This invention generally relates to spark plugs and other ignition devices for internal combustion engines and, in particular, to a flat firing pad that may be attached to a center electrode, a ground electrode, or both.
Spark plugs can be used to initiate combustion in internal combustion engines. Spark plugs typically ignite a gas, such as an air/fuel mixture, in an engine cylinder or combustion chamber by producing a spark across a spark gap defined between two or more electrodes. Ignition of the gas by the spark causes a combustion reaction in the engine cylinder that is responsible for the power stroke of the engine. The high temperatures, high electrical voltages, rapid repetition of combustion reactions, and the presence of corrosive materials in the combustion gases can create a harsh environment in which the spark plug functions. This harsh environment can contribute to erosion and corrosion of the electrodes that can negatively affect the performance of the spark plug over time, potentially leading to a misfire or some other undesirable condition.
To reduce erosion and corrosion of the spark plug electrodes, various types of noble metals and their alloys—such as those made from platinum and iridium—have been used. These materials, however, can be costly. Thus, spark plug manufacturers sometimes attempt to minimize the amount of precious metals used with an electrode by using such materials only at a firing tip or spark portion of the electrodes where a spark jumps across a spark gap.
According to one embodiment, a spark plug may include a metallic shell, an insulator, a center electrode, a ground electrode, and a thin firing pad. The metallic shell has an axial bore. The insulator has an axial bore and is disposed partially or more within the axial bore of the metallic shell. The center electrode is disposed partially or more within the axial bore of the insulator, and the ground electrode is attached to the metallic shell. The thin firing pad can be attached to the center electrode, the ground electrode, or to both. The thin firing pad is made from a noble metal and includes an unfused sparking surface area that is several times or more larger than an unfused volume.
According to another embodiment, a spark plug may include a metallic shell, an insulator, a center electrode, a ground electrode, and an ultra thin firing pad. The metallic shell has an axial bore. The insulator has an axial bore and is disposed partially or more within the axial bore of the metallic shell. The center electrode is disposed partially or more within the axial bore of the insulator, and the ground electrode is attached to the metallic shell. The ultra thin firing pad can be attached to the center electrode, the ground electrode, or to both. The ultra thin firing pad is made from a noble metal and is attached with a fused portion that extends from a sparking surface all the way through the ultra thin firing pad. The fused portion is located mostly inboard of a peripheral edge of the sparking surface and follows the peripheral edge for a portion or more of the peripheral edge.
According to yet another embodiment, a spark plug firing pad i) is made from a noble metal material; ii) has a greatest dimension across a sparking surface that is several times or more larger than a greatest thickness dimension taken generally orthogonal to the sparking surface, where the greatest thickness dimension is less than or equal to approximately 0.275 mm; and iii) has a sparking surface area that ranges between approximately 0.56 mm2 and 3.5 mm2.
Preferred exemplary embodiments of the invention will hereinafter be described in conjunction with the appended drawings, wherein like designations denote like elements, and wherein:
The firing pads described herein can be used in spark plugs and other ignition devices including industrial plugs, aviation igniters, or any other device that is used to ignite an air/fuel mixture in an engine. This includes spark plugs used in automotive internal combustion engines, and particularly in engines equipped to provide gasoline direct injection (GDI), engines operating under lean burning strategies, engines operating under fuel efficient strategies, engines operating under reduced emission strategies, or a combination of these. The different firing pad embodiments detailed in this description possess certain geometric properties and relationships that provide an efficient, effective, and economical use of noble metal material compared to some known firing tips. For example, and as described below in more detail, the thin firing pads have a relatively large sparking surface area that improves ignitability and durability, yet still limits noble metal material costs. As used herein, the terms axial, radial, and circumferential describe directions with respect to the generally cylindrical shape of the spark plug of
Referring to
Referring now to
In the embodiment shown in the figures, the spark plug 10 includes a CE firing tip 28 that is attached to an axially-facing working surface 30 of the CE body 12 for discharging a spark across the spark gap G. Referring to
Referring to
As previously mentioned, the thin firing pad 40 possesses certain geometric properties and satisfies certain relationships that provide an efficient, effective, and economical use of noble metal material and, ultimately improves the overall performance of the spark plug 10. The firing pad 40 has a relatively large surface area at a sparking surface 42 when compared to known fine-wire spark plugs, for example. The large sparking surface area improves ignitability and durability of the firing pad 40 during operation, and can limit material degradation at the sparking surface 42. For example, the large surface area may inhibit or altogether eliminate growth in the spark gap G over the lifetime of use of the spark plug 10. Without wishing to exclude other theories of causation, it is currently believed that these improvements are due in part to the greater area exposed and available for discharging and exchanging a spark across the spark gap G. The following surface areas and volumes are directed to the non-fused portions of the firing pad 40 that are not melted or fused during a laser welding process or the like. In the example of
In one example in which the firing pad 40 has a square shape, such as the embodiment shown in
Other geometric properties that can influence the performance and cost of the spark plug include the thickness and volume of the firing pad 40. The firing pad 40 preferably has a small thickness and volume, which reduces the overall cost of noble metal material employed, yet still provides a sufficient amount of material for improved ignitability, durability, and attachment during operation. The inventors have determined that the firing pad 40 can have an axial thickness T (
Furthermore, the inventors have found that certain relationships regarding the unfused surface area of the sparking surface 42 and the unfused volume of the firing pad 40 help ensure improved performance, while reducing the costs of the noble metal material. Using the unfused surface areas and volumes in the examples above, the relationship of surface area-to-volume can range between approximately 2-to-1 (mm−1) and 20-to-1 (mm−1) for any particular shape firing pad and, even more preferably, between about 2-to-1 (mm−1) and 15-to-1(mm−1). The relationships above should be calculated in millimeters (mm), as other units will result in other values. Another relationship that, when satisfied, has also been found to help ensure improved ignitability and durability, and ensure an efficient and economical use of noble metal material, is unfused surface area of sparking surface 42 to axial thickness T of the firing pad 40. Using the unfused surface areas and axial thicknesses provided above, the relationship of area-to-thickness may range between approximately 4-to-1 and 50-to-1. Yet another relationship compares the values of the unfused surface area and unfused volume without regard to the units of measurement; for example, the unfused surface area may be several times or more (e.g., four times) larger than the unfused volume. The exact relationships of a given firing pad can depend upon, among other considerations, the noble metal materials that the firing pad is made out of, as well as the shape of the pad. The relationships provided above refer to the firing pad 40 after it has been attached to the center electrode or the ground electrode and, in the case of volumes, includes firing pad material that is below or embedded with the underlying electrode to which it is attached. It should be mentioned that the use of such “thin” pads, which result in some of the relationships above, is contrary to most conventional thinking in the field of spark plug precious metal tips. Most conventional spark plug precious metal tips are much thicker, as it was believed that such thicknesses were necessary for desired robustness, durability, and/or attachability. Of course, other values and other relationships are possible.
Whatever its geometry, the firing pad 40 is preferably made of a noble metal material and can be formed into its thin shape before attachment to the GE body 18. In specific examples, the firing pad 40 is made of a platinum (Pt) alloy like one containing between about 10% and 30% Ni and the balance being Pt, or one containing about 4% tungsten (W) and the balance being Pt (shown in weight percentages). Other materials are possible for the firing pad 40 including pure Pt, and alloys and non-alloys of iridium (Ir), ruthenium (Ru), rhodium (Rh), palladium (Pd), and rhenium (Re), to name a few. Before attachment, the firing pad 40 can be produced by way of various processes and steps including heating, melting, and metalworking. In one embodiment, the firing pad 40 is stamped, cut, or otherwise formed from a thin sheet or tape of noble metal to produce a thin pad; in another embodiment, the firing pad is cut or sliced from a thin wire of noble metal material with a diamond saw or other severing tool into individual pads, which may or may not be further flattened or metalworked to refine its shape. In the event that the firing pads 40 are formed before they are attached to the GE body 18, there is greater control over their placement on the GE body and over their thickness compared to some known tips in which the tips are formed by melting a ball of material while simultaneously pressing it to a pad-like shape by force against the GE body. The firing pad 40, on the other hand, is more readily handled when put in place on the GE body 18 resulting in comparatively less scrap, and the firing pads have a more uniform thickness over their cross-sectioned extent; some firing pads may exhibit a variance of 4% or less, or approximately 0.005 mm or less. In other embodiments, however, the firing pad 40 need not have such a uniform thickness and instead could have a non-uniform thickness over its cross-sectioned extent; for example, the firing pad 40 could have a surface opposite the sparking surface 42 that is convex, concave, stepped, or provided with rails (
The firing pad 40 can be attached to the GE body 18 by a number of welding techniques, processes, steps, etc. The exact attachment process used can depend upon, among other considerations, the materials used for the firing pad 40 and for the GE body 18. In one example, and referring now to
Then, the firing pad 40 is laser welded to the GE body 18 for a primary or more permanent hold thereagainst. A fiber laser welding type and technique can be performed for the embodiment of the figures, as well as other laser welding types and techniques. The fiber laser weld emits a more concentrated beam F that can create a defined keyhole weld which is suitable for the firing pad 40; other laser beams can also produce a suitably concentrated beam. Because the laser weld is concentrated, less material of the firing pad 40 is melted and more unfused pad material remains available for sparking. The fiber laser weld can extend entirely through the firing pad 40 itself. That is, the fiber laser welding beam F can be aimed at the sparking surface 42 with its point of entry at the sparking surface of the firing pad 40, and penetrate entirely through the axial thickness of the firing pad and into the GE body 18. Here, the materials of the firing pad 40 and the GE body 18 melt and mix together as the fiber laser welding beam F penetrates and extends through a surface-to-surface interface between the firing pad and the GE body. The fused zone or portion 44 is formed by the laser weld and is at some locations a mixture of the materials of the firing pad 40 and the GE body 18. The mixture of materials, however, may be to a lesser extent than that resulting from a laser weld that is not suitably concentrated and thereby provides more precious metal for use as a sparking surface. In other embodiments, the firing pad 40 could be attached to the GE body 18 solely by a resistance weld and need not include a laser weld.
In the example of
During its welding attachment, the firing pad 40 can be physically embedded and displaced into the GE body 18—this is sometimes referred to as the upset U (denoted in
In the embodiment of
The firing pad 40 can have different shapes and can be arranged on the GE body 18 in different ways, while still possessing the geometric properties and satisfying the relationships described above. In the embodiment of
In the embodiment of
In other embodiments not shown in the figures, the firing pad 40 could be provided as part of the spark plug 10 and firing end in different ways. For example, the firing pad 40 could be welded directly or indirectly (e.g., via an intermediate piece) to the CE body 12 and not welded to the GE body 18, or it could be welded directly or indirectly to a distal end surface of the GE body, or it could be welded directly or indirectly to both the GE body and the CE body, to cite a few possibilities.
Some thermal testing was performed in order to observe retention performance between the firing pad 40 and GE body 18. In the testing, the firing pad 40 and GE body 18 were attached to each other via one embodiment of the fused portion 44 in which four separate and distinct weldment lines were provided in a criss-cross or tic-tac-toe arrangement with a first pair arranged parallel to each other and a second pair arranged parallel to each other but transverse to the first pair. In this embodiment, each weldment line spanned completely across the firing pad. In general, the thermal testing subjected the firing pad 40, GE body 18, and fused portion 44 to an increased temperature for a relatively abbreviated period of time, and then allowed them to cool to ambient temperature. The testing was meant to simulate expansion and contraction thermal stresses that are more extreme than those experienced in application in a typical internal combustion engine.
In the example testing conducted, a sample spark plug was mounted in a collar-like structure made of brass material. The collar structure was secured to the shell of the sample spark plug and did not make direct abutment with the GE body; the mount structure acted as a heat sink and facilitated cooling. An induction heater was then used to heat the attached firing pad 40 and GE body 18 up to 1,700° F. for about 20 seconds. After that, the firing pad 40 and GE body 18 were allowed to cool at rest down to about room temperature or slightly above room temperature. This rise and fall in temperature constituted a single test cycle, and the thermal testing was conducted on numerous sample spark plugs. On average, the sample spark plugs were capable of enduring over one-hundred-and-seventy-five cycles without exhibiting significant cracking, separation, or other conditions that could negatively impact retention between the firing pad 40 and the GE body 18. One-hundred-and-seventy-five cycles is considerably greater than the one-hundred-and-twenty-five cycles deemed acceptable according to certain testing guidelines, and was unexpected in view of how thin the firing pads were. The cycles endured in the testing here is also comparable to pads with much greater thicknesses than the thin firing pads tested; this too was unexpected.
It is to be understood that the foregoing is a description of one or more preferred exemplary embodiments of the invention. The invention is not limited to the particular embodiment(s) disclosed herein, but rather is defined solely by the claims below. Furthermore, the statements contained in the foregoing description relate to particular embodiments and are not to be construed as limitations on the scope of the invention or on the definition of terms used in the claims, except where a term or phrase is expressly defined above. Various other embodiments and various changes and modifications to the disclosed embodiment(s) will become apparent to those skilled in the art. All such other embodiments, changes, and modifications are intended to come within the scope of the appended claims.
As used in this specification and claims, the terms “for example,” “e.g.,” “for instance,” “such as,” and “like,” and the verbs “comprising,” “having,” “including,” and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that the listing is not to be considered as excluding other, additional components or items. Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation.
This application claims the benefit of U.S. Provisional Ser. Nos. 61/654,558 filed on Jun. 1, 2012, 61/656,167 filed on Jun. 6, 2012, 61/681,289 filed on Aug. 9, 2012, 61/716,250 filed on Oct. 19, 2012, and 61/759,088 filed on Jan. 31, 2013, the entire contents of which are incorporated herein.
Number | Name | Date | Kind |
---|---|---|---|
5502351 | Katoh et al. | Mar 1996 | A |
5797383 | Matsubara et al. | Aug 1998 | A |
5990602 | Katoh et al. | Nov 1999 | A |
6337533 | Hanashi et al. | Jan 2002 | B1 |
6346766 | Kanao et al. | Feb 2002 | B1 |
6523515 | Kanao | Feb 2003 | B2 |
6642638 | Ishiguro | Nov 2003 | B2 |
6676468 | Ishiguro et al. | Jan 2004 | B2 |
6707237 | Teramura et al. | Mar 2004 | B2 |
6853116 | Hori et al. | Feb 2005 | B2 |
6864623 | Ishikawa | Mar 2005 | B2 |
6923699 | Matsubara et al. | Aug 2005 | B2 |
7385339 | Lineton et al. | Jun 2008 | B2 |
7557495 | Tinwell | Jul 2009 | B2 |
7569978 | Tinwell | Aug 2009 | B2 |
7615915 | Ito et al. | Nov 2009 | B2 |
7804232 | Kumagai et al. | Sep 2010 | B2 |
7851984 | Zdeblick et al. | Dec 2010 | B2 |
7973459 | Tinwell | Jul 2011 | B2 |
8106572 | Tanaka et al. | Jan 2012 | B2 |
8106573 | Boehler et al. | Jan 2012 | B2 |
8115372 | Kameda | Feb 2012 | B2 |
8203258 | Kameda et al. | Jun 2012 | B2 |
8212462 | Kato | Jul 2012 | B2 |
8212463 | Sakayanagi et al. | Jul 2012 | B2 |
20040092193 | Musasa et al. | May 2004 | A1 |
20090140624 | Kameda et al. | Jun 2009 | A1 |
20100084391 | Nakayama et al. | Apr 2010 | A1 |
20100109502 | Nakayama et al. | May 2010 | A1 |
20110133625 | Sakayanagi | Jun 2011 | A1 |
20110198981 | Kishimoto et al. | Aug 2011 | A1 |
20120025690 | Kohl | Feb 2012 | A1 |
20120025691 | Sakayanagi et al. | Feb 2012 | A1 |
20120086326 | Niessner et al. | Apr 2012 | A1 |
20140042892 | Kowalski et al. | Feb 2014 | A1 |
20140111078 | Kowalski et al. | Apr 2014 | A1 |
20140210334 | Kowalski et al. | Jul 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20130320835 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61654558 | Jun 2012 | US | |
61656167 | Jun 2012 | US | |
61681289 | Aug 2012 | US | |
61716250 | Oct 2012 | US | |
61759088 | Jan 2013 | US |