1. Field of the Disclosure
The present disclosure relates generally to spark plugs and, more particularly, to methods for applying coatings to insulators of spark plugs to minimize fouling.
2. Description of the Background
Spark plugs used as igniters in internal combustion engines are subjected to a condition known as “fouling.” Over time, carbon and other products of combustion can accumulate on the spark plug, including the surface of an insulator tip of the spark plug, which is typically positioned at or near a boundary of unmixed fuel, or at or near the center electrode tip. The products of combustion of a gasoline engine include particles of fuel additives such as Methylcyclopentadienyl Manganese Tricarbonyl (MMT) and Ferrocene, which are often added to gasoline as an octane enhancement. Normally, accumulated soot that is located near the spark point of the spark plug would be burned off from the heat of the combustion process. However, because the exposed surface of the insulator tip may not be located in or about a spark gap between the center electrode tip and ground electrode, accumulated combustion soot along the insulator tip may not be burned off. If significant amounts of these combustion products accumulate, the spark may not properly form between the center and ground electrodes. More particularly, the accumulated combustion soot creates an electrical short circuit such that the electrical charge from the center electrode travels across the surface of the insulator and back to the outer metal shell instead of across the spark gap to the ground electrode. This process is called “fouling.”
As noted above, MMT and/or other additives have been added to gasoline or fuel to increase the octane numbers instead of using a more expensive refining process. MMT added to the fuel generates conductive combustion residual that deposit on the internal surfaces of the combustion engine, including the insulator of a spark plug that extends into the engine combustion chamber. It has been found that MMT deposits on a surface of the spark plug insulator significantly reduce the resistivity of the spark plug insulator and may cause instances of side-firing or misfiring during ignition events. In turn, the MMT deposits have dramatically reduced the useful life of spark plugs, leading to high costs due to frequent replacement of spark plugs. MMT deposits may also reduce fuel mileage and/or increase hydrocarbon emissions. While some methods have been developed to reduce or minimize MMT deposits, the current methods have their challenges.
In illustrative embodiments, a spark plug for an internal combustion engine comprises an elongated center electrode having a center electrode tip at a first end and a terminal proximate a second end opposite the first end, an insulator surrounding at least a portion of the center electrode, and an outer shell surrounding at least a portion of the insulator. The insulator comprises a first segment surrounding at least a portion of the terminal, a second segment extending from the first segment, and a third segment extending from the second segment, wherein a gap is disposed between the third segment of the insulator and the outer shell such that at least a portion of the third segment of the insulator is exposed to a combustion chamber when the spark plug is disposed within an internal combustion engine. A coating is applied to at least a portion of the third segment, wherein the coating is formed of a first layer disposed on at least a portion of a surface of the third segment and a second layer disposed on at least a portion of the first layer.
In other illustrative embodiments, an insulator for a spark plug comprises a first segment surrounding at least a portion of the terminal, a second segment extending from the first segment, and a third segment extending from the second segment. A coating is applied to at least a portion of the third segment, wherein the coating is formed of a first layer disposed on at least a portion of a surface of the third segment and a second layer disposed on at least a portion of the first layer.
In any of the embodiments herein, each of the first and second layers may be formed of a glaze material, wherein the glaze material may be the same for both the first and second layers.
In any of the embodiments herein, the first layer may be formed of a first glaze material having a first softening point and the second layer may be formed of a second glaze material having a second softening point that is less than the first softening point.
In any of the embodiments herein, the first glaze material and the second glaze material may be different materials.
In any of the embodiments herein, a first thickness of the first layer and a second thickness of the second layer may be different.
In any of the embodiments herein, the coating may extend between an end of the insulator disposed adjacent the center electrode and a point where the outer shell retains the insulator in position.
In any of the embodiments herein, the coating may extend along a surface of the insulator and ends at a point that is spaced from the center electrode or a point where the outer shell retains the insulator in position.
In any of the embodiments herein, a third layer may be disposed on at least a portion of the second layer.
In any of the embodiments herein, the first layer may be formed of a first glaze material and the second layer may be formed of a second glaze material, wherein at least one of the first and second glaze materials includes a refractory powder.
In any of the embodiments herein, the refractory powder may be selected from the group consisting of a high temperature ceramic powder, alumina, zirconium oxide (ZrO2), mullite, yittrium oxide (Y2O3), magnesium oxide (MgO), lanthium oxide (La2O3), boron nitride (BN), aluminum nitride (AlN), and combinations thereof.
In any of the embodiments herein, a gap may be formed between the insulator and the center electrode.
In any of the embodiments herein, the third segment of the insulator may be tapered from a first end adjacent the second segment toward a second end opposite the second segment such that a thickness of the insulator at the second end is less than a thickness of the insulator at the first end.
In further illustrative embodiments, a spark plug for an internal combustion engine comprises an elongated center electrode having a center electrode tip at a first end and a terminal proximate a second end opposite the first end, an insulator surrounding at least a portion of the center electrode, and an outer shell surrounding at least a portion of the insulator. The insulator comprises a first segment surrounding the terminal, a second segment extending from the first segment, and a third segment extending from the second segment, wherein a gap is disposed between the third segment of the insulator and the outer shell such that at least a portion of the third segment of the insulator is exposed to a combustion chamber when the spark plug is disposed within an internal combustion engine. A first coating is applied to a first portion of the third segment and a second coating is applied to a second portion of the third segment, wherein at least a portion of the second coating is disposed between the first coating and the second segment.
In illustrative embodiments, an insulator for a spark plug comprises a first segment surrounding the terminal, a second segment extending from the first segment, and a third segment extending from the second segment. A first coating is applied to a first portion of the third segment and a second coating is applied to a second portion of the third segment, wherein at least a portion of the second coating is disposed between the first coating and the second segment.
In any of the embodiments herein, the first and second coatings may abut one another.
In any of the embodiments herein, the first and second coatings may not overlap.
In any of the embodiments herein, the first coating may be comprised of a first glaze material having a first softening point and the second coating may be comprised of a second glaze material having a second softening point that is lower than the first softening point.
In any of the embodiments herein, the first and second glaze materials may be different materials.
In any of the embodiments herein, a third coating may be applied to a third portion of the third segment between the second coating and the second segment.
In any of the embodiments herein, the first coating may be formed of a first glaze material and the second coating may be formed of a second glaze material, wherein at least one of the first and second glaze materials includes a refractory powder.
In any of the embodiments herein, the refractory powder may be selected from the group consisting of a high temperature ceramic powder, alumina, zirconium oxide (ZrO2), mullite, yittrium oxide (Y2O3), magnesium oxide (MgO), lanthium oxide (La2O3), boron nitride (BN), aluminum nitride (AlN), and combinations thereof.
In any of the embodiments, an insulator for a spark plug comprises a first segment surrounding at least a portion of a terminal, a second segment extending from the first segment, a third segment extending from the second segment, and a coating applied to at least a portion of the third segment, wherein the coating is formed of a first layer disposed on at least a portion of a surface of the third segment and a second layer disposed on at least a portion of the first layer.
In any of the embodiments, each of the first and second layers may be formed of a glaze material, and the glaze material may be the same for both the first and second layers.
In any of the embodiments, the first layer may be formed of a first glaze material having a first softening point and the second layer may be formed of a second glaze material having a second softening point, and the second softening point may be less than the first softening point.
In any of the embodiments, the first glaze material and the second glaze material may be of different materials.
In any of the embodiments, a first thickness of the first layer and a second thickness of the second layer may be different.
In any of the embodiments, a third layer may be disposed on at least a portion of the second layer.
In any of the embodiments, the first layer may be formed of a first glaze material and the second layer may be formed of a second glaze material, wherein at least one of the first and second glaze materials includes a refractory powder.
In any of the embodiments, the refractory powder may be selected from the group consisting of a high temperature ceramic powder, alumina, zirconium oxide (ZrO2), mullite, yittrium oxide (Y2O3), magnesium oxide (MgO), lanthium oxide (La2O3), boron nitride (BN), aluminum nitride (AlN), and combinations thereof
In any of the embodiments, a gap may be formed between the insulator and the center electrode.
In any of the embodiments, the third segment of the insulator may be tapered from a first end adjacent the second segment toward a second end opposite the second segment such that a thickness of the insulator at the second end is less than a thickness of the insulator at the first end.
In any of the embodiments, an insulator for a spark plug comprises a first segment surrounding the terminal, a second segment extending from the first segment, a third segment extending from the second segment, and a first coating applied to a first portion of the third segment, and a second coating applied to a second portion of the third segment, wherein at least a portion of the second coating is disposed between the first coating and the second segment.
In any of the embodiments, the first and second coatings may abut one another and may not overlap.
In any of the embodiments, the first coating may be comprised of a first glaze material having a first softening point and the second coating may be comprised of a second glaze material having a second softening point that is lower than the first softening point.
In any of the embodiments, the first and second glaze materials may be different materials.
In any of the embodiments, a third coating may be applied to a third portion of the third segment between the second coating and the second segment.
In any of the embodiments, the first coating may be formed of a first glaze material and the second coating may be formed of a second glaze material, wherein at least one of the first and second glaze materials includes a refractory powder.
In any of the embodiments, the refractory powder is selected from the group consisting of a high temperature ceramic powder, alumina, zirconium oxide (ZrO2), mullite, yittrium oxide (Y2O3), magnesium oxide (MgO), lanthium oxide (La2O3), boron nitride (BN), aluminum nitride (AlN), and combinations thereof.
The foregoing and other features, and advantages of the disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The subject matter is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. Other aspects and advantages of the present disclosure will become apparent upon consideration of the following detailed description, wherein similar structures have like or similar reference numerals.
The present application is directed to coatings for application to spark plug insulators, methods for applying such coatings, and methods for minimizing fouling. While the methods of the present application may be embodied in many different forms, several specific embodiments are discussed herein with the understanding that the present application is to be considered only as an exemplification of the principles of the application, and it is not intended to limit the application to the embodiments illustrated.
An exemplary prior art spark plug 10 in which the methods of the present disclosure may be implemented is depicted in
In the exemplary spark plug 10 of
As illustrated in
The outer shell 16 may include an integral external threaded portion 38 for engagement with an engine and/or a hex nut (not shown) for tightening the spark plug 10 with a wrench when it is engaged in an engine. Connected to the outer shell 16 is the ground electrode 44, which extends away from the outer shell 16. The ground electrode 44 and the noble metal tip 28 of center electrode 12 define a spark plug gap 30. The ground electrode 44 is electrically connected with the threaded portion 38 of the outer shell 16 to form an electrical ground when the spark plug 10 is mounted in an engine cylinder.
The spark plug 10 is configured to be utilized in an automobile engine that supplies electrical current to the spark plug 10 to create the spark. Specifically, one end of the center electrode 12 is electrically connected to a terminal stud 22 through an electrically conductive glass seal 24. In alternate embodiments, an additional resistor element 25 may be attached to the glass seal 24. As is known in the related arts, the terminal stud 22 may be made from steel or a steel based alloy material with a nickel plated finish. The terminal stud 22 further connects to a terminal 26 that protrudes from the insulator and attaches to an ignition cable (not shown) that supplies electrical current to the spark plug 10 when connected.
While a particular spark plug 10 is depicted in
A first embodiment of a spark plug 100 (similar to the spark plug 10 of
While the coating 101 is shown as having two layers, the coating 101 may have two or more layers. If more than two layers are utilized, the insulator may be fired after each layer is applied, after all of the layers are applied, or at any suitable interval. In one exemplary embodiment having three layers, a first layer may be applied and fired and then second and third layers may be applied and fired.
Any one or more of the layers described with respect to
A second embodiment of a spark plug 110 (similar to the spark plug 10 of
While the coating 111 is shown as having two layers, the coating 111 may have two or more layers. If more than two layers are utilized, in an illustrative embodiment, each layer from the innermost to the outermost layer may have a progressively lower softening point. Further, if two or more layers are utilized, the insulator 14 may be fired after each layer is applied, after all of the layers are applied, or at any suitable interval. In one exemplary embodiment having three layers, a first layer may be applied and fired and then second and third layers may be applied and fired.
The coating 111 with two or more layers having different glaze materials allows the outermost layer 114 (having a lower softening point) to actively absorb, for example, MMT deposits at a lower temperature. More particularly, as the glaze material of the outer layer 114 begins to soften, the glaze material of the outer layer 114 begins to absorb MMT deposits, which may then flake off with the glaze material of the outer layer 114 due to devitrification. Once the glaze material of the outer layer 114 begins to flake off and the temperature further increases, the glaze material of the inner layer 112 begins to soften and absorb MMT deposits. More than two layers would provide the same effect with more varying softening points and, thus, varying temperatures at which the glaze materials thereof flake off.
Any one or more of the layers described with respect to
A third embodiment of a spark plug 130 (similar to the spark plug 10 of
During a combustion application, a temperature distribution along the third segment 54 (sometimes referred to as the core nose or nose cone) of the insulator 14 is always higher at the insulator tip 18 and gradually lowers toward the gasket seat 56. An exemplary temperature gradient for a typical spark plug is depicted in
The spark plug 130 may be manufactured in a typical fashion and, thereafter, the coatings 132, 134 may be applied. In an exemplary embodiment, both coatings 132, 134 may be applied and the coatings 132, 134 may thereafter be simultaneously fired. In an exemplary embodiment, for example, where the first and second coatings 132, 134 overlap, one of the layers 132, 134 may be applied and fired and the other layer 132, 134 may thereafter be applied and fired.
While two coatings 132, 134 are depicted in
In a further illustrative embodiment, any of the coatings herein may be utilized in combination with an insulator 150, as seen in
In another illustrative embodiment, any of the coatings herein may be utilized in combination with an insulator 160, as seen in
In a further illustrative embodiment, an engine control system for a particular vehicle may be designed to minimize MMT deposits or similar deposits that can increase the likelihood of fouling. More particularly, to effectively absorb MMT deposits, for example, glaze materials in a coating need to reach their active temperatures (which are close to their softening point/temperature), however, a combustion chamber temperature that is too high may lead to devitrification of the glaze materials, which causes the glaze materials to lose their effectiveness. The engine may be designed to add a “regen” cycle that occurs on a periodic basis. In such an embodiment, the insulator 14 of the spark plug 10 may be coated with at least a high softening temperature glaze material. A “regen” cycle may consist of, after starting the engine, allowing MMT deposits to accumulate on the one or more glaze materials and, thereafter, increasing the temperature of the engine to a temperature that is higher than a softening point of the glaze material(s) or between about 400 and 1000 degrees Celsius. At this regen temperature, the glaze material(s) reacts, absorbs the MMT deposits, and renders a surface of the insulator non-conductive. Thereafter, during a normal engine run, the temperature in the engine is low enough to not cause significant devitrification of the glaze material(s) forming the coating. Using this method, a life of the glaze material(s) used in the coating would be prolonged.
A regen cycle may be a scheduled event that occurs on a periodic basis (e.g., weekly, monthly, or at any other suitable interval). Alternatively, a regen cycle may occur based on an event sensed by the engine control system, for example, based on an outside temperature, a temperature of the engine, a detecting misfiring of the spark plug, sensed or received torque information, or any other sensed or received abnormality or condition.
Any one or more of the coatings and/or layers of the present disclosure may incorporate a refractory powder in the glaze material thereof to improve a temperature sensitivity of the coating. Exemplary refractory powders include, but are not limited to, high temperature ceramic powders, alumina, zirconium oxide (ZrO2), mullite, yittrium oxide (Y2O3), magnesium oxide (MgO), lanthium oxide (La2O3), boron nitride (BN), aluminum nitride (AlN), and the like, and combinations thereof. Such refractory materials may improve the heat resistance of the coating, thereby providing a more robust glaze material at higher temperatures. In illustrative embodiments, the glaze material may be mixed with one or more refractory powders and may, thereafter, be applied to the insulator and fired.
The following examples and representative procedures illustrate features in accordance with the present teachings, and are provided solely by way of illustration. They are not intended to limit the scope of the appended claims or their equivalents.
Two representative coating formulations for use in accordance with the present teachings are prepared as shown in Table 1 below.
The composition of coating nos. 2 and 3 is similar although the components are present in different ratios in each of the formulations. Coating nos. 2 and 3 may be used to target different melting temperatures. For example, coating no. 3 has a doubled weight % of high-temperature glass to that of coating no. 2. As a result, coating no. 3 is configured to survive higher engine temperature than coating no. 2. However, coating no. 3 requires a higher temperature to actively absorb MMT.
Coating nos. 2 and 3 may be applied on the tip (e.g., nose cone) of a spark plug insulator in thicknesses ranging, for example, from about 20 μm to about 30 μm.
Escape Chassis Dyno Test
Significant “side firings” are observed on the non-coated part after the 100-hour test but are not observed on the coated parts. Moreover, as shown in
Scanning Electron Microscopy (SEM) Investigation of MMT Deposit
As shown by the SEM photographs in
Energy-Dispersive x-Ray (EDX) Elemental Analysis of MMT Deposit
The EDX elemental analysis confirms that the deposit on the non-coated insulator of the control spark plug is primarily Mn oxides. In addition, the deposit contains P, K, Ca, and Zn, which are additives for engine oil/lubricants. These trace elements promote densification of the Mn deposit and further reduce the resistivity of the insulator.
The Si/Ba distributions indicate the location of the coatings. The overlapping between Mn and Ba suggests that Mn is dissolved in the glaze coating
As noted above, features of the spark plugs, the methods of applying the anti-fouling coatings (e.g. an anti-MMT fouling coatings), and the engine control system disclosed herein may be utilized in conjunction with any suitable spark plug. In this manner, the present disclosure and drawings herein shall not be limiting.
While the present disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the disclosure is not limited to such disclosed embodiments. Rather, the disclosure can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the disclosure. Additionally, while various embodiments of the present disclosure have been described, it is to be understood that aspects of the present disclosure may include only some of the described embodiments. Accordingly, the present disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
This application claims the benefit of priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 62/109,133, filed on Jan. 29, 2015, the entire disclosure of which is incorporated herein.
Number | Name | Date | Kind |
---|---|---|---|
3278785 | Hauth, Jr. | Oct 1966 | A |
4914344 | Watanabe et al. | Apr 1990 | A |
5187404 | Straub | Feb 1993 | A |
5859491 | Nishikawa et al. | Jan 1999 | A |
6060821 | Suzuki et al. | May 2000 | A |
6274971 | Sugimoto et al. | Aug 2001 | B1 |
8981632 | Unger | Mar 2015 | B2 |
20030051341 | Nishikawa et al. | Mar 2003 | A1 |
20070188063 | Lykowski | Aug 2007 | A1 |
20120139405 | Unger et al. | Jun 2012 | A1 |
20130300278 | Rohrbach | Nov 2013 | A1 |
20140131927 | Unger et al. | May 2014 | A1 |
Entry |
---|
International Search Report and Written Opinion of PCT/US2016/015317 dated Apr. 11, 2016. |
Number | Date | Country | |
---|---|---|---|
20160226224 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
62109133 | Jan 2015 | US |