Information
-
Patent Grant
-
6630771
-
Patent Number
6,630,771
-
Date Filed
Friday, February 23, 200124 years ago
-
Date Issued
Tuesday, October 7, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Patel; Vip
- Guharay; Karabi
Agents
-
CPC
-
US Classifications
Field of Search
US
- 313 141
- 313 142
- 313 144
- 313 136
- 123 169 R
- 123 169 EL
- 445 7
- 228 1735
-
International Classifications
-
Abstract
A spark plug electrode having a welded-on noble-metal part for a longer service life of the spark plug. Prior to the welding process, the noble-metal part is provided with a profiling on the side facing the spark plug electrode.
Description
FIELD OF THE INVENTION
The present invention relates to a spark plug electrode, at whose spark exit or spark entrance area a burn-resistant noble-metal is applied.
BACKGROUND INFORMATION
The use of nobel-metal platinum alloy results in a substantially longer service life of he electrodes, which are exposed to very great corrosion and erosion stresses in the combustion chamber because of the conditions prevailing there. For cost reasons, no provision has been made to date to produce the electrode of a spark plug completely from noble metal. However, varied possibilities have already been found to ennoble a spark plug electrode. German Patent No. 3 727 526 describes a method of producing a spark plug for internal combustion engines, in which a noble-metal platelet on the end face of the central or ground electrode is joined by laser welding to the material of the electrode.
The use of ennobled electrodes for a spark plug is always taken into consideration when one would like to achieve very long service live and longer maintenance intervals for a spark plug. In this connection, it is known to attach these noble-metal parts to the spark plug electrodes by laser welding and resistance welding. To compensate for different expansion coefficients, it is also conventional to provide a compensating layer between the electrode and the noble-metal part, to thus produce a better and more durable bond.
SUMMARY OF THE INVENTION
In accordance with the present invention, the use of a noble-metal part, which has a smooth surface on one side and a profiled surface on the other, for welding onto the spark plug electrode has the advantage that the profiled surface, because of the smaller contact area, exhibits a high transition resistance between the noble-metal part and the electrode during the welding process. The means a correspondingly high heat energy develops in the welding zone between the noble-metal part and the spark plug electrode. In turn, the provision of a smooth surface for the noble-metal part on the side facing the welding electrode has the advantage that a small transition resistance is present here, and less heat develops at this location than at the welding position. The present construction of the welded connection largely prevents a rupture and the corrosion of the welded connection between the noble-metal part and the electrode associated with such a rupture.
Profiling in the manner that, at the beginning of the welding process, the contact areas between the noble-metal part and the central electrode exist only in the edge area of the noble-metal part offers the advantage that the heating of the noble-metal part to be welded increases starting from the edge area toward the center, and because of the star-shaped structure, the air still present between the noble-metal part and the electrode can escape via radial channels. The welding temperature has a relatively uniform characteristic over the entire cross-section, and particularly in the critical edge area, can be brought to the desired high values. In this manner, the durability of the welded connection is substantially increased, which in turn influences the service life of the spark plug in a positive manner.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
shows a spark plug electrode and a noble-metal part of the present invention prior to welding.
FIG. 2
shows a plain view of a profiled side of the noble-metal part.
FIGS. 3
a
,
3
b
,
4
a
,
4
b
,
5
a
and
5
b
show individual method steps for producing the profiled noble-metal part and its welding to the spark plug electrode.
DETAILED DESCRIPTION
FIG. 1
shows a spark plug electrode
10
and a noble-metal part
11
which is placed on the end face of spark plug electrode
10
. This noble-metal part
11
has a smooth end face
12
and a profiled end face
13
. Noble-metal part
11
is arranged in such a way that it rests with its profiled side
13
on spark plug electrode
10
. Welding electrode
14
is shown schematically on the side of noble-metal part
11
having smooth surface
12
and facing away from spark plug electrode
10
.
FIG. 2
illustrates the design of profiled surface
13
of noble-metal part
11
. In
FIG. 2
, components which have already been explained with respect to
FIG. 1
are provided with the same reference numerals. Noble-metal part
11
is profiled in such a way that, between spark plug electrode
10
and noble-metal part
11
, contact areas
20
are located at the outer edge of noble-metal part
11
. As can be seen in
FIG. 2
, a star-shaped profiling was selected here which ensures that only the outer regions initially form a contact area
20
with spark plug electrode
10
.
The production of the profiled noble-metal part according to the present invention and its welding to the central electrode shall now be clarified with reference to
FIGS. 3
a
and
3
b
,
FIGS. 4
a
and
4
b
, as well as
FIGS. 5
a
and
5
b
. Since all the Figures relate to the same subject matter, the same reference numeral shall be used in each case for the same components, the reference numerals then not being completely explained again for the respective Figures.
In
FIG. 3
a
, a noble-metal wire
30
, e.g. a platinum wire, is guided through a retaining part
31
, such that noble-metal wire
30
projects from this retainer
31
on the other side in a controlled manner. The length of the noble-metal part can be determined by a setting or else a preselection of the projection of the noble-metal part. The portion of noble-metal wire
30
projecting from retaining part
31
is now sheared off by a shearing tool
32
. In
FIG. 3
b
, a noble-metal cropping
40
has already been sheared off from noble-metal wire
30
. Even given a relatively small wire diameter, it is possible to realize quite a great length of noble-metal cropping
40
using is this shearing method. The ratio of length to diameter of the noble-metal cropping is advantageously greater than 1.
In
FIG. 4
, noble-metal cropping
40
is disposed in an embossing die, between two stamps
41
and
42
and is compressed for enlarging the diameter, i.e., reducing the length. In this setting process, a first stamp
41
is provided with a smooth surface and a second stamp
42
is provided with a profiled surface. Because of this arrangement, noble-metal cropping
40
is embossed during the setting process shown in
FIG. 4
b
into the form already explained with respect to
FIG. 1
, i.e., one surface has a smooth or even flat shape, and the opposite surface of noble-metal part
11
is profiled.
As shown in
FIG. 5
a
, noble-metal part
11
thus formed is now mounted on spark plug electrode
10
, e.g. a central electrode, in the manner that the side having smooth surface
12
faces welding electrode
14
. Consequently, a good contact area with low transition resistance is present between noble-metal part
11
to be welded and welding electrode
14
. Profiled end face
13
of noble-metal part
11
is arranged opposite the spark plug electrode, so that a high transition resistance, advantageous for the welding process, exists between the spark plug electrode and noble-metal part
11
. The welding process itself may be carried out in two steps. In a first step, the profile tips are welded at contact areas
20
with a relatively low current intensity. In this manner, uniform starting conditions are produced for the second welding step. In the second welding step, the noble metal is welded with a higher current intensity up to the point of an all-over bond with the electrode.
FIG. 5
b
shows the bond between spark plug electrode
10
and noble metal part
11
after the welding process. This welded bond can now be fed to further processing steps. Thus, for example, given a use as central electrode, it is possible to shear off this bond in its edge area to ensure that, at the farthest, the noble-metal part reaches up to the opposite electrode of the spark plug.
The described method permits a largely free formation of the noble-metal part on the spark plug electrode.
In principle, widely varying profilings of the noble-metal part are conceivable. Possible. However, in each case the contact points between the noble-metal part and the electrode should be situated at the edge area of the noble-metal part. During heating, the necessary welding temperature is thus reached first at this location in the critical edge area, then spreads to the middle of the noble-metal part, and thus assures a good, planar welded connection and a cleanly welded edge area.
Claims
- 1. A method for producing a spark plug electrode arrangement, comprising:shearing off a section of a noble-metal wire, the section forming a noble metal part; arranging the noble-metal part in an embossing die and impressing two mutually opposite surfaces of the noble-metal part, a first surface being provided with a smooth surface, and a second surface opposite the first surface being provided with a profiled surface; mounting the noble-metal part on the spark plug electrode so that the profiled surface of the noble-metal part faces the spark plug electrode, and the smooth surface of the noble-metal part faces away from the spark plug electrode; and welding the noble-metal part to the spark plug electrode, the profiled surface being formed so that at the beginning of the welding step, contact areas between the noble-metal part and the spark plug electrode are present only an outer edge area of the noble-metal part, the noble-metal part being welded at a spark exit or spark entrance area.
- 2. The method according to claim 1, wherein the welding step includes a two-step process, in a first step, profile tips of the profiled surface are welded at contact areas of the spark plug electrode with a low current intensity, and in a second step, the noble-metal part is welded with a higher current intensity up to a point of an all-over bond with the spark plug electrode.
- 3. A spark plug electrode arrangement, comprising:a spark plug electrode having an end face; and a noble-metal part having a profiled surface and an outer edge area, the profiled surface including a plurality of contact areas situated at the outer edge area of the noble-metal part; wherein the noble-metal part is welded to the end face of the spark plug electrode at the plurality of contact areas, the noble-metal part being welded to the spark plug electrode at one of a spark plug exit area of the spark plug electrode and a spark entrance area of the spark plug electrode; and wherein the profiled surface of the noble-metal part includes at least one radial channel operable to permit air between the noble-metal part and the spark plug electrode to escape.
Priority Claims (1)
Number |
Date |
Country |
Kind |
198 38 538 |
Aug 1998 |
DE |
|
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/DE99/01072 |
|
WO |
00 |
Publishing Document |
Publishing Date |
Country |
Kind |
WO00/13274 |
3/9/2000 |
WO |
A |
US Referenced Citations (3)
Number |
Name |
Date |
Kind |
5456624 |
Moore et al. |
Oct 1995 |
A |
5856724 |
Chiu et al. |
Jan 1999 |
A |
6346766 |
Kanao et al. |
Feb 2002 |
B1 |
Foreign Referenced Citations (2)
Number |
Date |
Country |
3 727 526 |
Mar 1989 |
DE |
WO 9525372 |
Sep 1995 |
WO |