The subject matter disclosed herein relates to a spark plug and in particular to a spark plug having a resistor made with glass materials with an increased glass transition temperature.
Spark plugs are widely used to ignite fuel in internal combustion engines. Spark plugs are subject to intense heat in a highly corrosive environment of a vehicle engine. As a result, a spark plug having high durability and useful life is desirable. Further, in addition to igniting fuel, in some applications the spark plug is influencing the sensor signal acquired by the vehicle control system to monitor the operation of the engine. These applications typically require tighter electrical tolerances and lower electromagnetic interference (EMI) to reduce interference with signals from both the spark plug itself and the surrounding control circuitry.
Accordingly, while existing spark plugs are suitable for their intended purposes, there remains a need for improvements particularly in providing a spark plug with tighter resister tolerance.
According to one aspect of the invention, a spark plug is provided having a resistor made from a mixture of alkali free barium alumino-silicate glass and mullite.
According to another aspect of the invention, a spark plug is provided having an insulator having an inner bore. A center electrode extends from one end of the inner bore. An insert extends from an opposite side of the inner bore. A resistor is disposed between the center electrode and the insert, the resistor being made from a mixture of alkali free barium alumino-silicate glass and mullite.
According to yet another aspect of the invention, a method of fabricating a sparkplug is provided. The method includes mixing carbon and ceramic powder to make carbon slurry. The carbon slurry is added to a glass mixture containing an alkali free barium borate glass and Mullite. The carbon slurry-glass mixture is dried and then screened to form a carbon resistor glass. The carbon resistor glass is loaded into a sparkplug insulator. The sparkplug insulator-carbon glass assembly is heated to transform the carbon resistor glass into a semi-melt condition.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Embodiments of the present invention provide advantages in reducing the variation of resistance values for a resistor in a spark plug application. It has been found that the resistor glass materials are sensitive to kiln process temperature. This temperature sensitivity leads to a variation in resistance during the spark plug assembly process. Embodiments of the present invention provide for a resistor material that has an improved durability, a longer useful life and may be processed at a wider range of processing temperatures while maintaining a low variation in resistance. Embodiments of the present invention further provide for a smaller electromagnetic interference range for spark plugs.
Referring to
The spark plug 20 further includes a ceramic insulator 32 disposed concentrically within the shell 22. A center electrode 34 is disposed concentrically within the insulator 32. The center electrode 34 may include a central core 36 made from a thermally conductive material, such as copper or a copper alloy for example. An electrode tip 38 is disposed on one end of the center electrode 34. Opposite the electrode tip 38 is an electrically conductive insert or rod 40. The insert 40 fits into the upper end of the insulator 32 and forms
Disposed between the insert 38 and the center electrode 32 is an internal resistor 42. As will be discuss in more detail herein, the resistor material and assembly process influence resistance value of the internal resistor 42, the durability, useful life and EMI emissions of the spark plug 20. In the exemplary embodiment, the resistor 42 is formed from a mixture of an alkali free barium alumino-silicate glass, Mullite, carbon, ceramic powders and other ingredients. The glass is composed of MgO 2.0 wt %-Al2O3 11.3 wt %-SiO2 53.5 wt %-CaO-12.0 wt %-BaO-20.5 wt % in composition. In one embodiment, the mixture has 15-30 wt % glass and 10-25% Mullite and the balance is ceramic powder, carbon, borate glass and organic binders.
To form resistor glass containing the alkali free barium alumino-silicate glass, first all the components, glasses, Mullite and other materials, are weighed and a carbon slurry, containing carbon and ceramic powders (ZrO2) is added. The components are mixed for a predetermined amount of time. In the exemplary embodiment the components are mixed for seven minutes. Ice is added to components and further mixed for a predetermined amount of time, such as 10 minutes for example. After the components and ice are mixed, the mixture is oven dried. In the exemplary embodiment, the mixture is oven dried for 5 hours at 120C. Following the drying, the mixture is screened, such as with a #20 mesh for example. The material processed through the screen is ready to be used for assembling resistor for sparkplugs
To assemble the resistor for sparkplug, the above finished powders are loaded in the sparkplug insulator with centerwire and stud terminal. The whole assembly was then processed through a high temperature kiln with peak temperature between 1700 F to 1800 F.
Referring now to
The desired volume of carbon resistor glass is then loaded into sparkplug insulators, such as insulator 32 for example, in block 58. The above insulator glass assembly is then subject to high temperature environment in block 60. In one embodiment, the insulator-glass assembly is carried on a conveyor through an oven operating at a temperature of 1650 F to 1850 F. At the end of the firing cycle, a plunge (terminal stud), such as insert 40 for example, is pressed into the insulator in block 62 so that the glass powders (in semi-melt condition) can be compacted into dense condition and the resistor is hence formed and sealed into the sparkplugs.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Date | Country | |
---|---|---|---|
61492868 | Jun 2011 | US |