The present invention will be understood more fully from the detailed description given hereinbelow and from the accompanying drawings of the preferred embodiments of the invention, which, however, should not be taken to limit the invention to the specific embodiments but are for the purpose of explanation and understanding only.
In the drawings:
Referring to the drawings, wherein like reference numbers refer to like parts in several views, particularly to
The spark plug 100 includes a cylindrical metal housing or shell 1, a porcelain insulator 2, a center electrode 3, and ground electrode 4.
The metal shell 1 is made of a hollow metallic cylinder and has cut therein a thread 1a for mounting the spark plug 100 in an engine block (not shown).
The porcelain insulator 2 made of an electrically insulating material such as alumina is retained coaxially within the metal shell 1. The metal shell 1 has an upper annular extension 1b crimped inwardly to hold the porcelain insulator 2 firmly therewithin. The center electrode 3 to which a high voltage is to be applied is fit in a center through hole 2a of the porcelain insulator 2. In other words, the center electrode 3 is disposed in the metal shell 1. The porcelain insulator 2 is placed between the metal shell 1 and the center electrode 3.
The center electrode 3 is made of a heat-resistant base material such as nickel alloy and has a tip 3a extending outside a top surface 2b of the porcelain insulator 2. The ground electrode 4 is of an L-shape and extends from a top end 11 of the metal shell 1 so that it faces the tip 3a of the center electrode 3. The ground electrode 4 is, like the center electrode 3, made of a heat-resistant base material such as nickel alloy.
The center electrode 3 has a noble metal chip 5 welded to the tip 3a. Similarly, the ground electrode 4 has a noble metal chip 6 welded to an inner surface thereof to define a spark gap 7 between the noble metal chips 5 and 6. In use, the center electrode 3 is usually placed at a potential higher than the ground electrode 4, but in some cases at lower than the ground electrode 4. In any case, the center electrode 3 and the ground electrode 4 are placed to have a given potential difference therebetween.
The center electrode 3 is connected electrically at an upper end to a center stem 8 and a terminal 9. In use of the spark plug 100, the terminal 9 is to be connected to an external high-voltage supply circuit. A gasket 10 is attached to an outer periphery of the housing 1 above the thread 1a, as viewed in the drawing.
The metal shell 1 is equipped with a stream shaper formed on the top end 11. Specifically, the top end of the metal shell 1 has an annular tapered surface 112 formed on an inner peripheral wall thereof as the stream shaper. The tapered surface 112 is substantially flat, as viewed in a vertical cross section of the spark plug 100, and extends over the whole circumference of the top end 11 of the metal shell 1 to have an inner diameter D of the metal shell 1 which increases toward the top surface 111 of the top end 11. In other words, the surface 112 is so shaped to taper inwardly of the top end 11 as to have an angle θ which a line Y tangent to the tapered surface 112 at an intersection between the tapered surface 112 and the top surface 111, that is, extending along the tapered surface 112 makes with a plane, as defined to extend over the top surface 111, and lies in a range of 10° to 60°. The width W2 of a portion of the top end 11 defining the tapered surface 112, that is, the distance between an outside edge and an inside edge of the tapered surface 112 in a lateral direction perpendicular to the length of the spark plug 100 is 0.5 mm or more. A ratio of the width W2 to the width W1 of the top end 11, in other words, a wall thickness of the top surface 111 (i.e., W2/W1) is in a range of 0.5 to 1.0.
The operation of the spark plug 100 will be described below with reference to
An upward movement of the piston 26 usually results in formation of tumble vortexes 21 within the combustion chamber 20. The tapered surface 112 of the end portion 11 of the metal shell 1 serves as the stream shaper to shape the tumble vortexes 21, as oriented upward on the left side of the drawing, into vortex streams 21a, as indicated by black arrows, which flow along an upstream portion (i.e., a left portion, as viewed in the drawing) of the tapered surface 112, pass around the side wall of the porcelain insulator 2, and then go along a downstream portion (i.e., a left portion, as viewed in the drawing) of the tapered surface 112, thereby directing and gathering the vortex streams 21a toward the center of the combustion chamber 20, as indicated by a white arrow 22, uniformly. The tumble vortexes 21 are, as is well known in the art, turbulences of air/fuel mixture which are generated in the early stage of the compression stroke or upward movement of the piston 26 within the combustion chamber 20, stream upward while rotating vertically, as viewed in the drawing, and pass through the width of the ground electrode 4. The tumble vortexes 21 typically turn, as indicated by the arrows 21, within the combustion chamber 20 regardless of the location of the ground electrode 4 within the combustion chamber 20. The center of the combustion chamber 20, as referred to herein, is the center of a volume in the combustion chamber 20 during the upward movement or compression stroke of the piston 26.
The tapered surface 112, as described above, works to force the vortex streams 21a downward or toward the center of the combustion chamber 20, thereby directing a flow of spark 23, as discharged between the chip 5 of the center electrode 3 and the chip 6 of the ground electrode 4, deep toward the center of the combustion chamber 20, that is, in the same direction as the vortex streams 21a stably.
The stable flow of the spark 23 oriented to the center of the combustion chamber 20 ensures quick and stable ignition of the air-fuel mixture within the combustion chamber 20 and enhances a flow of flame, as indicated by an arrow 24, to form a flame ball 24. Accordingly, the tapered surface 112 serves to enhance the ability of the spark plug 100 to ignite the air-fuel mixture in the combustion chamber 20 and is effective, especially in low fuel ignitability conditions such as lean burning.
The angle θ which the line Y extending from the tapered surface 112 makes with the plane, as defined to extend over the top surface 111 is, as described above, selected to be between 10° to 60° in terms of orientation of the vortex streams 21a toward the center of the combustion chamber 20, but has been found experimentally to be preferably within a range of 20° to 40°, and more preferably around 30°. It has been experimentally found that when the angle θ is less than 10° or more than 60°, the above described advantages of the spark plug 100 will be small.
In
Each of the slant surfaces 112a and 112b extends over the whole circumference of the top end 11 of the metal shell 1. The tapered surface 112, like the first embodiment, has the inner diameter D which increases from an inner edge of the slant surface 112b to an outer edge of the slant surface 112a. The angle θ which the line Y tangent to an outer one of the slant surfaces 112a and 112b (i.e., the slant surface 112a) at an intersection between the slant surface 112a and the top surface 111 of the top end 11 makes with the plane, as defined to extend over the top surface 111, is selected to be within a range of 10° to 60°, preferably within a range 20° to 40°, and more preferably around 30°. The tapered surface 112 may also be made up of three or more annular slant surfaces which are different in inclination to the longitudinal center line C of the metal shell 1 from each other. The slant surfaces 1112a and 112b are preferably shaped to have the inclinations increasing from outside to inside the metal shell 1. In other words, the tapered surface 112 is preferably shaped as a whole to have a radius of curvature to the center, as defined outside the metal shell 1 on the longitudinal center line C.
Other arrangements are identical with those in the structure of
In
Each of the annular shoulder surfaces 113 may be slant at an angle other than 90° to the longitudinal center line C.
In
The center of the radius R may be defined outside the line M and the metal shell 1. In this case, the curved surface 114 is so shaped that a rate at which the inner diameter D of the metal shell 1 increases from an inner edge to an outer edge of the curved surface 114 increases. Conversely, the center of the radius R may be defined inside (i.e., the right side of) the line M and outside the metal shell 1. In this case, the curved surface 114 is so shaped that the rate at which the inner diameter D of the metal shell 1 increases from the inner edge to the outer edge of the curved surface 114 decreases.
Other arrangements are identical with those in the structure of
The structure of the metal shell 1 in
The curvature of the curved surface 115 enhances the control and shaping of the tumble vortexes 21 of the air-fuel mixture to ensure the stability of ignition thereof.
The tapered surface 112 in
The noble metal chip 5 of the center electrode 3 may be shaped to have a diameter of 0.3 mm to 2.5 mm. The distance between the noble metal chip 5 and the noble metal chip 6 of the ground electrode 4, that is, the spark gap 7 may be selected to be 0.4 mm to 1.5 mm. Each of the noble metal chips 5 and 6 may be made of alloy containing a main component of at least one of Pt, Ir, and Rh and at least one of additives of Pt, Ir, Rh, Ni, W, Pd, Ru, Al, Al2O3, Y, and Y2O3.
While the present invention has been disclosed in terms of the preferred embodiments in order to facilitate better understanding thereof, it should be appreciated that the invention can be embodied in various ways without departing from the principle of the invention. Therefore, the invention should be understood to include all possible embodiments and modifications to the shown embodiments which can be embodied without departing from the principle of the invention as set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-288190 | Oct 2006 | JP | national |