 boundary tracks.
2. Seek one boundary track, eg. track Txi.
3. Apply a “stair-like” (eg. a stepped) DFH power pulse with the spindle index or sector number as a trigger (eg. a reference).
4. Measure the AC output of the HDI using, for example, a drive pre-amplifier in the HDD.
5. Process the HDI output of step 4 to obtain the TD power profile, TDprof (Txi). Then, measure the DFH efficiency at the track Txi.
6. Repeat steps 2 to 5 to complete the operation for all Nz+1 tracks, while saving and storing all values of TDprof(Txi) and all DFH efficiencies measured at those tracks.
7. During reading/writing operations, seek track Tx on which the operation is to be performed. Based on the location of Tx, find its zone number and the two boundary tracks, (Txs, Txe) corresponding to that zone.
8. Perform an interpolation to determine TDprof for Tx based on the values of TDprof determined at the boundary tracks (Txs, Txe) and determine the DFH efficiency at T.
9. Calculate the DFH power profile using DFHwprof=TDprof−s/E, triggered by the spindle index or the sector number, where E is DFH efficiency and s nm is the desired back-off spacing.
10. Perform the reading/writing operation.
Steps 1-6 can be performed during HDD manufacturing and then they can be repeated, as desired, at regularly scheduled (eg. every 6 months) intervals or whenever drive performance is deemed to have slipped below specified parameters. These steps need to be performed for each head in the HDD. The processed HDI signals as well as the results of the steps required for the compensation can be stored in hardware, firmware or software within the HDD and accessed during the read/write operations.
We note that factors affecting disk distortion and surface irregularities, such as disk clamping forces, can be affected by ambient temperature. We also note that altitude (eg. ambient pressure) can affect the air bearing crown sensitivity and, correspondingly, the spacing fluctuation. Therefore, to do a more thorough compensation, DFHprof can be measured under different ambient environmental conditions, such as different temperatures, T, and different altitudes, A, to create a function: DFHwprof(T,A). Then, during a read or write operation, the compensation can be performed using appropriate values of T and A in (4):
DFHwprof(T,A)=TDprof(T,A)−s/E (4)
such as T=5, 30 60° C., A=10,000 ft. During actual reading and writing operations, interpolations can be done find TDprof (T,A) for any values of T and A required for compensation.
As is understood by a person skilled in the art, the preferred embodiment of the present disclosure is illustrative of the present disclosure rather than being limiting of the present disclosure. Revisions and modifications may be made to methods, processes, materials, structures, and dimensions through which spacing fluctuations of a DFH head are compensated, while still providing such methods; processes, materials, structures and dimensions in accord with the present disclosure as defined by the appended claims.
This application is related to Docket No. SM11-003, Ser. No. 13/317,402, filing date Oct. 17, 2011 and to Docket No. SM11-004, Ser. No. ______ filing date ______, assigned to the same assignee as the current application and both of which are fully incorporated herein by reference.