This disclosure generally relates to spark plugs and, more particularly, to welding ground electrodes and metal shells together.
Spark plugs can be used to initiate combustion in internal combustion engines. Spark plugs typically ignite a gas, such as an air/fuel mixture, in an engine cylinder or combustion chamber by producing a spark across a spark gap defined between two or more electrodes. Ignition of the gas by the spark causes a combustion reaction in the engine cylinder that causes the power stroke of the engine. The high temperatures, high electrical voltages, rapid repetition of combustion reactions, and the presence of corrosive materials in the combustion gases can create a harsh environment in which the spark plug functions.
Spark plugs typically include one or more ground electrodes and a metal shell supporting other components of the spark plug. The ground electrodes have traditionally been attached to the metal shells via a resistance welding process. While resistance welding has worked, sometimes welded material gets extruded laterally as the ground electrodes and shells are melted and pressed together. The extruded material might then require removal in a downstream metalworking process—this is sometimes referred to as weld flash removal. This may be especially true when certain nickel-based alloys are involved like those that go by the name Inconel® 601.
According to one embodiment, a spark plug includes a metal shell with an axial bore, an insulator with an axial bore, a center electrode, and a ground electrode. The insulator is disposed partially or more within the metal shell's axial bore, and the center electrode is disposed partially or more within the insulator's axial bore. The ground electrode is attached to the metal shell by way of a fused weld joint at an interface between the ground electrode and the metal shell. The fused weld joint includes one or more laser keyhole weld(s). The laser keyhole weld(s) have material of the metal shell and material of the ground electrode solidified in a temporary cavity created via impingement of a laser beam producing the laser keyhole weld(s).
According to another embodiment, a spark plug includes a metal shell with an axial bore, an insulator with an axial bore, a center electrode, and a ground electrode. The insulator is disposed partially or more within the metal shell's axial bore, and the center electrode is disposed partially or more within the insulator's axial bore. The ground electrode is attached to the metal shell by way of a fused weld joint at an interface between the ground electrode and the metal shell. The fused weld joint includes multiple individual laser weld segments, and each individual laser weld segment extends across the interface between the ground electrode and the metal shell at a different location along the interface.
According to yet another embodiment, a method of assembling a spark plug includes several steps. One step involves providing a metal shell, an insulator, a center electrode, and a ground electrode. Another step involves aligning the ground electrode with a free end of the metal shell. And another step involves positionally securing the ground electrode and metal shell together at the free end of the metal shell. Yet another step involves creating one or more laser keyholes weld(s) at an interface between the ground electrode and metal shell. The laser keyhole weld(s) include solidified material of the ground electrode, and solidified material of the metal shell.
Preferred exemplary embodiments of the invention will hereinafter be described in conjunction with the appended drawings, wherein like designations denote like elements, and wherein:
The spark plug described herein includes a fused weld joint with a laser keyhole weld that attaches a ground electrode to a metal shell. According to an exemplary embodiment, the laser keyhole weld is formed by a high energy density laser, such as a fiber laser, and results in a fused weld joint at the metal shell and ground electrode interface that may exhibit a number of desirable qualities. The laser keyhole weld may be used as a substitute for, or in addition to, standard ground electrode attachment techniques and processes. The laser keyhole weld can improve the attachment strength of the ground electrode, as well as the thermal and electrical conductivity across the metal shell and ground electrode interface. This may be different, for example, than certain solid state weld joints where the welded materials are primarily molecularly bonded without necessarily heating them above their respective melting temperatures and fusing them together. Because of the precision of a high energy density laser, there may not be a need for weld flash removal after the laser keyhole weld is formed.
An exemplary spark plug is illustrated in
The center electrode 12 and/or the ground electrode 18 may include a nickel-based external cladding layer and a copper-based internal heat conducting core. Some non-limiting examples of nickel-based materials that may be used with the center electrode 12 and/or the ground electrode 18 include alloys composed of nickel (Ni), chromium (Cr), iron (Fe), aluminum (Al), manganese (Mn), silicon (Si), and any suitable alloy or combination thereof such as the Ni-based alloys commonly referred to as Inconel® 600 and 601. The internal heat conducting core may be made of pure copper (Cu), Cu-based alloys, or some other material with suitable thermal conductivity. According to a non-limiting example, the ground electrode 18 includes a Ni-based external cladding layer and a Cu-based internal heat conducting core, where the external cladding layer is made from a Ni-based alloy having more than about 55 wt % Ni and more than about 20 wt % Cr. This type of high-chromium, nickel-based electrode material exhibits good strength, as well as desirable corrosion and erosion characteristics. Of course, other materials are certainly possible, including center and/or ground electrodes that have more than one internal heat conducting core or no internal heat conducting core at all.
The metal shell 16 provides an outer structure for the spark plug 10, and may have threads for installation in, and electrical communication with, an associated engine. The metal shell 16 may be made from a steel alloy or any other suitable material, and it may also be coated with a zinc-based or nickel-based alloy coating, for example. The ground electrode 18 is attached to a free end 28 of the metal shell 16 at an interfacial boundary or interface 34 between the ground electrode 18 and the metal shell 16, and as a finished product, may have one of a number of different configurations, including the common J-gap configuration shown in
An exemplary ground electrode attachment process 100 is represented diagrammatically in
The ground electrode 18 is then positionally secured on the free end 28 of the metal shell 16, as described in step 104 in
In step 106, a concentrated and high energy density laser is used to create one or more laser keyhole welds at the interface 34 between the ground electrode 18 and the metal shell 16. A fiber laser can be used to perform this step, as well as other suitably concentrated and high energy density lasers that use Nd:YAG, CO2, diode, disk, and hybrid laser equipment, with or without shielding gas (e.g., argon) in order to protect the molten weld pool. In the fiber laser example, the fiber laser emits a relatively concentrated and high energy density beam that creates a laser keyhole weld which, in turn, contributes to forming a fused weld joint between the different materials of the ground electrode 18 and the metal shell 16. The fiber laser can use a non-pulsed or continuous wave beam, a pulsed beam, or some other type. According to continuous wave example, the fiber laser operates at a power from about 150 W to 350 W and moves at a speed of about 10 mm/s to 20 mm/s relative to the workpiece; and according to a pulsed example, the fiber laser uses a square wave or bell-shaped pulse, has a pulse length from about 1.0 ms to 3.0 ms, operates at a frequency from about 200 Hz to 1,000 Hz, operates at a power from about 200 W to 400 W, and moves at a speed of about 10 mm/s to 20 mm/s relative to the workpiece. It should be appreciated, however, that the parameters listed above are merely exemplary and that such parameters could vary significantly based on factors such as the type and nature of the resistance weld used to initially attach the ground electrode to the shell and the laser optics, to cite a few possibilities.
Referring now to
Though the laser beam B is depicted in
In a different embodiment, the laser beam B′ emanates from the outer side O of the ground electrode 18 and forms a fused weld joint at the interface 34 between the ground electrode 18 and the metal shell 16 from that perspective. Depending on the type and nature of the preliminary resistance weld that was used in step 104, step 106 may create a fused weld joint from both the inner and outer side I, O of the ground electrode 18. Such an approach could result in overlapping or touching keyhole welds from opposite sides of the ground electrode, as each of the high energy density lasers can form a keyhole weld that penetrates substantially into the thickness of the ground electrode 18 (e.g., each keyhole weld can penetrate 75% or more into the thickness of the ground electrode). The overlapping keyhole welds may be in the vicinity of a previously formed resistance or tack weld, and can strengthen the attachment of the ground electrode 18 to the metal shell 16. Indeed, in some cases the keyhole welds may penetrate almost entirely though the thickness of the ground electrode 18, where the resulting fused weld joint could be visible on the opposite side of laser beam emanation.
Referring now to
After completion of step 106, any number of additional post-attachment processes could be performed. Two examples of such processes are the process that attaches the precious metal firing tip 40 to the ground electrode 18 and the process of bending the ground electrode and aligning it with the center electrode 12 so that a properly sized spark gap is produced. Skilled artisans will know of other such post-attachment processes that may be used here as well.
Turning now to
In the embodiments of
Whatever laser stitching pattern utilized, it has been found that the fused weld joints described herein produce a joint with a strength greater than those sometimes produced in the previously-known resistance welds. In one testing procedure, a pulling force was applied to the fused weld joint described herein between the ground electrode and metal shell. The pulling force was increased and maintained until the ground electrode itself fractured at a site away from the fused weld joint, while the fused weld joint remained intact. This was an indication that the fused weld joint exhibited a greater strength than the ground electrode itself. When the same testing procedure was performed on a previously-known resistance weld joint, in contrast, the resistance weld joint fractured and the ground electrode remained intact. This was an indication that the resistance weld joint was weaker than the ground electrode. Of course, not all testing procedures will yield the same results.
It is to be understood that the foregoing is a description of one or more preferred exemplary embodiments of the invention. The invention is not limited to the particular embodiment(s) disclosed herein, but rather is defined solely by the claims below. Furthermore, the statements contained in the foregoing description relate to particular embodiments and are not to be construed as limitations on the scope of the invention or on the definition of terms used in the claims, except where a term or phrase is expressly defined above. Various other embodiments and various changes and modifications to the disclosed embodiment(s) will become apparent to those skilled in the art. All such other embodiments, changes, and modifications are intended to come within the scope of the appended claims.
As used in this specification and claims, the terms “for example,” “e.g.,” “for instance,” “such as,” and “like,” and the verbs “comprising,” “having,” “including,” and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that the listing is not to be considered as excluding other, additional components or items. Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation.
This application claims the benefit of U.S. Provisional Ser. No. 61/780,096 filed on Mar. 13, 2013, the entire contents of which are incorporated herein.
Number | Date | Country | |
---|---|---|---|
61780096 | Mar 2013 | US |