This application is a 35 U.S.C. § 371 national stage of International Application No, PCT/SE2013/050535 filed on May 14, 2013, published in English under PCT Article 21(2), which claims the benefit of priority to Swedish Patent Application No. 1250485-8 file on May 14, 2012, the disclosures of which are hereby incorporated by reference.
The present invention relates to an ignition coil assembly for a spark ignited internal combustion engine comprising an ignition coil where said assembly has a main axis and is configured for insertion in a spark plug well.
Internal combustion engines comprise spark plugs for initiating combustion driving the engine piston and require a spark to ignite the compressed fuel. Conventionally an ignition coil transforms the battery's low voltage to high voltage needed to create an electric spark in the spark plugs to ignite the fuel. Common for all plugs is that they are arranged to be fitted into a well on the cylinder head piercing the wall of the combustion chamber so that the ignition terminal is brought into contact with the interior of the combustion cylinder. Direct ignition systems, where the ignition coil is mounted directly above each spark plug, are known to be advantageous since they eliminate the need of spark-plug wires and reduces leakage current as well as it makes ignition timing-control easier. Such a system is disclosed in EP0987435. These direct ignition systems are usually made up as one integrated assembly comprising both the spark plug as well as the ignition coil, whereby the spark plug is connected to the coil via an interconnecting extension body. The size (length) of the extension body in its turn is dependent on the dimensions of the motor. Spark ignited engines are sometimes designed with a vast distance (often at least 150 mm, sometimes as much as 500 mm) between the engine head and the internal combustion cylinder leading to that large spark plug constructions are needed in order for the ignition terminal to reach the cylinder. In some cases this is due to that the spark ignited engine originates from a converted diesel engine. As a diesel engine lacks spark plugs they are not designed to be serviced and the engine is therefore normally not adapted to promote easy access of any plug. Nevertheless, converting diesel engines into spark ignited engines represent a fast growing area, partly due to an increasing environmental awareness, and the ability of converting a diesel engine leads to the possibility of adapting vehicles already in use (e.g. lorry trucks, city busses etc.) to become e.g. gas-compatible.
U.S. Pat. No. 5,357,233 discloses an ignition apparatus for an internal combustion engine for providing a peaked high voltage current from an ignition coil to a spark plug through a bendable extension device including a first portion extending from the ignition coil, a second portion adapted to be connected to the spark plug and an elastic member connecting the first member to the second member so that the first member moves elastically in relation to the second member.
However, the space available under the hood is often rather limited, even quite narrow, and the lack of space may lead to difficulties when removing and/or introducing the ignition coil assembly from/into the motor. This problem leads to a need of costly design of extensions, e.g. dividing it in several parts.
It is an object of the present invention to solve, or at least to minimise the above mentioned problems, providing an easy and quick way of removing/introducing the ignition coil assembly from/into an engine cylinder head. This is achieved by an ignition coil assembly according to the appended claim 1, wherein the assembly comprises an elongated and flexible extension body which comprises an upper end portion and a lower end portion and where said extension body is arranged to be transversally bendable in relation to a main axis so that the upper end portion and the lower end portion of the extension body may assume an angle in relation to each other between 0 -360°.
In one embodiment the extension body interconnects a spark plug receiving end portion and the ignition coil to each other. Thanks to that the extension body is transversally bendable in relation to the main axis, the spark plug receiving end portion and the ignition coil of the assembly may be configured to assume an angle in relation to each other.
In a preferred aspect of the invention the extension body is made of a flexible material such as rubber. It is to be understood that the term “flexible” is to be interpreted as capable of being bent without breaking.
Thanks to the invention there is achieved an assembly which is very easy to handle and which may be configured to fit a large variety of engine types, having various dimensions of the well. Thanks to the extension body the assembly can be adapted in length to a particular well, and due to the flexible property of the extension body, the ignition coil assembly can even be designed to fit deep wells (i.e. requiring a long extension body) without running into practical difficulties when removing/introducing the assembly due to limited space inside the motor compartment. In case of a very lengthy assembly, which normally would pose a problem in a narrow motor compartment, an assembly body according to the invention may simply be bent (e.g. during removal of the assembly) and can thus be adapted to the space available around the well under the hood of the vehicle. Furthermore, it facilitates providing compact engine compartments.
According to yet another aspect of the invention, said ignition coil is detachably arranged within a first joining section at an upper end portion of the extension body.
According to yet another aspect of the invention, the spark plug is detachably arranged within a detachable spark plug boot which is removably mounted at a lower end portion of the extension body. Preferably said spark plug boot is made of a flexible and heat resistant material such as silicone rubber, arranged to tightly embrace the spark plug to provide an isolating layer and prevent leakage of high voltage current. In a preferred embodiment the spark plug boot is arranged to be fitted within an adapter unit (a spark plug boot adapter) which in its turn is attached to a second joining section at the lower end portion of the extension body. The adapter unit is preferably made of a heat resistant and isolating material, such as ceramics or high temperature plastic, whereby there is achieved an efficient insulator between the spark plug and the second lowermost joining section of the assembly. Thanks to this aspect there is achieved the benefit that the soft and heat sensitive parts of the assembly, such as the extension body often being made of a resilient material such as rubber, are protected from the heat of the spark plug and are therefore also kept from destruction. An overheated rubber part could otherwise cause the assembly to break down which may result in difficulties during removal of the assembly or replacement of parts, and/or cause leakage of current. Preferably the spark plug boot is easy to detach from the spark plug adapter and at the same time is dimensioned with regards to its diameter to allow for a spark plug socket to reach the spark plug.
The invention will hereinafter be described in more detail with reference to the appended drawings. The following description should be considered as preferred form only, and is not decisive in a limiting sense.
In
In a preferred embodiment the assembly 1 is generally cylindrical and has a main axis “A”, and said elongated extension body 6 is arranged to be transversally bendable in relation to the main axis A so that the spark plug receiving end portion 10 and the ignition coil 3 may be configured to assume an angle α in relation to each other. The assembly 1 is shown in a bent configuration by means of dashed lines in
The ignition coil 3, comprising a core 31 and coils 32, is detachably arranged within a first joining section 63 located at the upper end portion 62 of the extension body 6, and is beneficially positioned inside an ignition coil casing 30. The ignition coil casing 30 is arranged to be attached onto the first joining section 63 by means of a coupling sleeve 34 being threaded, or attached in any other suitable way, onto the exterior of the extension body 6 and the coil casing 30 respectively, adjoining and retaining the two parts. Thus, in one embodiment said ignition coil casing 30 is provided with outer threading matching the inner threading of the coupling sleeve 34.
The assembly 1 is seen to be provided with a spark plug 2 in
It is to be understood that the invention also relates to an embodiment where the ignition coil 3 is positioned directly adjacent to the ignition plug, and said elongated extension body 6 is connected to the ignition coil so as to form an extension of the assembly 1 to promote easy removing and/or introducing the ignition coil assembly from/into the motor.
Preferably the diameter of the spark plug boot 23 is smaller than the diameter of the spark plug wrench so that it is still possible to remove/replace the spark plug if it should get stuck. Thus it is possible to remove the plug 2 for instance using a conventional spark plug socket. In one embodiment the spark plug boot 23 is arranged to be removed and discarded together with the spark plug. Preferably the spark plug boot 23 is dimensioned to both being easily detachable from the adaptor unit 20 and to allow for a socket to reach the spark plug 2 properly. Preferably said spark plug boot 23 is made of a flexible, heat resistant and isolating material, such as silicone rubber, whereby there is achieved an efficient insulator between the spark plug 2 and the second joining section 66 of the extension body 6. The spark plug boot 23 is dimensioned to tightly embrace the spark plug thereby creating an efficient isolating layer and preventing leakage of high voltage current. Thanks to the spark plug boot 23 there is also achieved the advantage that the spark plug 2 is prevented from getting stuck to the adaptor unit 20 because the spark plug boot 23 creates a protecting layer which leads to facilitated detaching of the spark plug boot 23.
The function of the assembly 1 according to one aspect is now to be described. A direct ignition assembly 1 according to the invention, shown in
Once the entire assembly body 1 is in place inside the well 90 a coil housing 4 at the uppermost end of the assembly 1 is arranged to secure the assembly onto the engine head 9 so that the well 90 and the chamber is properly sealed. The coil housing 4 is attached onto the head 9 by means of fastening means 40 such as screws or any other conventional/suitable alternative. The coil housing 4 comprise a connector body 5 for electrically connecting the primary terminals of the coil 3.
In
The invention is not to be seen as limited by the embodiments described above, but can be varied within the scope of the appended claims. For instance, the flexible material of the extension body may be a material other than rubber, and further the extension body may vary in length depending on the depth of the well 90.
Many other variations are also possible, as will be readily understood by the person skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
1250485 | May 2012 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE2013/050535 | 5/14/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/172771 | 11/21/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5357233 | Wada | Oct 1994 | A |
6114935 | Oosuka | Sep 2000 | A |
20050110604 | Fujiyama | May 2005 | A1 |
20100175653 | Lykowski | Jul 2010 | A1 |
20100225222 | Bishop | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
0987435 | Mar 2000 | EP |
WO 2010081124 | Jul 2010 | WO |
Entry |
---|
International Search Report and Written Opinion dated Dec. 6, 2013 for PCT/SE2013/050535, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20150136098 A1 | May 2015 | US |