This application claims priority from Japanese Patent Application No. 2014-107101, filed with the Japanese Patent Office on May 23, 2014, the entire content of which is hereby incorporated by reference.
The present invention relates to a spark plug used for ignition in an internal combustion engine or the like.
A spark plug generates a spark at a gap formed between a distal end portion of a center electrode and a distal end portion of a ground electrode upon application of a voltage between the center electrode and the ground electrode, which are insulated from each other by means of an insulator. For example, Japanese Patent Application Laid-Open (kokai) No. 2002-237365 discloses a spark plug in which the center electrode and the ground electrode face each other in the axial direction so as to form a gap.
Incidentally, in order to decrease the fuel cost of an internal combustion engine and/or purify exhaust gas, the degree of leanness of air-fuel mixture and/or the amount of re-circulated gas (EGR gas) has been increased. In order to compensate for a decrease in flame propagation speed caused by the increased degree of leanness of air-fuel mixture and/or the increased amount of re-circulated gas, the speed of a gas flow within a combustion chamber of the internal combustion engine tends to be increased. As a result, in the spark plug of Patent Document 1, a phenomenon in which the spark generated at the gap of the spark plug is blown by the gas flow and is quenched (spark blowout) becomes likely to occur. The spark blowout prevents extension of a spark discharge path to thereby deteriorate the ignition performance of the spark plug, and causes multiple discharge to thereby deteriorate the durability of the spark plug. Therefore, there has been a demand for a technique of securing the required ignition performance and durability of the spark plug even when the speed of a gas flow within a combustion chamber is high.
An object of the present invention is to secure the required ignition performance and durability of a spark plug even when the speed of a gas flow within a combustion chamber is high.
The present invention has been accomplished so as to solve, at least partially, the above-described problem, and the present invention can be embodied in the following application examples.
In accordance with a first aspect of the present invention, there is provided a spark plug comprising:
a center electrode extending in a direction of an axial line;
an insulator having an axial hole which extends in the direction of the axial line and in which the center electrode is disposed; and
a metallic shell disposed around the insulator, wherein
the metallic shell has
a first ground electrode which is electrically connected to the metallic shell and has a first surface facing a side surface of the center electrode in a radial direction so as to form a first gap, and
a second ground electrode which is electrically connected to the metallic shell and has a second surface facing the side surface of the center electrode in the radial direction so as to form a second gap;
a relation 60°≦θ≦150° is satisfied, where θ is a smaller one of angles formed between a first line connecting the axis and a center of the first surface and a second line connecting the axial line and a center of the second surface when viewed from a forward end side toward a rear end side in the direction of the axis; and
the metallic shell has a specific plane which bisects the metallic shell such that all the ground electrodes are located on one side of the plane.
According to the above-described configuration, through proper determination of the layout of the two ground electrodes, spark blowout can be suppressed, and extension of the spark discharge path can be promoted. As a result, even in the case where the speed of a gas flow within a combustion chamber is high, the required ignition performance and durability of the spark plug can be secured.
In accordance with a second aspect of the present invention, there is provided a spark plug as described in the application example 1, wherein at a position in the direction of the axis at which the first surface and the second surface face each other, the center electrode has an outer diameter greater than largest widths of the first surface and the second surface.
According to the above-described configuration, the outer diameter of the center electrode is rendered larger than the largest widths of the first and second surfaces of the ground electrodes which form the respective gaps. Therefore, spark blowout can be suppressed to a greater degree. As a result, the durability of the spark plug can be enhanced further.
In accordance with a third aspect of the present invention, there is provided a spark plug as described in the application example 1 or 2, wherein
the first ground electrode has a first ground electrode tip including the first surface, and a first ground electrode main body to which the first ground electrode tip is joined;
the second ground electrode has a second ground electrode tip including the second surface, and a second ground electrode main body to which the second ground electrode tip is joined; and
largest widths of the first ground electrode main body and the second ground electrode main body are greater than the outer diameter of the center electrode.
According to the above-described configuration, the largest widths of the first and second ground electrode main bodies are rendered larger than the outer diameter of the center electrode. Therefore, flows of air-fuel mixture (gas flows) detouring around the two ground electrode main bodies (in particular, detouring around the two ground electrode main bodies to pass through the downstream sides thereof) are restrained from reaching the vicinity of the gaps. As a result, a drop in the flow speed of fuel gas in the vicinity of the gaps can be suppressed, whereby the ignition performance of the spark plug can be enhanced.
In accordance with a fourth aspect of the present invention, there is provided a spark plug as described in any one of the application examples 1 through 3, wherein
the first ground electrode has a first ground electrode tip including the first surface, and a first ground electrode main body to which the first ground electrode tip is joined;
the second ground electrode has a second ground electrode tip including the second surface, and a second ground electrode main body to which the second ground electrode tip is joined; and
a projection length by which the first ground electrode tip projects from the first ground electrode main body inward in the radial direction of the metallic shell and a projection length by which the second ground electrode tip projects from the second ground electrode main body inward in the radial direction of the metallic shell are equal to or greater than 0.5 mm
According to the above-described configuration, the projection lengths by which the ground electrode tips project radially inward from the corresponding ground electrode main bodies are rendered relatively large. Therefore, flows of air-fuel mixture detouring around the two ground electrode main bodies are restrained from reaching the vicinity of the gaps. As a result, a drop in the flow speed of fuel gas in the vicinity of the gaps can be suppressed, whereby the ignition performance of the spark plug can be enhanced.
In accordance with a fifth aspect of the present invention, there is provided a spark plug as described in any one of the application examples 1 through 4, wherein the spark plug is driven by a current supply section which can supply a current of 25 mA or more to the spark plug over a period of 0.5 ms or longer for discharge of one time.
According to the above-described configuration, spark blowout is less likely to occur when a current supply section which can supply current for a relatively long time is used. Accordingly, it is possible to realize an ignition performance corresponding to the current supply capacity of the current supply section.
In accordance with a sixth aspect of the present invention, there is provided a spark plug as described in any one of the application examples 1 through 5, wherein the spark plug is attached to an internal combustion engine in such a manner that when viewed from the forward end side toward the rear end side in the direction of the axial line, an upstream portion of a flow path of an air-fuel mixture passing through the first gap and the second gap within a combustion chamber of the internal combustion engine is located within a range of the angle θ.
According to the above-described configuration, spark blowout caused by the flow of air-fuel mixture (gas flow) can be prevented effectively, whereby the durability and ignition performance of the spark plug can be enhanced.
Notably, the present invention can be realized in various forms. For example, the present invention can be realized as a spark plug, an ignition apparatus using the spark plug, a method of attaching the spark plug, an internal combustion engine having the spark plug mounted thereon, or an internal combustion engine having an ignition apparatus mounted thereon and using the spark plug.
The cylinder block 720 has a cylinder wall 729 which forms a portion (generally cylindrical space) of the combustion chamber 790. The engine head 710 is fixed to one side (upper side of
As shown in
A flow direction Dg indicated by an arrow in
Next, the structure of the spark plug 100 will be described.
The spark plug 100 includes an insulator 10 (hereinafter also referred to as the “ceramic insulator 10”), a center electrode 20, two ground electrodes, a metallic terminal 40, a metallic shell 50, an electrically conductive first seal portion 60, a resistor 70, an electrically conductive second seal portion 80, a forward-end-side packing 8, talc 9, a first rear-end-side packing 6, and a second rear-end-side packing 7. The two ground electrodes are a first ground electrode 30A and a second ground electrode 30B, which is not shown in
The insulator 10 is a generally cylindrical member having a through hole 12 (hereinafter also referred to as the “axial hole 12”) extending along the center axis CL and penetrating the insulator 10. The insulator 10 is formed by firing alumina (other insulating materials can be employed). The insulator 10 has a leg portion 13, a first outer-diameter decreasing portion 15, a forward-end-side trunk portion 17, a flange portion 19, a second outer-diameter decreasing portion 11, and a rear-end-side trunk portion 18, which are arranged in this order from the forward end side toward the rearward direction Dr side. The outer diameter of the first outer-diameter decreasing portion 15 decreases gradually from the rear end side toward the forward end side. An inner-diameter decreasing portion 16 whose inner diameter decreases gradually from the rear end side toward the forward end side is formed in the vicinity of the first outer-diameter decreasing portion 15 of the insulator 10 (at the forward-end-side trunk portion 17 in the example of
The rod-shaped center electrode 20 extending along the center axis CL is inserted into a forward end portion of the axial hole 12 of the insulator 10. The center electrode 20 has a shaft portion 27 and a generally circular columnar center electrode tip 28 whose center coincides with the center axis CL and which extends along the center axis CL. The shaft portion 27 has a leg portion 25, a flange portion 24, and a head portion 23 which are arranged in this order from the forward end side toward the rearward direction Dr side. The center electrode tip 28 is joined to the forward end of the leg portion 25 (namely, the forward end of the shaft portion 27) (by means of, for example, laser welding). The entirety of the center electrode tip 28 is exposed to the outside of the axial hole 12 on the forward end side of the insulator 10. A surface of the flange portion 24 on the forward direction Df side is supported by the inner-diameter decreasing portion 16 of the insulator 10. The shaft portion 27 includes an outer layer 21 and a core 22. The outer layer 21 is formed of a material which has electrical conductivity and is higher in oxidation resistance than the core 22; namely, a material which consumes little when it is exposed to combustion gas within a combustion chamber of an internal combustion engine (for example, pure nickel, an alloy containing nickel and chromium, etc.). The core 22 is formed of a material which has electrical conductivity and is higher in thermal conductivity than the outer layer 21 (for example, pure copper, a copper alloy, etc.). A rear end portion of the core 22 is exposed from the outer layer 21, and forms a rear end portion of the center electrode 20. The remaining portion of the core 22 is covered with the outer layer 21. However, the entirety of the core 22 may be covered with the outer layer 21. The center electrode tip 28 is formed of a material which is higher in durability against discharge than the shaft portion 27. Examples of such a material include noble metals (e.g., iridium (Ir) and platinum (Pt)), tungsten (W), and an alloy containing at least one type of metal selected from these metals.
A portion of the metallic terminal 40 is inserted into a rear end portion of the axial hole 12 of the insulator 10. The metallic terminal 40 is formed of an electrically conductive material (for example, metal such as low-carbon steel).
The resistor 70, which has a generally circular columnar shape and is adapted to suppress electrical noise, is disposed in the axial hole 12 of the insulator 10 to be located between the metallic terminal 40 and the center electrode 20. The resistor 70 is formed through use of, for example, a material containing an electrically conductive material (e.g., particles of carbon), particles of ceramic (e.g., ZrO2), and particles of glass (e.g., particles of SiO2—B2O3—Li2O—BaO glass). The electrically conductive first seal portion 60 is disposed between the resistor 70 and the center electrode 20, and the electrically conductive second seal portion 80 is disposed between the resistor 70 and the metallic terminal 40. The seal portions 60 and 80 are formed through use of a material containing, for example, particles of glass similar to that contained in the material of the resistor 70 and particles of metal (e.g., Cu). The center electrode 20 and the metallic terminal 40 are electrically connected through the resistor 70 and the seal portions 60 and 80.
The metallic shell 50 is a generally cylindrical member having a through hole 59 which extends along the center axis CL and penetrates the metallic shell 50. The metallic shell 50 is formed of low-carbon steel (other electrically conductive materials (e.g., metallic material) can be employed). The insulator 10 is inserted into the through hole 59 of the metallic shell 50. The metallic shell 50 is disposed around the insulator 10. On the forward end side of the metallic shell 50, the forward end of the insulator 10 (a forward end portion of the leg portion 13 in the present embodiment) is exposed to the outside of the through hole 59. On the rear end side of the metallic shell 50, the rear end of the insulator 10 (a rear end portion of the rear-end-side trunk portion 18 in the present embodiment) is exposed to the outside of the through hole 59.
The metallic shell 50 has a trunk portion 55, a seat portion 54, a deformable portion 58, a tool engagement portion 51, and a crimp portion 53 arranged in this order from the forward end side toward the rear end side. The seat portion 54 is a flange-shaped portion. A screw portion 52 for screw engagement with an attachment hole of an internal combustion engine (e.g., gasoline engine) is formed on the outer circumferential surface of the trunk portion 55. The nominal diameter of the screw portion 52 is, for example, M12 (12 mm) However, the nominal diameter of the screw portion 52 may be M8, M10, M14, or M18. An annular gasket 5 formed by folding a metal plate is fitted between the seat portion 54 and the screw portion 52.
The metallic shell 50 has an inner-diameter decreasing portion 56 disposed on the forward direction Df side of the deformable portion 58. The inner diameter of the inner-diameter decreasing portion 56 decreases gradually from the rear end side toward the forward end side. The forward-end-side packing 8 is sandwiched between the inner-diameter decreasing portion 56 of the metallic shell 50 and the first outer-diameter decreasing portion 15 of the insulator 10. The forward-end-side packing 8 is an O-ring formed of iron (other materials (e.g., metallic material such as copper) can be employed).
The tool engagement portion 51 has a shape (e.g., a hexagonal column) suitable for engagement with a spark plug wrench. The crimp portion 53 is disposed on the rear end side of the second outer-diameter decreasing portion 11 of the insulator 10, and forms a rear end (an end on the rearward direction Dr side) of the metallic shell 50. The crimp portion 53 is bent radially inward. On the forward direction Df side of the crimp portion 53, the first rear-end-side packing 6, the talc 9, and the second rear-end-side packing 7 are disposed between the inner circumferential surface of the metallic shell 50 and the outer circumferential surface of the insulator 10 in this order toward the forward direction Df side. In the present embodiment, these rear-end-side packings 6 and 7 are C-rings formed of irons (other materials can be employed).
When the spark plug 100 is manufactured, crimping is performed such that the crimp portion 53 is bent inward. Thus, the crimp portion 53 is pressed toward the forward direction Df side. As a result, the deformable portion 58 deforms, and the insulator 10 is pressed forward within the metallic shell 50 via the rear-end-side packings 6 and 7 and the talc 9. The forward-end-side packing 8 is pressed between the first outer-diameter decreasing portion 15 and the inner-diameter decreasing portion 56 to thereby establish a seal between the metallic shell 50 and the insulator 10. By virtue of the above-described configuration, the metallic shell 50 is fixed to the insulator 10.
The first ground electrode main body 35A has a rectangular parallelepiped shape, and is formed of an electrically conducive material which is excellent in oxidation resistance (for example, an alloy containing nickel and chromium). The rear end of the first ground electrode main body 35A is joined to the forward end surface 57 of the metallic shell 50 (for example, resistance welding). Accordingly, the first ground electrode main body 35A is electrically connected to the metallic shell 50. As shown in
The first ground electrode tip 38A has the shape of a rectangular column extending in the radial direction, and is formed of an electrically conductive material which is more excellent in durability against discharge than the first ground electrode main body 35A (for example, a noble metal such as iridium (Ir), platinum (Pt), or the like, tungsten (W), or an alloy containing at least one of these metals). An end of the first ground electrode tip 38A located on the outer side in the radial direction is joined to the forward end surface of the first ground electrode main body 35A (for example, resistance welding). The joint position is located at the centers of the longer sides of the rectangular forward end surface of the first ground electrode main body 35A. As a result, as shown in
A surface 39A of the first ground electrode tip 38A located on the inner side in the radial direction faces a side surface 29 (also referred as a discharge side surface) of the circular columnar center electrode tip 28 in the radial direction to thereby form a first gap GA. The surface 39A of the first ground electrode tip 38A located on the inner side in the radial direction will also be referred to as a first discharge surface 39A. As shown in
The shape, material, and dimensions of the second ground electrode 30B are the same as those of the first ground electrode 30A. Namely, the second ground electrode 30B includes a second ground electrode main body 35B identical with the first ground electrode main body 35A, and a second ground electrode tip 38B identical with the first ground electrode tip 38A.
A surface 39B of the second ground electrode tip 38B located on the inner side in the radial direction faces the side surface 29 of the circular columnar center electrode tip 28 in the radial direction to thereby form a second gap GB (
As shown in
The angle between the first disposition direction D1 and the second disposition direction D2 as measured in the circumferential direction; i.e., the inferior angle (smaller angle) formed between a line connecting the axial line CL and the point PA and a line connecting the axial line CL and the point PB, will be referred to as a disposition angle θ of the two ground electrodes 30A and 30B. The disposition angle θ is sufficiently smaller than 180 degrees (about 100 degrees)(° in the example shown in
Notably, it is preferred to attach the spark plug 100 to the internal combustion engine 700 such that the upper side of the flow direction Dg (
Also, as described above, the disposition angle θ is sufficiently smaller than 180 degrees, and the spark plug 100 does not have ground electrodes other than the first ground electrode 30A and the second ground electrode 30B. Therefore, the spark plug 100 has a specific plane which includes the axial line CL and which bisects the metallic shell 50 in such a manner that all the ground electrodes (i.e., the first ground electrode 30A and the second ground electrode 30B) are located on one side of the plane. For example, in the example shown in
Notably, the outer diameter of the center electrode tip 28; i.e., the outer diameter of the center electrode 20 at a position in the axial direction at which the center electrode 20 faces the discharge surfaces 39A and 39B of the ground electrodes 30A and 30B is represented by R1. Also, the length of the ground electrode main bodies 35A and 35B in the width direction (a direction along the circumferential direction in the present embodiment) (i.e., the length in the longitudinal direction in a cross section perpendicular to the axis, also referred to as the largest width) is represented by L1. The length of the ground electrode main bodies 35A and 35B in the radial direction (i.e., the length in the lateral direction in the cross section perpendicular to the axis, also referred to as the smallest width) is represented by L2. Also, the length of the discharge surfaces 39A and 39B of the ground electrode tips 38A and 38B in the width direction (i.e., the length of the discharge surfaces in the longitudinal direction, also referred to as the largest width) is represented by L3; the length of the discharge surfaces 39A and 39B in the axial direction is represented by L4, and the length of the ground electrode tips 38A and 38B in the radial direction is represented by L5. Also, the projection length by which the ground electrode tips 38A and 38B project radially inward from the ground electrode main bodies 35A and 35B is represented by L6.
According to the above-described spark plug 100 of the embodiment, the ignition performance and durability can be enhanced by properly disposing the two ground electrodes 30A and 30B. This will be described more specifically with reference to
Arrows AR1 in
Discharge paths E1 through E4 in
Also, the spark blowout may cause a phenomenon (multiple discharge) in which spark is gain generated along the first path E1 during a period during which discharge must be generated only one time. Since the maximum voltage is applied to the gap and the maximum current flows through the gap when spark is generated, the amounts of consumption of the electrode tips 28, 38A, and 38B become maximum when spark is generated. Therefore, if multiple discharge occurs, the consumption amounts of the electrode tips 28, 38A, and 38B become larger than those in the case where multiple discharge does not occur. According to the present embodiment, since the spark blowout is suppressed as described above, increases in the consumption amounts of the electrode tips 28, 38A, and 38B can be suppressed. As a result, the durability of the spark plug 100 is enhanced. The same thing can be said about the spark generated at the second gap GB.
Further, since the two ground electrodes 30A and 30B are locally present on one side of the plane VL; i.e., on the upstream side of the gas flow AR1, the end point (for example, P2-P4) of the discharge path of spark on the discharge side surface 29 of the center electrode tip 28 does not locally appear within a small region of the discharge side surface 29, but appears within a relative large region. As a result, as indicated by cross-hatching in
Such effect is effective particularly in the case where the speed of the gas flow AR1 is relatively high. Specifically, when the degree of leanness of the air-fuel mixture is increased (the A/F ratio is increased), exhaust gas recirculation (EGR) is performed, and/or the pressure within the combustion chamber is increased, the speed of the gas flow AR1 within a combustion chamber tends to be increased in order to secure the required ignition performed. The effects of the spark plug 100 of the present embodiment become remarkable, when the spark plug 100 is used for an internal combustion engine in which the speed of such a gas flow AR1 is made relatively high. Specifically, from the viewpoint of suppressing the spark blowout, it is preferred that the discharge path of spark be short, and if the spark blowout does not occur, from the viewpoint of ignition performance, it is preferred that the discharge path of spark be long. It has been difficult to simultaneously satisfy the demands contrary to each other. However, in the spark plug 100 of the present embodiment, by properly determining the layout of the ground electrodes, etc., the spark blowout can be suppressed even when the discharge path of spark becomes long. As a result, even in the case where the speed of the spark gas flow AR within the combustion chamber is high, the required ignition performance and durability of the spark plug can be secured.
In order to evaluate the performance of the spark plug 100 of the embodiment, evaluation of ignition performance was performed through use of samples. Specifically, in the first evaluation test, the case where the direction of discharge is perpendicular to the axial direction (lateral discharge) and the case where the direction of discharge is parallel to the axial direction (longitudinal discharge) were compared.
The sample S2 shown in
The sample S3 of
Notably, the specific structures of the samples S1 through S3 are as follows.
The outer diameter R1 of the center electrode tip 28: 0.6 mm
The material of the center electrode tip 28: iridium (Ir) alloy
The length L3 of the discharge surfaces of the ground electrode tips 38A and 38C in the circumferential direction: 0.6 mm
The length L4 of the discharge surfaces of the ground electrode tips 38A and 38C in the axial direction: 0.6 mm
The length L5 of the ground electrode tips 38A and 38C in the radial direction: 1.0 mm
The material of the ground electrode tips 38A and 38C: platinum (Pt) alloy
Notably, three types of samples S11 through S13 in which the gap GA (
In the first evaluation test, a spark test of generating spark discharge 100 times per test within a chamber pressurized to 0.8 MPa was performed through use of the nine types of samples S11 through S33. At the time of discharge, an electrical energy of 50 mJ per discharge was supplied to each sample through use of a predetermined ignition apparatus (for example, a full transistor ignition apparatus). During the spark test, an air flow was generated within the camber such that air flowed in a direction (direction Ds in
Of the 100 times of spark discharges, the number of times multiple discharge due to spark blowout occurred was counted. By performing the spark test a plurality of times while changing the flow speed of air within the chamber by 1 m/s at a time, the lower limit of the flow speed (hereinafter also referred to as the “lower limit flow speed”) at which the ratio of occurrence of spark blowout (multiple discharge) becomes 5% or greater was specified as an evaluation value of each sample. Table 1 shows the results of the first evaluation test.
The results mean that the higher the lower limit flow speed, the smaller the possibility of occurrence of spark blowout, and the higher the durability and ignition performance.
As can be understood from Table 1, in the cases of the samples S11 through S13 for lateral discharge, irrespective of the length of the gap, the lower limit flow speed is higher, and spark blowout is less like to occur as compared with the samples S21 through S23 for longitudinal discharge.
Also, as can be understood from Table 1, in the cases of the samples S11 through S13 for lateral discharge, irrespective of the length of the gap, the lower limit flow speed is higher, and spark blowout is less likely to occur as compared with the samples S31 through S33 for discharge in the longitudinal and lateral directions. Also, in terms of the lower limit flow speed and the likelihood of occurrence of spark blowout, no difference was observed between the samples S21 through S23 for longitudinal discharge the samples S31 through S33 for discharge in the longitudinal and lateral directions. Conceivably, this is because, in the samples for discharge in the longitudinal and lateral directions, most of spark discharges actually generated are the longitudinal discharge. Namely, the longitudinal discharge is generated along a path which connects an end (corner) of the discharge surface of the center electrode tip 28 and an end (corner) of the discharge surface of the ground electrode tip 38C. Therefore, conceivably, the dielectric breakdown voltage of the gap Gh for longitudinal discharge is lower than the dielectric breakdown voltage of the gap GA for lateral discharge. Therefore, it is considered that, in the samples for discharge in the longitudinal and lateral directions, longitudinal discharge is more likely to occur as compared with lateral discharge.
From the first evaluation test, it was found that employment of lateral discharge as in the spark plug 100 of the embodiment is preferred in order to suppress occurrence of spark blowout, to thereby enhance the durability and ignition performance of the spark plug.
Next, in order to determine a proper value of the disposition angle θ (
A surface 39D (also referred to as a third discharge surface 39D) of the third ground electrode tip 38D located on the inner side in the radial direction faces the side surface 29 of the circular columnar center electrode tip 28 to thereby form a third gap GD (
In the spark plug of the comparative embodiment, the third disposition direction D3 is determined such that the angle θ13 between the first disposition direction D1 and the third disposition direction D3 in the circumferential direction and the angle θ23 between the second disposition direction D2 and the third disposition direction D3 in the circumferential direction satisfy a relation of θ13=θ23>90 degrees. The third ground electrode 30D disposed in the third disposition direction D3 is located on the side opposite the first ground electrode 30A and the second ground electrode 30B with respect to a plane VL which is perpendicular to the third disposition direction D3 and includes the axial line CL. In other words, the third ground electrode 30D is located on the downstream side of the flow direction Dg of the air-fuel mixture (downstream side of the gas flow AR1) when the spark plug of the comparative embodiment is attached to the internal combustion engine.
Notably, the six types of samples S41 through S46 of the embodiment and the three types of comparative samples S51 through S53 are the same in the following aspects.
The outer diameter R1 of the center electrode tip 28: 0.6 mm
The material of the center electrode tip 28: iridium (Ir) alloy
The length L1 of the ground electrode main bodies 35A and 35B in the circumferential direction: 1.0 mm
The length L3 of the discharge surfaces of the ground electrode tips 38A and 38B in the circumferential direction: 0.6 mm
The length L4 of the discharge surfaces of the ground electrode tips 38A and 38B in the axial direction: 0.6 mm
The length L5 of the ground electrode tips 38A and 38B in the radial direction: 1.0 mm
The projection length L6 of the ground electrode tips 38A and 38B: 0.3 mm
The material of the ground electrode tips 38A and 38B: platinum (Pt) alloy
The length of the gaps GA and GB: 0.3 mm
Also, the dimensions and material of the third ground electrode 30D of the three types of comparative samples S51 through S53 are the same as those of the remaining two ground electrodes 30A and 30B, and the length of the third gap GD is the same as those of the remaining two gaps GA and GB (0.3 mm)
The six types of samples S41 through S46 of the embodiment differ from one another in the disposition angle θ of the two ground electrodes 30A and 30B, and have disposition angles of 40 degrees, 50 degrees, 60 degrees, 100 degrees, 150 degrees, and 180 degrees, respectively. The comparative samples S51 through S53 differ from one another in the disposition angle θ of the two ground electrodes 30A and 30B, and have disposition angles of 60 degrees, 100 degrees, and 150 degrees, respectively.
In the second evaluation test, each sample was mounted on an internal combustion engine in such a manner that the flow direction of air-fuel mixture coincides with the flow direction Dg shown in
For a single sample, while the air-fuel ratio (A/F) of air-fuel mixture was changed stepwise, the misfire ratio was measured three times at each air-fuel ratio. From the result obtained by plotting the air-fuel ratio and the misfire ratio, the air-fuel ratio at which each sample exhibited a misfire ratio of 1% was calculated through approximate calculation. Table 2 shows the results of the second evaluation test. The results mean that the larger the air-fuel ratio at the time when the misfire ratio was 1% (hereinafter also referred to as the “air-fuel ratio at the time of 1% misfire ratio”), the higher the ignition performance.
As shown in Table 2, it was found that, in the cases of the samples S41 through S46 of the embodiment, irrespective of the disposition angle θ, the air-fuel ratio at the time of 1% misfire ratio is greater by 1 or more than those in the cases of the samples S51 through S53 of the comparative embodiment, and the samples S41 through S46 of the embodiment are excellent in ignition performance.
In the case of the sample of the comparative embodiment (
As described above, it was found through the second evaluation test that, from the viewpoint of enhancing ignition performance, it is preferred to dispose the ground electrodes in such a manner that, as in the spark plug 100 of the present embodiment, all the ground electrodes are present on one side of the plane VL indicated by a broken line in
Further, as shown in Table 2, it was found that, in the cases of the samples S43 through S45 in which the disposition angle θ falls within the range of 60 degrees and 150 degrees, the air-fuel ratio at the time of 1% misfire ratio is greater by 1 or more as compared with the samples S41 and S42 in which the disposition angle θ is smaller than 60 degrees and the sample S46 in which the disposition angle θ is greater than 150 degrees, and the samples S43 through S45 are excellent in ignition performance.
The smaller the disposition angle θ, the narrower the flow path of the gas flow AR1 passing through the gaps GA and GB, and the smaller the amount of the gas flow AR1 in the vicinity of the gaps GA and GB. When the disposition angle θ is smaller than 60 degrees, extension of the spark discharge path caused by the flow of spark blown by the gas flow AR1 (
Also, as the disposition angle θ increases, the position of the path (the first path E1 in
As described above, it was found through the second evaluation test that it is preferred to determine the disposition angle θ of the two ground electrodes 30A and 30B such that a relation of 60°≦θ≦150° is satisfied. Thus, it becomes possible to promote the extension of the spark discharge path caused by the blow-caused flow of spark (
Notably, as shown in Table 1, of the samples whose disposition angles θ satisfy the relation of 60°≦θ≦150°, the sample S44 whose disposition angle θ is 100 degrees was the most excellent in ignition performance. As the disposition angle deviated from 100 degrees, the ignition performance decreased gradually. Namely, it was found that as the disposition angle θ, 100 degrees is better than 60 degrees, and is better than 150 degrees.
In the third evaluation test, an evaluation test was performed so as to determine a proper value of the outer diameter R1 of the center electrode tip 28 (the outer diameter R1 of the center electrode). In this third evaluation test, there were used five types of samples S61 through S65 which are the same type as the type of the sample S1 for lateral discharge used in the first evaluation test; namely, samples S61 through S65 which has a single first ground electrode 30A only as a ground electrode. The samples S61 through S65 differ from one another in terms of the outer diameter R1 of the center electrode; i.e., the outer diameters R1 of the center electrodes of the samples S61 through S65 are 0.4 mm, 0.6 mm, 0.8 mm, 1.0 mm, and 1.2 mm, respectively.
The dimensions of the samples S61 through S65, excluding the outer diameter R1 of the center electrode, are identical with those of the sample S11 used in the first evaluation test. For example, the length L3 of the discharge surface 39A of the ground electrode tip 38A in the circumferential direction is 0.6 mm, and the length of the gap GA is 0.3 mm
In the third evaluation test, a spark test of generating spark discharge 100 times per test within a chamber pressurized to 0.8 MPa was performed for each sample. At the time of discharge, an electrical energy of 50 mJ per discharge was supplied to each sample through use of a predetermined ignition apparatus (for example, a full transistor ignition apparatus). During the spark test, an air flow (flow speed: 10 m/s) was generated within the camber such that air flowed in a direction (direction Ds in
Of the 100 times of spark discharges, the number of times multiple discharge due to spark blowout occurred was counted, and the incidence of the spark blowout (hereinafter also referred to as the “blown away ratio”) was specified as an evaluation value of each sample. The smaller the blown away ratio, the lower the possibility of spark blowout, and the higher the durability and ignition performance. Table 3 shows the results of the third evaluation test.
It was found from Table 3 that, in the samples S62 through S65 in which the outer diameter R1 of the center electrode is equal to or greater than the length L3 (0.6 mm) of the discharge surface 39A of the ground electrode in the width direction, spark blowout is less likely to occur as compared with the sample S61 in which the outer diameter R1 of the center electrode is smaller than the length L3 of the discharge surface 39A of the ground electrode in the width direction.
Further, it was found that, in the samples S63 through S65 in which the outer diameter R1 of the center electrode is greater than the length L3 (0.6 mm) of the discharge surface 39A of the ground electrode in the width direction, spark blowout is less likely to occur as compared with the case of the sample S62 in which the outer diameter R1 of the center electrode is the same as the length L3 of the discharge surface 39A of the ground electrode in the width direction.
The greater the outer diameter R1 of the center electrode, the greater the margin distance over which the position of the end point P1-P4 (
As described above, it was found through the third evaluation test that the outer diameter R1 of the center electrode is preferably equal to or greater than the length L3 of the discharge surface 39A of the ground electrode in the width direction, and is more preferably greater than the length L3 of the discharge surface 39A of the ground electrode in the width direction. Thus, extension of the spark discharge path caused by the flow of blown spark (
Notably, as shown in Table 3, of the samples S63 through S65 in which the outer diameter R1 of the center electrode is greater than the length L3, the sample S64 in which the outer diameter R1 of the center electrode is 1 mm was less likely to cause spark blowout as compared with the sample S63 in which the outer diameter R1 of the center electrode is 0.8 mm. The sample S64 in which the outer diameter R1 of the center electrode is 1 mm and the sample S65 in which the outer diameter R1 of the center electrode is 1.2 mm have the same spark blown away ratio. Namely, it was found that an outer diameter R1 of the center electrode greater than 1.5 times the length L3 is further preferred.
In the fourth evaluation test, an evaluation test was performed so as to determine a proper value of the largest width (the length L1 in the circumferential direction) of the ground electrode main bodies 35A and 35B. In the fourth evaluation test, there were used six types of samples S71 through S76 of the spark plug 100 (
Notably, the six types of samples S71 through S76 of the embodiment are the same in the following aspects.
The outer diameter R1 of the center electrode tip 28: 1.0 mm
The material of the center electrode tip 28: iridium (Ir) alloy
The length L3 of the discharge surfaces of the ground electrode tips 38A and 38B in the circumferential direction: 0.6 mm
The length L4 of the discharge surfaces of the ground electrode tips 38A and 38B in the axial direction: 0.6 mm
The length L5 of the ground electrode tips 38A and 38B in the radial direction: 1.0 mm
The projection length L6 of the ground electrode tips 38A and 38B: 0.3 mm
The material of the ground electrode tips 38A and 38B: platinum (Pt) alloy
The length of the gaps GA and GB: 0.3 mm
In the fourth evaluation test, a test identical with the second evaluation test was performed so as to determine the air-fuel ratio at the time of 1% misfire ratio for each sample. Table 4 shows the results of the fourth evaluation test.
From Table 4 it was found that, in the cases of the samples S72 through S75 in which the length L1 of the ground electrode main bodies 35A and 35B is equal to or greater than the outer diameter R1 (1.0 mm) of the center electrode, the air-fuel ratio at the time of 1% misfire ratio is greater than that in the case of the sample S71 in which the length L1 is smaller than the outer diameter R1 of the center electrode, and the samples S72 through S75 are excellent in ignition performance. Further, it was found that, in the cases of the samples S73 through S75 in which the length L1 of the ground electrode main bodies 35A and 35B is greater than the outer diameter R1 of the center electrode, the air-fuel ratio at the time of 1% misfire ratio is greater than that in the case of the sample S72 in which the length L1 is equal to the outer diameter R1 of the center electrode, and the samples S73 through S75 are excellent in ignition performance. However, an exceptional case was found. Namely, in the case of the sample S76 in which the length L1 of the ground electrode main bodies 35A and 35B is excessively large as compared with the outer diameter R1 of the center electrode, the air-fuel ratio at the time of 1% misfire ratio is smaller than those in the cases of the samples S72 through S75, and the sample S76 is inferior in ignition performance.
The longer the length L1 of the ground electrode main body 35A and 35B, the greater the resistance the gas flows AR2 encounter to reach the vicinity of the gaps GA and GB, and the smaller the influence of the gas flows AR2. Therefore, in the case where the length L1 of the ground electrode main bodies 35A and 35B is equal to or greater than the outer diameter R1 (1.0 mm in the present experiment) of the center electrode, the influence of the gas flows AR2 is suppressed more as compared with the case where the length L1 is smaller than the outer diameter R1 of the center electrode. As a result, it is considered that a decrease in the speed of air-fuel mixture in the vicinity of the gaps GA and GB is suppressed, whereby extension of the spark discharge path caused by the flow of blown spark (
However, when the length L1 of the ground electrode main bodies 35A and 35B becomes excessively larger than the outer diameter R1 of the center electrode, the amount of the gas flow AR1 decreases. Therefore, when the length L1 of the ground electrode main bodies 35A and 35B becomes three times or more the outer diameter R1 of the center electrode as in the case of the sample S76, conceivably, the amount of the gas flow AR1 decreases and extension of the spark discharge path caused by the flow of blown spark (
As described above, it was found through the fourth evaluation test that the length L1 of the ground electrode main bodies 35A and 35B in the circumferential direction is preferably equal to or greater than the outer diameter R1 of the center electrode, and is more preferably greater than the outer diameter R1 of the center electrode. As a result, extension of the spark discharge path caused by the flow of blown spark (
Also, it was found that, when the length L1 of the ground electrode main bodies 35A and 35B in the circumferential direction is rendered smaller than three times the outer diameter R1 of the center electrode, it becomes possible to suppress deterioration of ignition performance while securing the amount of the gas flow AR1.
Notably, as shown in Table 3, of the samples S73 through S75 in which the length L1 is greater than the outer diameter R1 of the center electrode, the sample S74 in which the length L1 is twice the outer diameter R1 of the center electrode is the largest in air-fuel ratio at the time of 1% misfire ratio, and is higher in ignition performance than the sample S73 in which the length L1 is 1.2 times the outer diameter R1 of the center electrode and the sample S75 in which the length L1 is 2.5 times the outer diameter R1 of the center electrode. Namely, it was found that the length L1 is preferably not smaller than the 1.2 times the outer diameter R1 of the center electrode but not greater than 2.5 times the outer diameter R1, and most preferably about twice the outer diameter R1 of the center electrode.
In the fifth evaluation test, an evaluation test was performed so as to determine a proper value of the projection length L6 (
Notably, the configurations of the four types of the samples S81 through S84 of the present embodiment, excluding the projection length L6 of the ground electrode tips 38A and 38B, are the same as that of the sample S74 used in the fourth evaluation test.
In the fifth evaluation test, a test identical with the second evaluation test and the fourth evaluation test was performed so as to determine the air-fuel ratio at the time of 1% misfire ratio for each sample. Table 5 shows the results of the fifth evaluation test.
It was found from Table 5 that the longer the projection length L6 of the ground electrode tips 38A and 38B, the greater the air-fuel ratio at the time of 1% misfire ratio, and the higher the ignition performance. Further, it was found that the air-fuel ratios at the time of 1% misfire ratio in the cases of the samples S83 and S84 in which the projection length L6 of the ground electrode tips 38A and 38B is equal to or greater than 0.5 mm are greater by 0.8 or more than those in the cases of the samples S81 and S82 in which the projection length L6 is less than 0.5 mm, and the ignition performances of the samples S83 and S84 are remarkably excellent. A large difference in the air-fuel ratios at the time of 1% misfire ratio was not observed between the sample S83 in which the projection length L6 is 0.5 mm and the sample S84 in which the projection length L6 is 0.7 mm
The reason for this will be described.
As described above, it was found through the fifth evaluation test that the longer the projection length L6 of the ground electrode tips 38A and 38B, the greater the air-fuel ratio at the time of 1% misfire ratio and the higher the ignition performance. In particular, it was found that the projection length L6 of the ground electrode tips 38A and 38B is preferably equal to or greater than 0.5 mm Thus, it becomes possible to enhance ignition performance further by suppressing the influence of the gas flows AR2 detouring around the ground electrode main bodies 35A and 35B.
In the sixth evaluation test, the ignition performance of the spark plug 100 of the embodiment and the ignition performance of a spark plug for longitudinal discharge were compared while the condition of supply of current by an ignition apparatus (also referred to as a current supply apparatus) was changed. In the sixth evaluation test, the sample S83 used in the fifth evaluation test was used as a sample of the spark plug 100 of the embodiment. Also, the sample S21 used in the first evaluation test was used as a sample (
In the example indicated by the continuous line C1, a point in time at which the current has decreased to 25 mA is represented by t1. A period of time T1 between the time point t0 and the time point t1 is a period of time during which the current supplied to the spark plug is equal to or greater than 25 mA. This period of time T1 is defined as a current duration. This current duration can be changed by changing the specifications of the ignition apparatus (for example, the specifications of a capacitor and a coil used therein) or conditions such as control (for example, switching control of a transistor). For example, the ignition apparatus can be operated such that the characteristic indicated by the continuous line C1 is obtained, or operated such that the characteristic indicated by the dashed line C2 is obtained. In the example of
In the sixth evaluation test, there was used five types of ignition apparatuses whose current durations in the case where spark blowout does not occur are 0.1 ms, 0.3 ms, 0.5 ms, 0.7 ms, and 1 ms, respectively. Notably, the current supply capacity of the ignition apparatus used in the first through fifth evaluation tests is approximately equal to that of the ignition apparatus which was used in the sixth evaluation test and whose current duration is 0.3 ms.
In the sixth evaluation test, each of the above-described two types of samples S83 and S21 was driven through use of the six types of ignition apparatuses, a test identical with the test performed in the second, fourth, and fifth evaluation tests was performed, and the air-fuel ratio at the time of 1% misfire ratio was determined for a combination of each sample and each ignition apparatus. In the present evaluation test, the air-fuel ratio at the time of 1% misfire ratio of each sample determined through use of the ignition apparatus whose current duration is 0.1 ms was used as a reference value of the air-fuel ratio of each sample. Differences between the reference value and air-fuel ratios at the time of 1% misfire ratio determined through use of the four types of ignition apparatuses whose current duration are 0.3 ms, 0.5 ms, 0.7 ms, and 1 ms, respectively, were calculated as evaluation values. Notably, the air-fuel ratio at the time of 1% misfire ratio of the sample S21 determined through use of the ignition apparatus whose current duration is 0.1 ms; i.e., the reference value of the sample S21, was 22. Also, the air-fuel ratio at the time of 1% misfire ratio of the sample S83 determined through use of the ignition apparatus whose current duration is 0.1 ms; i.e., the reference value of the sample S83, was 25.
As can be understood from Table 6, in the case of the sample S21 of the spark plug for longitudinal discharge, when the ignition apparatus whose current duration is 0.3 ms was used, an increase in the air-fuel ratio at the time of 1% misfire ratio was observed as compared with the case where the ignition apparatus whose current duration is 0.1 ms was used. However, in the case of the sample S21, when the ignition apparatuses whose current duration are 0.5 ms, 0.7 ms, and 1 ms were used, no increase in the air-fuel ratio at the time of 1% misfire ratio was observed as compared with the case where the ignition apparatus whose current duration is 0.3 ms was used. Namely, enhancement of the ignition performance of the sample S21 was not observed even when an ignition apparatus having a relatively high energy supply capacity, such as an ignition apparatus whose current duration is 0.5 ms or longer, was used.
In the case of the spark plug for longitudinal discharge, even when an ignition apparatus whose current duration is 0.5 ms or longer is used, spark blowout occurs. Therefore, in actuality, current cannot be supplied to the spark plug over a long period of time. Accordingly, it is considered that, even when an ignition apparatus having a high energy supply capacity, such as an ignition apparatus whose current duration is 0.5 ms or longer, is used, the energy release amount of spark discharge of the spark plug for longitudinal discharge does not increase.
Meanwhile, in the case of the sample S83 of the spark plug 100 of the present embodiment, within the range of current duration of 0.1 ms to 1 ms, the air-fuel ratio at the time of 1% misfire ratio increases with the current duration of the ignition apparatus used. Namely, in the case of the sample S83, the longer the current duration (higher the energy supply capacity) of the ignition apparatus used, the greater the degree to which the ignition performance is enhanced. Namely, it was found that, unlike the sample S21 of the spark plug for longitudinal discharge, the ignition performance of the sample S83 of the spark plug 100 of the present embodiment improves in accordance with the energy supply capacity of an ignition apparatus used to drive the spark plug, even when the current duration of the ignition apparatus is 0.5 ms or longer.
As described above, in the spark plug 100 of the present embodiment, spark blowout is less likely to occur as compared with the spark plug for longitudinal discharge. Therefore, current can be supplied from the ignition apparatus to the spark plug 100 for a long period of time. Accordingly, the energy release amount of spark discharge of the spark plug 100 increases with the current duration of the ignition apparatus used. As a result, it is considered that the longer the current duration of the ignition apparatus used, the greater the degree to which the ignition performance of the spark plug 100 is enhanced.
As described above, the following was found through the sixth evaluation test. In the case where the spark plug 100 of the present embodiment is driven by an ignition apparatus which can supply current for a relatively long time, specifically, can supply a current of 25 mA or more for 0.5 ms or longer, the spark plug 100 can realize an ignition performance corresponding to the current supply capacity (electrical energy supply capacity) of the ignition apparatus.
(1) The structure of the ground electrodes 30A and 30B is not limited to the above-described structure, and other structures may be employed. In the above-described embodiment, the ground electrode main bodies 35A and 35B are formed separately from the metallic shell 50 and welded to the metallic shell 50. Alternatively, a single member having the metallic shell 50 and the ground electrode main bodies 35A and 35B may be formed from a single metallic material through cutting. Also, each of the ground electrode main bodies 35A and 35B may have a double layer structure including a core formed of copper or the like.
Also, in the above-described embodiment, the entire surfaces of the ground electrode tips 38A and 38B on the inner side in the radial direction face the side surface 29 of the electrode tip 28. Namely, the entire surfaces of the ground electrode tips 38A and 38B on the inner side in the radial direction serve as the discharge surfaces 39A and 39B. Alternatively, portions of the surfaces of the ground electrode tips 38A and 38B on the inner side in the radial direction may face the side surface 29 of the electrode tip 28. Namely, it is sufficient that the axial position of at least a portion of the side surface 29 of the electrode tip 28 is the same as that of at least portions of the surfaces of the ground electrode tips 38A and 38B on the inner side in the radial direction.
Also, each of the ground electrode is composed of two members; i.e., a ground electrode main body and a ground electrode tip. However, each ground electrode may be constituted by a single member formed of nickel, a nickel alloy, or a tungsten alloy.
(2) The structure of the spark plug 100 is not limited to the above-described structure, and other various structures may be employed. For example, the center electrode 20 is not required to be composed of two members; i.e., the center electrode tip 28 and the shaft portion 27, and may be constituted by a single member.
(3) As described above, it is considered that enhancement of the ignition performance and durability of the spark plug 100 of the above-described embodiment is achieved by the ground electrodes 30A and 30B and the center electrode 20. Therefore, the configurations of other structural elements, such as the material and dimensions of various parts of the metallic shell 50 and the material and dimensions of various parts of the insulator 10, may be changed freely. For example, the material of the metallic shell 50 may be low-carbon steel plated with zinc or nickel, or un-plated carbon steel. Also, the material of the insulator 10 may be any of various insulating ceramics other than alumina.
(4) The structure of the internal combustion engine 700 is not limited to the above-described structure, and other various structures can be employed. For example, the total number of the intake valves 730 of each combustion chamber 790 may be one, three, or more. Also, the total number of the exhaust valves 740 of each combustion chamber 790 may be one, three, or more
Although the present invention has been described on the basis of embodiments and modifications thereof, the embodiments of the present invention are provided for facilitating an understanding of the present invention and do not limit the scope of the present invention. The present invention may be changed and improved without departing from the scope of the present invention, and encompasses equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
2014-107101 | May 2014 | JP | national |