Information
-
Patent Grant
-
6227774
-
Patent Number
6,227,774
-
Date Filed
Thursday, June 24, 199925 years ago
-
Date Issued
Tuesday, May 8, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Hill; Nancy E.
- Hill & Schumacher
-
CPC
-
US Classifications
Field of Search
US
- 408 211
- 408 214
- 408 225
- 408 228
- 408 230
- 408 227
- 408 224
-
International Classifications
-
Abstract
A spade drill bit for use in association with a drill having a direction of rotation includes an elongate shank, a spade portion and a center spur. The elongate shank portion has a central longitudinal axis and one end adapted to engage the drill. The spade portion extends longitudinally from the other end of the elongate shank. The spade portion has opposed spaced apart planar faces and each planar face has a leading shoulder edge and a trailing shoulder edge. Each planar face has a leading face portion and a trailing face portion proximate to the respective leading shoulder edge and trailing shoulder edge that are twisted in the direction of rotation. The center spur extends outwardly from the spade portion along the central longitudinal axis. Preferably the center spur has an elongate flute that has a volume that increases toward the spade portion. Preferably a dimple is formed proximate to a corner leading edge which is between the leading shoulder edge and the leading longitudinal edge.
Description
FIELD OF THE INVENTION
This invention relates to drill bits for forming bores in wood or other soft material and in particular this invention relates to spade type drill bits that range in size from about ¼″ to 1½″ and that are commonly used with a small portable electric or cordless drill or with a drill press.
BACKGROUND OF THE INVENTION
Drill bits are a very common tool used in the construction and maintenance industries. There are a wide variety of drill bits that have been developed. Spade type drill bits, which have a spade-like blade or cutter, are generally used in association with small portable electric or cordless drills but they may also be used in association with a dill press.
Spade drill bits are generally inexpensive as compared to auger or twist type drill bits. One of the reasons that spade drill bits are affordable is their simple design and manufacture. A spade drill bit is made by flattening a portion of a cylindrical bar by forging and the formation of cutting edges on the flattened section by grinding. The remainder of the unflattened bar is used to engage the drill by way of a chuck. In addition the spade drill bit may be modified through secondary forging steps thereby modifying the flattened section to include performance improving impressions, for example folds, grooves and bends.
Other attributes of spade drills over auger or twist type drills include convenience of storage and ease of resharpening the bits in the field.
In general, spade type drills have a shank region of cylindrical cross section. The end of the shank section may have either ground or forged flats to assist engagement of the drill in the chuck of the portable electric or cordless drill or drill press. The flattened end of the spade drill has two parallel opposing planar face regions, each having a leading face portion and a trailing face portion and an axially extending centre spur that points away from the shank end of the spade. The centre spur extends between the opposing planar face regions of the spade bit. Each opposing face of the spade is bounded by leading and trailing longitudinal edges, by leading and trailing shoulder edges and by leading and trailing shank edges.
The longitudinal sides between the longitudinal edges are slightly tapered toward each other toward the shank end of the bit, further, the longitudinal sides occur at an acute angle from the face region of the spade drill along the leading longitudinal edge.
The shoulder sides are generally radially located between the centre spur and the longitudinal sides and are sloped so as to occur at an acute angle from the face region of the spade drill along the leading shoulder edge.
As the leading and trailing shank edges of the spade are removed from all cutting activity, the side located between these edges is left unfinished beyond the as forged condition.
The centre spur has centre spur faces that are bounded by the face region of the spade drill and by leading and trailing centre spur edges, between the leading and trailing edges are the centre spur sides, the sides occurring at an acute angle from the centre spur faces along the centre spur leading edges.
The centre spur sides, longitudinal sides and shoulder sides occur at acute angles from their respective faces to provide relief for the centre spur leading edge, longitudinal leading edge and shoulder leading edge respectively during operation of the drill.
Additionally, side spurs are often provided. These spurs generally are extensions of the longitudinal sides extending beyond the shoulder sides and have leading and trailing faces that are continuations of the leading face portion and trailing face portions respectively of the face region of the spade. Further the inward side of the side spur Is a non-coplanar extension of the shoulder side of the spade drill.
In operation, with the spade drill bit installed in an electric or cordless drill or drill press the centre spur is the first part of the bit to engage the work whereupon the centre spur leading edges cut out a conical impression in the work initiating cutting and providing stability for the spade drill. Further advancement of the drill allows the side spurs, if present, to cut a circular “v” shaped groove in the work whereupon further advancement causes the shoulder side leading edges to engage the work and remove material between the centre spur and side spur. This action continues until the centre spur exits out the other side of the workpiece and the side spurs cut a circular exit hole. During cutting action where the longitudinal sides are engaged with the workpiece and particularly upon break through of the centre spur and side spurs from the workpiece, the longitudinal sides provide stability of the bit in the formed bore.
A review of the prior art reveals that considerable effort has been taken to provide increased cutting efficiency of the spade drill at all of the cutting edges.
For example U.S. Pat. No. 2,782,824 issued to Robinson on Feb. 26, 1957, shows a groove in the centre spur face along a side of the centre spur leading edge. However, the inside edge of the centre spur flute is generally parallel to the centre spur leading edge and there is not an increase in volume of the flute in the longitudinal direction. Alternatively, U.S. Pat. No. 3,997,279 issued to Porter on Dec. 14, 1976 shows a full centre spur flute that has concave sides proximate to the centre spur leading edge and the centre spur trailing edge. The concave sides extend from the tip to the face of the spade drill bit. However, there is a considerably reduced amount of material in this centre spur which leads to an increased likelihood of failure.
An alternate prior art spade drill bit disclosed in U.S. Pat. No. 4,682,917 issued to Williams on Jul. 28, 1987, shows a groove in the face of the spade along a side of the shoulder leading edge with side spurs extending in the direction of the centre spur. In addition, the leading face of the side spur is sloping in the direction of rotation.
Despite these and many other improvements to spade drills there still remain deficiencies and it is the ambition of this invention to overcome these. In particular it would be advantageous to have a spade drill bit that has good cutting characteristics, that can be easily sharpened by the end user and is relatively easy to manufacture.
SUMMARY OF THE INVENTION
A spade drill bit for use in association with a drill having a direction of rotation includes an elongate shank, a spade portion and a centre spur. The elongate shank portion has a central longitudinal axis and one end adapted to engage the drill. The spade portion extends longitudinally from the other end of the elongate shank. The spade portion has opposed spaced apart planar faces and each planar face has a leading shoulder edge and a trailing shoulder edge. Each planar face has a leading face portion and a trailing face portion proximate to the respective leading shoulder edge and trailing shoulder edge that are twisted in the direction of rotation. The centre spur extends outwardly from the spade portion along the central longitudinal axis.
In another aspect of the invention, a spade drill bit includes an elongate shank, a spade portion and a centre spur. The elongate shank portion has a central longitudinal axis and one end adapted to engage the drill. The spade portion extends longitudinally from the other end of the elongate shank. The spade portion has opposed spaced apart planar faces. Each planar face has a leading face portion, a trailing face portion, a leading shoulder edge, a trailing shoulder edge, a leading longitudinal edge and a trailing longitudinal edge. There is a corner leading edge between the leading shoulder edge and the leading longitudinal edge. A dimple is formed in each leading face portion proximate to each corner leading edge such that a cutting edge is formed at each corner leading edge. A centre spur extends outwardly from the spade portion along the central longitudinal axis.
In a further aspect of the invention, a spade drill bit includes an elongate shank, a spade portion and a centre spur. The elongate shank portion has a central longitudinal axis and one end adapted to engage the drill. The spade portion extends longitudinally from the other end of the elongate shank. The centre spur extends outwardly from the spade portion along the central longitudinal axis. The centre spur has a pair of opposing centre spur faces. Each centre spur face has a centre spur leading edge and a centre spur trailing edge which meet at a point. A centre spur elongate flute is formed in each centre spur face proximate to the centre spur leading edge. The centre spur elongate flute has an inside boundary that is generally parallel to a central longitudinal axis such that the volume of the centre spur elongate flute increases as it approaches the spade portion.
Further features of the invention will be described or become apparent in the course of the following detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described by way of example only, with reference to the accompanying drawings, in which:
FIG. 1
is a front view of the spade drill bit constructed in accordance with the present invention;
FIG. 2
is a side view of the spade drill bit of
FIG. 1
;
FIG. 3
is an enlarged partial perspective view of the spade portion of the spade drill bit of
FIG. 1
;
FIG. 4
is a cross section taken on line
4
—
4
of
FIG. 1
;
FIG. 5
is an end view of the spade drill bit of
FIG. 1
;
FIG. 6
is a cross section taken on line
6
—
6
of
FIG. 5
;
FIG. 7
is an enlarged cross section of a rounded corner and dimple of the present invention shown engaging a workpiece, also shown in cross section;
FIG. 8
is an enlarged partial perspective view of a rounded corner and dimple of the present invention;
FIG. 9
Is an enlarged partial perspective view of a prior art side spur;
FIG. 10
is an enlarged front view of a conical dimple;
FIG. 11
is an enlarged cross section of the conical dimple of
FIG. 10
;
FIG. 12
is an enlarged front view of a frustoconical dimple;
FIG. 13
is an enlarged cross section of the frustoconical dimple of
FIG. 12
;
FIG. 14
is an enlarged front view of a pyramidal dimple;
FIG. 15
is an enlarged cross section of the pyramidal dimple of
FIG. 14
;
FIG. 16
is an enlarged front view of a frustopyramidal dimple;
FIG. 17
is an enlarged cross section of the frustopyramidal dimple of
FIG. 16
;
FIG. 18
is an enlarged front view of an elliptical dimple;
FIG. 19
Is an enlarged cross section of the elliptical dimple of
FIG. 18
;
FIG. 20
Is an enlarged cross section of a hemispheric dimple showing a thin leading edge;
FIG. 21
is an enlarged cross section of a hemispheric dimple showing a thicker leading edge as compared to the leading edge shown in
FIG. 20
;
FIG. 22
is an enlarged partial cross section of a centre spur of the present invention;
FIG. 23
is an enlarged partial cross section of a prior art centre spur; and
FIG. 24
is an enlarged partial cross section of another prior art centre spur.
DETAILED DESCRIPTION OF THE INVENTION
The spade drill bit of the present invention is a one piece forged steel spade drill bit for forming holes in wood or other similar material when used with an electric or cordless drill or drill press. Referring to
FIGS. 1 and 2
the spade drill bit of the present invention is shown generally at
10
. Spade drill bit
10
has an elongate shank portion
12
, a spade portion
14
and a centre spur
16
.
The driving end
18
of the elongate shank portion
12
has a plurality of flat sides
20
. The flat sides
20
form a generally hexagonal shape in cross section. The driving end
18
facilitates engagement of the spade drill bit
10
in a chuck of an electric or cordless drill or drill press (not shown).
Spade portion
14
is wider than the elongate shank portion
12
due to the forging and flattening of the cylindrical bar. Spade portion
14
has two opposing generally planar faces
24
with each face
24
having a leading face portion
26
and a trailing face portion
28
. Each face
24
is bounded by a leading shoulder edge
30
, a trailing shoulder edge
32
, a leading longitudinal edge
34
, a trailing longitudinal edge
36
, a leading shank edge
38
, a trailing shank edge
40
and the centre spur
16
. Longitudinal sides
42
join the leading longitudinal edge
34
of one face
24
with the trailing longitudinal edge
36
of the other face
24
. Similarly, shoulder sides
44
join the leading shoulder edge
30
of one face
24
with the trailing shoulder edge
32
of the other face
24
. The distance between faces
24
is relatively small as compared to the width of each face
24
.
As shown in
FIG. 3
the centre spur
16
has two oppositely facing generally planar centre spur faces
46
that are extensions of the faces
24
. Each centre spur face
46
is bounded by the face
24
of the spade drill bit
10
, by the centre spur leading edge
48
and the centre spur trailing edge
50
. Centre spur sides
52
join the centre spur leading edge
48
of one centre spur face
46
with the centre spur trailing edge
50
of the other centre spur face
46
.
Each leading shoulder edge
30
, leading longitudinal edge
34
and centre spur leading edge
48
defines an acute angle between their respective sides
44
.
42
and
52
and faces
26
and
46
. Conversely, each trailing shoulder edge
32
, trailing longitudinal edge
36
and centre spur trailing edge
50
defines an obtuse angle between their respective sides
44
,
42
and
52
and faces
28
and
46
.
As shown in
FIGS. 3
,
4
,
5
and
6
, the portion of the planar face
24
adjacent to the leading shoulder edge
30
and trailing shoulder edge
32
has a right handed twist
54
, in a smooth continuous curve in the direction of rotation. Spaced from the leading shoulder edge
30
and trailing shoulder edge
32
, planar faces
24
are generally straight. Preferably twist
54
is arranged such that a straight line
55
perpendicular to the longitudinal axis
56
of the spade drill bit
10
and extending from a leading longitudinal edge
34
to the opposed trailing longitudinal edge
36
will be in continuous contact with the face
24
. This line may be placed anywhere along longitudinal axis
56
along a planar face
24
, as shown in
FIGS. 3
,
5
and
6
.
Referring to
FIG. 6
, drill bit
10
has two relevant angles at the leading shoulder edge
30
, namely a positive rake angle
63
and a relief angle
65
. The positive rake angle
63
is the angle that the leading face portion
26
of the face
24
is swept backwardly from the vertical along the shoulder leading edge
30
and is formed by the twist
54
of the drill bit
10
. The relief angle
65
is the angle that the shoulder side
44
is swept downwardly from the horizontal along the shoulder leading edge
30
. The relief angle is formed by grinding the shoulder side
44
to the preselected angle.
Twist
54
provides each leading shoulder edge
30
with a positive rake
63
to allow a chip or “curl” of wood to form in the workpiece
60
(shown in
FIG. 7
) at the leading shoulder edge
30
during the operation of the spade drill bit
10
. The “curl” or chip is suggested by the curved arrow
62
shown at the leading shoulder edge
30
in FIG.
6
. The maximum amount of rake
63
for leading shoulder edge
30
provided by the twist
54
varies from one size of drill bit to the next size of drill bit, but ranges between 4° to 15°. The greater the rake
63
the greater the cutting efficiency but the greater the instability. For most applications a rake of 6° balances the efficiency with stability.
The relief angle
65
will also affect the stability of the drill bit
10
. Similarly, the larger the relief angle
65
the larger the pull into the workpiece and the greater the instability. Thus to further balance the instability associated with the positive rake
63
, the relief angle
65
can be selected to limit the maximum depth of cut of the drill bit
10
and so limit the maximum thickness of the resulting chip. By lowering the relief angle
65
, the depth of cut and so the thickness of the chip is reduced and so the net cutting rate is maintained at a level that taxes neither the operator and the electric drill nor the strength of the drill bit
10
as a whole, while continuing to provide an acceptable cutting rate. Typically this angle will be between 5° and 10° and preferably relief angle is 6°.
Referring to
FIG. 3
, there is a gradual transition of the rounded corner
64
between shoulder side
44
and longitudinal side
42
. The rounded corner leading edge
66
of the rounded corner
64
is a smooth continuous link between the leading shoulder edge
30
and leading longitudinal edge
34
. Similarly, the rounded corner trailing edge
68
of the rounded corner
64
is a smooth continuous link between the trailing shoulder edge
32
and trailing longitudinal edge
36
. The rounded corner trailing edge
68
has a smaller radius of curvature than the rounded corner leading edge
66
because of the acute and obtuse angles relative to longitudinal side
42
and shoulder side
44
.
Referring to
FIG. 3
, a dimple
70
is positioned on the leading face portion
26
proximate to the rounded corner
64
such that rounded corner leading edge
66
forms a cutting edge. Dimple
70
is generally hemispherical in shape. A portion of dimple
70
is bounded by the rounded corner leading edge
66
. Preferably dimple
70
has the same radius as the radius of the rounded corner
64
. A cross section of the spade drill bit
10
through the dimple
70
and across the face
24
is shown in FIG.
7
. As can be seen in
FIG. 7
, dimple
70
provides a positive rake to rounded corner leading edge
66
. The rounded corner leading edge
66
and dimple
70
engages the work piece
60
and severs wood fibres therein. As shown in
FIGS. 7 and 8
, the cutting edge provided by the sharp rounded corner leading edge
66
between the rounded corner
64
and dimple
70
is an improvement over the cutting edge provided with a side spur
72
of prior art drill bit
74
, shown in FIG.
9
.
As best seen in
FIG. 3
, an elongate flute
76
is formed in centre spur face
46
proximate to the centre spur leading edge
48
. Elongate flute
76
is narrower and shallower at the tip of the centre spur
16
than toward and into the face
24
. An inside boundary
78
of the elongate flute
76
spaced from the centre spur leading edge
48
is generally parallel to longitudinal axis
56
of the spade drill bit
10
. Elongate flute
76
in conjunction with centre spur leading edge
48
provides a positive rake angle to the centre spur leading edge
48
. The centre spur
16
has an elongate flute
76
in each centre spur face
46
. Accordingly the depth of each elongate flute
76
should not interfere with the other elongate flute
76
nor compromise the strength of the centre spur
16
as a whole.
Centre spur leading edge
48
, leading shoulder edge
30
, leading longitudinal edge
34
and rounded corner leading edge
66
are all sharpened edges. The centre spur leading edge
48
is field resharpened by use of a grinding stone or flat file, the stone or file being applied across the centre spur side
52
, the new centre spur side
52
forming a new centre spur leading edge
48
in cooperation with the centre spur elongate flute
76
. Similarly, the leading shoulder edge
30
is field resharpened by use of the same grinding stone or flat file, the stone or file being now applied across the shoulder side
44
, the new shoulder side
44
forming a new leading shoulder edge
30
in cooperation with the twist
64
at the leading face portion
26
. In addition, in continuation with the leading shoulder edge resharpening, the stone or file can easily be applied tangentially around the rounded corner
64
, to form a new rounded corner leading edge
66
in cooperation with dimple
70
. As the rounded corner leading edge
66
does not extend axially upwardly from the leading shoulder edge
30
, a particularly narrow stone or file is not required to sharpen the leading shoulder edge
30
as is the case with prior art spade drill bits
74
that include side spurs
72
which limit the width of stone or file that can be used. Further, complex side spur geometry does not have to be preserved, beyond the rounded corner aspect, during resharpening the spade drill bit
10
of the present invention.
Referring to
FIGS. 10 through 19
, the dimple could have a number of alternate shapes. The hemispheric dimple
70
described above has a spherical shape. Resharpening of the hemispheric dimple
70
will result in an erosion of the rounded corner leading edge
66
and a different rake of the rounded corner leading edge
66
.
FIGS. 10 and 11
show a conical dimple
88
. The conical dimple
88
has a constant rake even after repeated sharpening. The frustoconical dimple
90
shown in
FIGS. 12 and 13
is similar to the conical dimple
88
but limits the depth thereof. Similarly the frustoconical dimple
90
has a constant rake even after repeated sharpening. A pyramidal or diamond dimple
92
shown in
FIGS. 14 and 15
has a straight corner leading edge
94
. The pyramidal dimple
92
has a constant rake. Similarly frustopyramidal dimple
98
shown in
FIGS. 16 and 17
has a straight corner leading edge with a limiting depth. The frustopyramidal dimple
98
has a constant rake. The elliptical dimple
96
shown in
FIGS. 18 and 19
is similar to the hemispheric dimple
70
but has a longer rounded corner leading edge.
The shape and the rake of the dimple can be chosen by the manufacturer. However, it should be noted that if the shape and rake of the dimple is such that the leading edge is very sharp it is also very thin and very week and is subject to breakage and chipping when in use. An example of a dimple
70
with a sharp edge is shown in FIG.
20
. Alternatively a dimple that balances the sharp edge with a relatively thick corner edge is shown in FIG.
21
. The dimple of
FIG. 21
is preferable over the dimple of FIG.
20
.
Spade drill bit
10
is shaped using the forging process and thereafter grinding and sharpening. The spade portion
14
is forged by flattening a cylindrical bar of steel. The elongate shank portion
12
is the unmodified cylindrical bar. The flat sides
20
of the driving end
18
are ground or forged. Spade portion
14
is wider than the elongate shank portion
12
due to the forging and flattening of the cylindrical bar. The twist
54
is forged into the cylindrical bar with the spade portion
14
formed therein. A hole
58
is provided in the centre of planar faces
24
. Hole
58
allows the end user to hang drill bit
10
for storage. Further hole
58
is used during the grinding and sharpening process to position the drill bit properly for each successive step of the manufacturing process.
There are a number of advantages of spade drill bit
10
over the prior art. For example, while the provision of a centre spur elongate flute
80
of prior art drill bit
82
with both edges generally parallel to the centre spur leading edge has been shown (
FIG. 23
) the elongate centre spur flute
76
of the present invention provides increased efficiency by providing an increased volume as it approaches and enters the face
24
, thereby providing the path for increased chip flow along the flute
76
. Further, the elongate centre spur flute
76
of the present invention is an improvement over other centre spur flutes
84
of prior art drill bit
86
such as those shown in
FIG. 24
because it has improved strength. A comparison of
FIGS. 22
,
23
and
24
suggests that the centre spur
16
and centre spur elongate flute
76
of the present invention have improved chip capacity and improved strength over the prior art while retaining a positive rake angle.
Further, although rounded corners have been shown in the prior art the provision of dimple
70
provides improved cutting characteristics. Overall, the spade drill bit
10
of the present invention has shown, through testing, improvements in the drilling rate and a reduction in the amount of wood splintering at the entrance and exit regions of the drill hole as compared to prior art drill bits.
It will be appreciated that the above description relates to the invention by way of example only. Many variations on the invention will be obvious to those skilled in the art and such obvious variations are within the scope of the invention as described herein whether or not expressly described.
Claims
- 1. A spade drill bit for use in association with a drill having a direction of rotation, comprising:an elongate shank portion having a central longitudinal axis and one end adapted to engage the drill; a spade portion extending longitudinally from the other end of the elongate shank, the spade portion having opposed spaced apart planar faces and each planar face having a leading face portion, a trailing face portion, a leading shoulder edges, a trailing shoulder edge, a leading longitudinal edge and a trailing longitudinal edge, the spade portion having a twist in the direction of rotation proximate to the leading shoulder edge and the trailing shoulder edge and the twist having a smooth continuous curve in the longitudinal direction and a rake angle of 6 degrees and the twist of each planar face being arranged such that a straight line perpendicular to the central longitudinal axis from the leading longitudinal edge to the opposed trailing longitudinal edge will be in continuous contact with the respective face; and a centre spur extending outwardly from the spade portion along the central longitudinal axis.
- 2. A spade drill bit for use in association with a drill having a direction of rotation, comprising:an elongate shank portion having a central longitudinal axis and one end adapted to engage the drill; a spade portion extending longitudinally from the other end of the elongate shank; a centre spur extending outwardly from the spade portion along the central longitudinal axis the centre spur having a pair of opposing centre spur faces, each face having a centre spur leading edge and a centre spur trailing edge which meet at a point; and a centre spur elongate flute formed in each centre spur face proximate to the centre spur leading edge having an inside boundary that is generally parallel to central longitudinal axis such that the volume of the centre spur elongate flute increases as it approaches the spade portion.
- 3. A spade drill bit as claimed in claim 2 wherein each leading face portion and trailing face portion proximate to the respective leading shoulder edge and trailing shoulder edge is twisted in the direction of rotation.
- 4. A spade drill bit as claimed in claim 3 wherein there is a corner leading edge between the leading shoulder edge and the leading longitudinal edge and a corner trailing edge between the trailing shoulder edge and the trailing longitudinal edge and further including a dimple formed in each leading face portion proximate to each corner leading edge such that a cutting edge is formed at each corner leading edge.
- 5. A spade drill bit for use in association with a drill having a direction of rotation, comprising:an elongate shank portion having a central longitudinal axis and one end adapted to engage the drill; a spade portion extending longitudinally from the other end of the elongate shank, the spade portion having opposed spaced apart planar faces and each planar face having a leading face portion, a trailing face portion, a leading shoulder edge, a trailing shoulder edge, a leading longitudinal edge and a trailing longitudinal edge and wherein there is a corner leading edge between the leading shoulder edge and the leading longitudinal edge; a dimple formed in each leading face portion proximate to each corner leading edge such that a cutting edge is formed at each corner leading edge; and a centre spur extending outwardly from the spade portion along the central longitudinal axis.
- 6. A spade drill bit as claimed in claim 5 wherein the dimple is generally hemispherical in shape and each rounded corner leading edge is generally curved.
- 7. A spade drill bit as claimed in claim 6 wherein each leading face portion and trailing face portion proximate to the respective leading shoulder edge and trailing shoulder edge is twisted in the direction of rotation.
- 8. A spade drill bit as claimed in claim 5 wherein the dimple is generally conical in shape and each corner leading edge is generally curved.
- 9. A spade drill bit as claimed in claim 8 wherein each leading face portion and trailing face portion proximate to the respective leading shoulder edge and trailing shoulder edge is twisted in the direction of rotation.
- 10. A spade drill bit as claimed in claim 5 wherein the dimple is generally frustoconical in shape and each corner leading edge is generally curved.
- 11. A spade drill bit as claimed in claim 10 wherein each leading face portion and trailing face portion proximate to the respective leading shoulder edge and trailing shoulder edge is twisted in the direction of rotation.
- 12. A spade drill bit as claimed in claim 5 wherein the dimple is generally pyramidal in shape and each corner leading edge is generally straight.
- 13. A spade drill bit as claimed in claim 12 wherein each leading face portion and trailing face portion proximate to the respective leading shoulder edge and trailing shoulder edge is twisted in the direction of rotation.
- 14. A spade drill bit as claimed in claim 5 wherein the dimple is generally frustopyramidal in shape and each corner leading edge is generally straight.
- 15. A spade drill bit as claimed in claim 14 wherein each leading face portion and trailing face portion proximate to the respective leading shoulder edge and trailing shoulder edge is twisted in the direction of rotation.
- 16. A spade drill bit as claimed in claim 5 wherein the dimple is generally elliptical in shape and each corner leading edge is generally curved.
- 17. A spade drill bit as claimed in claim 16 wherein each leading face portion and trailing face portion proximate to the respective leading shoulder edge and trailing shoulder edge is twisted in the direction of rotation.
- 18. A spade drill bit as claimed in claim 4 wherein the centre spur elongate flute extends into the blade portion.
- 19. A spade drill bit as claimed in claim 18 wherein the twist has a rake angle between 4 and 15 degrees.
- 20. A spade drill bit as claimed in claim 19 wherein the rake angle is 6 degrees.
- 21. A spade drill bit as claimed in claim 18 wherein the twist has a relief angle between 5 and 10 degrees.
- 22. A spade drill bit as claimed in claim 19 wherein the relief angle is 6 degrees.
US Referenced Citations (43)
Foreign Referenced Citations (2)
Number |
Date |
Country |
2421022 |
Oct 1979 |
FR |
WO9906193 |
Feb 1999 |
WO |