The present invention relates generally to the field of spark plugs. More specifically, the present invention relates to spark plugs designed to reduce hydrocarbon emissions from internal combustion engines.
A spark plug is used with a gasoline-fueled engine to ignite an air and fuel mixture in a combustion chamber of the engine. The spark plug is coupled to the engine by screwing a threaded portion of the spark plug into a cylinder head of the engine such that a firing portion of the spark plug is within a combustion chamber. Other spark plugs may be clamped or otherwise fastened to the engine. An electrical charge is supplied by an ignition armature, ignition coil, magneto, or other source of electricity. Timing of the charge may coincide with piston strokes of a two- or four-stroke engine cycle. The electrical charge travels through an ignition lead wire of the engine to an ignition plug. The ignition plug connects to a terminal connection portion of the spark plug.
A high-voltage ignition pulse of electricity (i.e., electrical charge) enters a terminal electrode on the connection portion of the spark plug. The high-voltage pulse travels along a center wire of the spark plug. The wire runs through an axial bore formed within an electrical insulator of the spark plug. The electrical insulator may be formed from a ceramic material and may include ribs to increase the surface area of the spark plug, reducing the likelihood of charge traveling along the surface of the spark plug. The wire additionally passes through an annular shell of the spark plug, and couples to a firing electrode (i.e., central electrode, center electrode, etc.). The shell is typically formed from a conductive metal and may include the threaded portion. The wire is not electrically coupled to the shell, but is instead insulated from the shell via the electrical insulator, which extends between the wire and the shell.
The firing electrode extends into the combustion chamber of the engine. A tip of the firing electrode may be coated or formed from a precious metal, such as platinum, intended to reduce wear damage or corrosion. Proximate to the firing electrode, a ground electrode is connected to the shell of the spark plug. A spark arcs between the tip of the firing electrode and the ground electrode. The ground electrode is grounded by the shell coupled to the cylinder head, and the rest of the engine. The spark ignites fuel and air in the combustion chamber to drive the piston and power the engine.
An air gap is typically positioned between the electrical insulator and the shell on the firing end of the spark plug. Air has relatively poor thermal conductivity, and the air gap helps to thermally insulate the tip of the electrical insulator, allowing the tip of the electrical insulator to reach a temperature sufficient to prevent carbon deposits from forming on the surface of the tip of the electrical insulator, which may otherwise short the firing electrode with the shell. However, the gap may also provide a shelter for fuel and air to escape ignition during the combustion processes of the engine, allowing unburned fuel through the combustion chamber.
One embodiment of the invention relates to a spark plug, which includes a terminal for receiving an electrical charge, a firing electrode on a firing end of the spark plug, and a conductor electrically coupling the terminal and the firing electrode. The spark plug further includes a casing, an electrical insulator, and a ground electrode. The casing is at least partially formed from an electrically conductive material and is configured to be electrically coupled to a ground. The electrical insulator separates the conductor from the casing. The ground electrode is positioned proximate to the firing electrode, but is separated from the firing electrode to allow a spark to jump between the firing and ground electrodes during operation of the spark plug. The ground electrode includes an extension coupled to the casing and projecting from the casing such that the firing electrode is closer to the ground electrode than the firing electrode is to the casing. There is substantially no air gap between the interior of the casing and the electrical insulator from the firing end of the spark plug.
Another embodiment of the invention relates to a spark plug, which includes a terminal for receiving an electrical charge, a firing electrode on a firing end of the spark plug, and a conductor electrically coupling the terminal and the firing electrode. The spark plug further includes a casing, an electrical insulator, a ground electrode, and a thermal insulator. The casing is at least partially formed from an electrically conductive material and is configured to be electrically coupled to a ground. The electrical insulator separates the conductor from the casing. The ground electrode is positioned proximate to the firing electrode, but is separated from the firing electrode to allow a spark to jump between the firing and ground electrodes during operation of the spark plug. The thermal insulator extends between the casing and the electrical insulator on the firing end of the spark plug.
Yet another embodiment of the invention relates to a spark plug, which includes a terminal for receiving an electrical charge, a firing electrode on a firing end of the spark plug, and a conductor electrically coupling the terminal and the firing electrode. The spark plug further includes a casing, an electrical insulator, and a ground electrode. The casing is at least partially formed from an electrically conductive material and is configured to be electrically coupled to a ground. The electrical insulator separates the conductor from the casing. The ground electrode is positioned proximate to the firing electrode, but is separated from the firing electrode to allow a spark to jump between the firing and ground electrodes during operation of the spark plug. The electrical insulator adjoins the casing along the interior periphery of the casing at the firing end of the spark plug. A tip of the electrical insulator extends longitudinally from the casing on the firing end of the spark plug, such that the electrical insulator provides both a longitudinal separation and a latitudinal separation between the firing electrode and the casing on the firing end of the spark plug.
Alternative exemplary embodiments relate to other features and combinations of features as may be generally recited in the claims.
The disclosure will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, in which:
Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the present application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.
Referring to
Still referring to
Referring to
The spark plug 210 does not include an air gap (e.g., air gap 120 as shown in
The spark gap 226 of the spark plug 210 is wider than the spark gap of the spark plug 110. As such, the wider spark gap 226 requires a greater electrical charge to initiate a longer arc between the firing electrode 222 and the ground electrode 218. For example, in a small engine with an ignition system not using a battery, the spark plug 210 may require an engine speed of approximately 200-300 revolutions per minute (rpm) to initiate a spark, while the spark plug 110 may generate sparks at an engine speed of approximately 150 rpm. As such, an engine with the spark plug 210 may be more difficult to start (e.g., with a recoil starter) than an engine with the spark plug 110.
Additionally, a spark of the spark plug 210 may occur further from the center of a corresponding combustion chamber than a spark of the spark plug 110, because the hook electrode 118 is directed into the combustion chamber, which orients the corresponding spark toward the center of the combustion chamber. Furthermore, a spark of the spark plug 110, with the hook electrode 118, is surrounded by fewer surfaces than a spark of the spark plug 210. The open space and closer-to-center location of a spark from the spark plug 110 may allow for a more efficient burn, as the flame propagates through the combustion chamber. A more efficient burn increases engine performance and may reduce hydrocarbon emissions.
Referring to
Referring to
Similar to the spark plugs 210, 310, the spark plug 410 includes no air gap (e.g., air gap 120 as shown in
Referring to
The spark plug 510 further includes an annular air gap 540 that is sealed off from the combustion chamber by a thermally-insulating washer 542 positioned between the porcelain electrical insulator 514 and the shell 516. The washer 542 is designed to compliment the air gap 540, reducing heat transfer between the porcelain electrical insulator 514 and the shell 516. As such, the firing electrode 524 and porcelain electrical insulator 514 becomes hot enough to reduce the chance of spark plug 510 fouling. The thermally-insulating washer 542 may be formed from a commercially-available thermally-insulating material having a low thermal conductivity (e.g., cement, fiberglass).
Referring to
The spark plug 610 further includes a casing 624 (e.g., shell) at least partially formed from an electrically conductive material allowing the casing to be electrically coupled to a ground, such as a cylinder head of the engine. A ground electrode 628 (e.g., negative electrode, anode, side electrode) is coupled to the casing 624. In some embodiments, the casing 624 includes threading 626 that is designed to fasten the spark plug 610 with the cylinder head of the engine, so that the firing end 614 is in communication with fuel in the combustion chamber. According to a preferred embodiment, there is substantially no air gap between the casing 624 and the insulator 622 on the firing end 614 of the spark plug 610.
In some embodiments, the spark plug 610 includes a washer 630 configured for sealing and securing the casing 624 to the cylinder head of the engine. In some such embodiments, the washer 630 is a trifold or other form of compressible washer. Compression of the washer 630 helps to control the torque between the spark plug 610 and the cylinder head. In some embodiments, the washer 630 may be formed from a thermally-insulating material.
Referring to
According to an exemplary embodiment, a tip 632 of the electrical insulator 622 extends longitudinally beyond the casing 624 on the firing end 614 of the spark plug 610 by a distance (see also
Referring to
Referring specifically to
Referring to
Referring to
In contemplated embodiments, a spark plug includes an electrical insulator formed from a material that is also thermally insulating (e.g., cement including fine-grain quartz), which is intended to keep a higher surface temperature by retaining heat while also electrically separating the conductor and the casing. In such embodiments, the electrical insulator (and also thermal insulator) adjoins the casing to prevent fuel-carrying air from avoiding ignition. The electrical insulator may extend longitudinally beyond the casing to improve heat retention of the tip of the electrical insulator, and to improve electrical isolation of the firing electrode from the casing. In such contemplated embodiments, the spark plug may also include a hook-shaped ground electrode.
In other contemplated embodiments, a ground electrode may not extend toward the firing electrode, but may project from the casing as a straight rod. In such contemplated embodiments, the ground electrode may extend substantially in parallel with the firing electrode, such that the firing electrode is closer to the ground electrode than the firing electrode is to the casing. A spark would jump horizontally between the firing electrode and such a ground electrode. Use of a straight ground electrode may expose the tip of the insulator to a greater amount of heat from the combustion chamber than use of a hook-shaped electrode, which may partially shield the tip of the insulator.
The construction and arrangements of the spark plug, as shown in the various exemplary embodiments, are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. Some elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process, logical algorithm, or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention.
This application claims the benefit of U.S. Provisional Application No. 61/275,042, filed Aug. 25, 2009, which is incorporated herein by reference in its entirety.