This application is based on and claims priority from Japanese Patent Application No. 2013-121568 filed on Jun. 10, 2013, the content of which is hereby incorporated by reference in its entirety into this application.
1. Technical Field
The present invention relates to spark plugs for internal combustion engines and methods of manufacturing the spark plugs.
2. Description of the Related Art
In a spark plug for an internal combustion engine, for the purpose of extending the service life of the spark plug, a refractory metal material (e.g., a tungsten alloy) is generally used for making a center electrode of the spark plug. Here, the term “refractory metal material” denotes a metal material having a high melting point.
However, a refractory metal material is generally expensive. Therefore, for reducing the manufacturing cost, it is possible to make a base portion of the center electrode with an inexpensive metal material (e.g., a nickel alloy) and a distal portion of the center electrode, which is particularly easy to be consumed in the center electrode, with a refractory metal material. In this case, since the refractory metal material generally has a low coefficient of thermal expansion, it is important to reduce thermal stress induced in the center electrode due to the difference in coefficient of thermal expansion between the refractory metal material and the inexpensive metal material of which the base portion is made.
For example, Japanese Unexamined Patent Application Publication No. H7-037673 discloses a spark plug in which the center electrode has its base portion made of a nickel alloy and its distal portion (or discharge chip) made of a tungsten alloy. The distal portion is joined to a distal end of the base portion by laser welding to form a weld therebetween. More specifically, the weld is made up of those parts of the base portion and the distal portion which are molten and mixed together during the laser welding and solidified after the laser welding. Moreover, the weld is formed, along the outer periphery of the interface between the base portion and the distal portion, into an annular shape.
However, the spark plug disclosed in the above patent document involves the following problems.
In the spark plug, the base portion and the distal portion of the center electrode are joined to each other by only the annular weld formed along the outer periphery of the interface between the base portion and the distal portion. That is, on the radially inside of the annular weld, there exists a non-joined region where the base portion and the distal portion are not joined to each other. Consequently, concentration of thermal stress may occur at the boundary between the weld and the non-joined region, thereby causing a joining fault, such as cracks, to occur at the boundary.
In addition, one may consider forming the weld over the entire interface between the base portion and the distal portion, thereby eliminating the non-joined region. However, in this case, since the melting point of the base portion is lower than that of the distal portion, the base portion may be excessively molten during the laser welding, causing the molten material of the base portion to be scattered and volatilized.
According to exemplary embodiments, there is provided a spark plug for an internal combustion engine. The spark plug includes a ground electrode and a center electrode. The center electrode includes a base member and a discharge chip that is joined to a distal end of the base member to face the ground electrode through a spark gap formed therebetween. The discharge chip has a higher melting point than the base member. The base member and the discharge chip are joined to each other by both a weld and a diffusion layer. The weld is formed, by fusion welding, along an outer periphery of an interface between the base member and the discharge chip into an annular shape. The weld is made up of those parts of the base member and the discharge chip which are molten and mixed together during the fusion welding and solidified after the fusion welding. The diffusion layer is formed radially inside the annular weld. The diffusion layer is made up of those parts of the base member and the discharge chip which are diffused into each other across the interface between the base member and the discharge chip.
With the above configuration, the base member and the discharge chip of the center electrode can be joined to each other over the entire interface therebetween. Consequently, it is possible to prevent a sharp change of thermal stress from occurring at the interface and in its vicinity. In other words, it is possible to cause thermal stress generated between the base member and the discharge chip to be evenly distributed. As a result, it is possible to prevent local concentration of thermal stress from occurring in the center electrode.
Moreover, both the coefficients of thermal expansion of the weld and the diffusion layer are lower than the coefficient of thermal expansion of the base member and higher than the coefficient of thermal expansion of the discharge chip. Therefore, the differences of the coefficients of thermal expansion of the weld and the diffusion layer from the coefficients of thermal expansion of the base member and the discharge chip are smaller than the difference between the coefficients of thermal expansion of the base member and the discharge chip. Consequently, it is possible to reduce thermal stress induced in the center electrode.
Accordingly, with the above configuration, it is possible to reliably join the base member and the discharge chip without causing a joining fault, such as cracks, to occur in the center electrode.
In addition, at the diffusion layer, the base member and the discharge chip are diffusion-joined to each other, not fusion-welded to each other. Consequently, it is possible to prevent the base member from being excessively molten during the fusion welding, thereby stably joining the base member and the discharge chip to each other.
In one embodiment, the diffusion layer is a first diffusion layer. At an interface of the weld with the base member and the discharge chip, there is formed a second diffusion layer where the materials of the base member and the weld are diffused into each other across the interface and the materials of the discharge chip and the weld are diffused into each other across the interface.
It is preferable that: 0.5 μm≦t1≦20 μm; and 0.5 μm≦t2≦20 μm, where t1 and t2 are respectively the thicknesses of the first and second diffusion layers.
It is also preferable that: 1300° C.≦M1≦1500° C.; and 2200° C.≦M2≦2800° C., where M1 and M2 are respectively the melting points of the base member and the discharge chip of the center electrode.
According to the exemplary embodiments, there is also provided a method of manufacturing the spark plug. The method includes a preliminary joining step, a fusion welding step and a heat treatment step. In the preliminary joining step, the base member and the discharge chip of the center electrode are joined by resistance welding while being pressed to abut each other. In the fusion welding step, the base member and the discharge chip are laser-welded to form the annular weld along the outer periphery of the interface between the base member and the discharge chip. In the heat treatment step, both the base member and the discharge chip are heated to form the diffusion layer (or the first diffusion layer) on the radially inside of the annular weld.
With the above method, it is possible to easily and reliably form both the weld and the diffusion layer at the interface between the base member and the discharge chip. Consequently, it is possible to easily and reliably manufacture the spark which has the advantages as described above.
It is preferable that the preliminary joining step, the fusion welding step and the heat treatment step are sequentially performed in this order. In this case, it is possible to form the second diffusion layer at the interface of the weld with the base member and the discharge chip at the same time as forming the first diffusion layer at the interface between the base member and the discharge chip in the heat treatment step.
The present invention will be understood more fully from the detailed description given hereinafter and from the accompanying drawings of exemplary embodiments, which, however, should not be taken to limit the invention to the specific embodiments but are for the purpose of explanation and understanding only.
In the accompanying drawings:
Exemplary embodiments will be described hereinafter with reference to
This embodiment illustrates a spark plug 1 for an internal combustion engine of a motor vehicle.
As shown in
The weld 231 is formed, by fusion welding (more particularly, by laser welding in the present embodiment), along the outer periphery of an interface 23 between the base portion 21 and the distal chip 22, into an annular shape. The weld 231 is made up of those parts of the base member 21 and the discharge chip 22 which are molten and mixed together during the fusion welding and solidified after the fusion welding.
The first diffusion layer 232 is formed radially inside the annular weld 231. The first diffusion layer 232 is made up of those parts of the base member 21 and the discharge chip 22 which are diffused into each other across the interface 23 between the base portion 21 and the distal chip 22.
Hereinafter, the configuration of the spark plug 1 according to the present embodiment will be described in detail.
The spark plug 1 is designed to ignite the air-fuel mixture in a combustion chamber of the engine. The spark plug 1 has one axial end to be connected to an ignition coil (not shown) and the other axial end to be placed inside the combustion chamber. In addition, hereinafter, as shown in
As shown in
Specifically, in the present embodiment, the insulator 3 is formed of alumina into a substantially hollow cylindrical shape. In the insulator 3, the stem 5, the resistor 6 and the center electrode 2 are sequentially arranged from the proximal side in this order.
The metal shell 4 also has a substantially hollow cylindrical shape. The metal shell 4 is arranged to cover the insulator 3 from about the axially center position of the insulator 3 distalward such that a distal end portion of the insulator 3 protrudes outside of the metal shell 4.
The ground electrode 41 is bent at substantially a right angle to include a first portion 411 and a second portion 412. The first portion 411 extends from the distal end of the metal shell 4 distalward. The second portion 412 extends from a distal end of the first portion 411 radially inward to have an end part thereof axially facing the discharge chip 22 of the center electrode 2 through the spark gap 7 formed therebetween.
Referring to
The base member 21 is made of a nickel alloy which has a melting point of, for example, 1400° C. Moreover, as shown in
In addition, it should be noted that the base member 21 may also be made of other metal materials which preferably have a melting point M1 in the range of 1300° C. to 1500° C. (i.e., 1300° C.≦M1≦1500° C.). Those metal materials include, for example, iron alloys such as stainless steel.
The discharge chip 22 is made of a tungsten alloy which has a melting point of, for example, 2400° C. Moreover, as shown in
In addition, it should be noted that the discharge chip 22 may also be made of other metal materials which preferably have a melting point M2 in the range of 2200° C. to 2800° C. (i.e., 2200° C.≦M2≦2800° C.). Those metal materials include, for example, iridium, ruthenium, rhenium, molybdenum, zirconium, hafnium and their alloys.
As shown in
Moreover, in the present embodiment, as shown in
The weld 231 is formed, along the outer periphery of the interface 23 between the base member 21 and the discharge chip 22, into the annular shape. At the weld 231, part of the base member 21 and part of the discharge chip 22 are molten and mixed together. More specifically, in the present embodiment, an outer peripheral part of the taper portion 211 of the base member 21, an outer peripheral part of the pedestal portion 212 of the base member 21, and an outer peripheral part of the discharge chip 22 at the proximal end of the discharge chip 22 are molten and mixed together to form the weld 231.
At the boundaries between the base member 21 and the weld 231 and between the discharge chip 22 and the weld 231, there is formed an interface 234 of the weld 231 with the base member 21 and the discharge chip 22. Further, across the interface 234, there is formed the second diffusion layer 235 where the materials of the base member 21 and the weld 231 are diffused into each other and the materials of the discharge chip 22 and the weld 231 are diffused into each other. In addition, in the present embodiment, the thickness t2 of the second diffusion layer 235 is set to be in the range of, for example, 0.5 to 20 μm (i.e., 0.5 μm≦t2≦20 μm).
On the radially inside of the annular weld 231 at the interface 23 between the base member 21 and the discharge chip 22, there is formed the first diffusion layer 232 where the materials of the base member 21 and the discharge chip 22 are diffused into each other across the interface 23. More specifically, in the present embodiment, on the radially inside of the annular weld 231, the first diffusion layer 232 is formed across the interface 23 of the distal end face 213 of the base member 21 and the proximal end face 221 of the discharge chip 22. In addition, the thickness t1 of the first diffusion layer 232 is also set to be in the range of, for example, 0.5 to 20 μm (i.e., 0.5 μm≦t1≦20 μm).
Next, a method of manufacturing the spark plug 1 according to the present embodiment will be described.
As shown in
In the preliminary joining step 101, the base member 21 and the discharge chip 22 of the center electrode 2 are joined to each other by resistance welding.
Specifically, referring to
More specifically, in this step, the base member 21 is softened by the resistance heat. At the same time, the base member 21 and the discharge chip 22 are pressed between the pair of welding electrodes with such a pressing force as to be capable of deforming the softened base member 21. Consequently, the softened base member 21 is deformed so that the distal end face 213 of the base member 21 is adapted to the minor irregularity (or concavity and convexity) of the proximal end face 221 of the discharge chip 22. As a result, the base member 21 and the discharge chip 22 are reliably brought into contact with and joined to each other at the interface 23 therebetween.
In the fusion welding step 102, the base member 21 and the discharge chip 22 are further joined to each other by laser welding.
Specifically, referring to
In the heat treatment step 103, the center electrode 2 is heat-treated to form the first and second diffusion layers 232 and 235 therein.
Specifically, in this step, the center electrode 2 is heated in an atmosphere of, for example, 900° C. for 2 hours. Consequently, as shown in
As a result, the center electrode 2 of the spark plug 1 according to the present embodiment is finally obtained.
According to the present embodiment, it is possible to achieve the following advantageous effects.
In the present embodiment, the center electrode 2 includes the base member 21 and the discharge chip 22 that is joined to the distal end of the base member 21 to face the ground electrode 41 through the spark gap 7 formed therebetween. The melting point of the discharge chip 22 is higher than that of the base member 21. The base member 21 and the discharge chip 22 of the center electrode 2 are joined to each other by both the weld 231 and the first diffusion layer 232. The weld 231 is formed, by laser welding, along the outer periphery of the interface 23 between the base member 21 and the discharge chip 22 into the annular shape. The weld 231 is made up of those parts of the base member 21 and the discharge chip 22 which are molten and mixed together during the laser welding and solidified after the laser welding. The first diffusion layer 232 is formed radially inside the annular weld 231. The first diffusion layer 232 is made up of those parts of the base member 21 and the discharge chip 22 which are diffused into each other across the interface 23 between the base member 21 and the discharge chip 22.
With the above configuration, the base member 21 and the discharge chip 22 of the center electrode 2 can be joined to each other over the entire interface 23 therebetween. Consequently, it is possible to prevent a sharp change of thermal stress from occurring at the interface 23 and in its vicinity. In other words, it is possible to cause thermal stress generated between the base member 21 and the discharge chip 22 to be evenly distributed. As a result, it is possible to prevent local concentration of thermal stress from occurring in the center electrode 2.
Moreover, both the coefficients of thermal expansion of the weld 231 and the first diffusion layer 232 are lower than the coefficient of thermal expansion of the base member 21 and higher than the coefficient of thermal expansion of the discharge chip 22. Therefore, the differences of the coefficients of thermal expansion of the weld 231 and the first diffusion layer 232 from the coefficients of thermal expansion of the base member 21 and the discharge chip 22 are smaller than the difference between the coefficients of thermal expansion of the base member 21 and the discharge chip 22. Consequently, it is possible to reduce thermal stress induced in the center electrode 2.
Accordingly, with the above configuration, it is possible to reliably join the base member 21 and the discharge chip 22 without causing a joining fault, such as cracks, to occur in the center electrode 2.
In addition, at the first diffusion layer 232, the base member 21 and the discharge chip 22 are diffusion-joined to each other, not fusion-welded to each other. Consequently, it is possible to prevent the base member 21 from being excessively molten during the laser welding, thereby stably joining the base member 21 and the discharge chip 22 to each other.
Moreover, in the present embodiment, at the interface 234 of the weld 231 with the base member 21 and the discharge chip 22, there is formed the second diffusion layer 235 where the materials of the base member 21 and the weld 231 are diffused into each other across the interface 234 and the materials of the discharge chip 22 and the weld 231 are diffused into each other across the interface 234.
Consequently, with the second diffusion layer 235, it is possible to reduce thermal stress induced by the differences in coefficient of thermal expansion between the base member 21 and the weld 231 and between the discharge chip 22 and the weld 231. As a result, it is possible to more reliably prevent local concentration of thermal stress from occurring in the center electrode 2.
In the present embedment, 1300° C.≦M1≦1500° C. and 2200° C.≦M2≦2800° C., where M1 and M2 are respectively the melting points of the base member 21 and the discharge chip 22 of the center electrode 2.
Specifying the ranges of M1 and M2 as above, it is possible to reliably join the base member 21 and the discharge chip 22 to each other while securing a long service life of the center electrode 2.
More specifically, specifying M1 to be not lower than 1300° C., it is possible to prevent (M2−M1) from becoming too large, thereby allowing the base member 21 and the discharge chip 22 to be reliably joined to each other. Moreover, specifying M1 to be not higher than 1500° C., it is possible to make the base member 21 with an inexpensive metal material such as the nickel alloy described previously.
On the other hand, specifying M2 to be not lower than 2200° C., it is possible to make the discharge chip 22 with a refractory material, thereby securing a long service life of the center electrode 2. Moreover, specifying M2 to be not higher than 2800° C., it is possible to prevent (M2−M1) from becoming too large, thereby allowing the base member 21 and the discharge chip 22 to be reliably joined to each other.
In addition, it is further preferable that 800° C.≦(M2−M1)≦1400° C. In this case, it is possible to more reliably join the base member 21 and the discharge chip 22 to each other.
In the present embodiment, 0.5 μm≦t1≦20 μm, where t1 is the thickness of the first diffusion layer 232.
Specifying t1 to be not less than 0.5 μm, it is possible to reliably achieve the thermal stress-reducing effect of the first diffusion layer 232. Moreover, specifying t1 to be not greater than 20 μm, it is possible to prevent the time required for performing the heat treatment step 103 from becoming too long.
In the present embodiment, 0.5 μm≦t2≦20 μm, where t2 is the thickness of the second diffusion layer 235.
Specifying t2 to be not less than 0.5 μm, it is possible to reliably achieve the thermal stress-reducing effect of the second diffusion layer 235. Moreover, specifying t2 to be not greater than 20 μm, it is possible to prevent the time required for performing the heat treatment step 103 from becoming too long.
In the present embodiment, the method of manufacturing the spark plug 1 includes the preliminary joining step 101, the fusion welding step 102 and the heat treatment step 103. In the preliminary joining step 101, the base member 21 and the discharge chip 22 of the center electrode 2 are joined by resistance welding while being pressed to abut each other. In the fusion welding step 102, the base member 21 and the discharge chip 22 are laser-welded to form the annular weld 231 along the outer periphery of the interface 23 between the base member 21 and the discharge chip 22. In the heat treatment step 103, both the base member 21 and the discharge chip 22 are heated to form the first diffusion layer 232 on the radially inside of the annular weld 231.
With the above method, it is possible to easily and reliably form both the weld 231 and the first diffusion layer 232 at the interface 23 between the base member 21 and the discharge chip 22. Consequently, it is possible to easily and reliably manufacture the spark 1 which has the advantages as described above.
Further, in the present embodiment, the preliminary joining step 101, the fusion welding step 102 and the heat treatment step 103 are sequentially performed in this order.
Consequently, it is possible to form the second diffusion layer 235 at the interface 234 of the weld 231 with the base member 21 and the discharge chip 22 at the same time as forming the first diffusion layer 232 at the interface 23 between the base member 21 and the discharge chip 22 in the heat treatment step 103.
In the first embodiment, as described previously, the preliminary joining step 101, the fusion welding step 102 and the heat treatment step 103 are sequentially performed in this order.
In comparison, in the present embodiment, the heat treatment step 103 is performed after the preliminary joining step 101 but before the fusion welding step 102.
Consequently, as shown in
With the above configuration, it is still possible to reliably join the base member 21 and the discharge chip 22 without causing a joining fault, such as cracks, to occur in the center electrode 2. Moreover, it is also possible to prevent the base member 21 from being excessively molten in the fusion welding step 102, thereby stably joining the base member 21 and the discharge chip 22 to each other.
While the above particular embodiments have been shown and described, it will be understood by those skilled in the art that various modifications, changes, and improvements may be made without departing from the spirit of the present invention.
For example, in the first embodiment, the ground electrode 41 has no discharge chip provided therein. However, it is also possible to provide a discharge chip on the end part of the second portion 412 of the ground electrode 41 so as to axially face the discharge chip 22 of the center electrode 2 through the spark gap 7.
Number | Date | Country | Kind |
---|---|---|---|
2013-121568 | Jun 2013 | JP | national |