The present invention will become more fully understood from the detailed description given here below, the appended claims, and the accompanying drawings in which:
The present invention as illustrated in the figures is directed to a spark plug 10 (
The spark portion 30 includes a base material 36 and a protective material 34 that generally forms an outer or protective layer (
The protective material 34 prevents corrosion or oxidation of the base material. Also, as materials resistant to corrosion in the presence of Calcium and Phosphorus are typically susceptible to spark erosion, and that sparks typically originate on an edge 44 and/or spark surface 40 of the spark portion 30, the protective material must be formed thin enough so that the spark across the spark gap 14 primarily originates on the base material 36 and not the protective material 34 during continued operation of the spark plug. In some embodiments, for manufacturing ease, the discharge surface 40 may also be coated with a sacrificial protective material 36 that erodes away from the discharge surface 40 during operation, but remains on the sides of the spark portion 30 to protect against corrosion in the presence of Calcium and Phosphorus. As the protective material 34 is formed with a very thin layer of material, any gap changes due to spark erosion are not substantial to effect performance of the spark plug. Therefore, the protective material 34 is generally formed having a thickness of approximately up to 0.25 mm on the side of the spark portion 30 and more particular less than 0.12 mm, and yet more particularly less than 0.05 mm. In the embodiments where the discharge surface 40 is coated with a sacrificial protective material 36, it is preferred for the protective material to be less than 0.05 mm thick at least on the discharge surface 40. It has also been found that protective materials approximately equal to or less than 0.01 mm on the sides of the spark portion 30 provides sufficient protection to corrosion in the presence of Calcium and Phosphorus. In the embodiments where a thicker layer of protective material 36 is used, such as up to 0.25 mm, some spark erosion may occur near the edge 44 of the spark portion, however the edge 44 and discharge surface 40 of the spark portion 30 are typically not susceptible to corrosion in the presence of Phosphorus and Calcium as the spark activity prevents this Corrosion mechanism in the presence of Phosphorus and Calcium. Also, as the protective material 34 is formed from a very thin layer or layers of material, the layer of protective material 34 is substantially not susceptible to spark erosion, even at the edge 44. Therefore, with a thickness of less than 0.05 and more particularly 0.01 mm., the amount of material of the protective material 34 added or deposited to the base material 36 is minimal. Therefore, enough protective material is deposited to the outer circumference of the base material to form a spark portion 30 that is highly resistant to corrosion while minimizing the amount of material deposited to prevent excessive spark erosion near the edge 44.
The protective material 34 is particularly well suited for high performance spark plugs as it allows maximization of the benefits of the base material, while eliminating the need to be concerned about corrosion of the base material due to Calcium and Phosphorus. More particularly, instead of changing the alloy composition of the base material 36 to prevent corrosion in the presence of Calcium and Phosphorus, which may at times detrimentally effect the performance of the electrode, and more particular the performance of the spark portion 30, the base material 36 may maintain a maximized efficiency and performance with the protective material preventing corrosion in the presence of Calcium and Phosphorus.
The spark portion 30 in the illustrated embodiment is shaped in a cylindrical or polygon shape having an outer circumference 42 and a first end or discharge surface 40. The end opposing the discharge surface 40 is attached to the center electrode 20. The center electrode 20 is generally formed out of Nickel or Nickel alloy, however other elements and alloys may be used, such as an Iron based center electrodes. As illustrated in
The protective material prevents the corrosion or oxidation of the base material 36. This protective material 34 may be formed from one or more of the elements selected from the group consisting of Iridium, Platinum, Palladium, Rhodium, Ruthenium, Rhenium, Copper, Chromium, Vanadium, Zirconium, Nickel, Tungsten, Gold (Au), Osmium (Os), Iron (Fe), and Aluminum (Al). The inventors have found that a protective coating of Nickel with one or more of the elements selected from the group consisting of Platinum, Palladium, Rhodium, Ruthenium, Rhenium, Copper, Chromium, Vanadium, Zirconium, Nickel, Tungsten, Gold (Au), Osmium (Os), Iron (Fe), and Aluminum (Al) provides enhanced protection against corrosion and oxidation. Furthermore, it has been found that an alloy forming the protective material 34 and including at least Nickel and Chromium or Copper provides excellent protection against corrosion and oxidation as well as longevity and durability. An exemplary protective layer which has been found to provide good corrosion resistance is approximately 85% Nickel and 15% Chromium by weight. It is believed that the inclusion of Iridium in the protective material 34 allows for a better bond or adhesion to a base material 36 formed primarily of Iridium thereby providing increased durability and longevity. Therefore, the protective material 34 may be formed with a portion of the base material to enhance the interconnection between the base material 36 and the protective material 34, thereby improving durability and longevity of the spark plug.
It has been found that the following alloys provide sufficient protection against corrosion and sufficient durability. These alloys include (1) Nickel and Copper, (2) Nickel and Chromium, (3) Nickel, Copper, and Chromium, (4) Nickel, Copper, plus one of the elements selected from the group consisting of Platinum, Palladium, Rhodium, Ruthenium, Rhenium, Vanadium, Zirconium, Tungsten, Gold, Osmium, Iron, and Aluminum, (5) Nickel, Chromium, and an element selected from the group consisting of Platinum, Palladium, Rhodium, Ruthenium, Rhenium, Vanadium, Zirconium, Tungsten, Gold, Osmium, Iron, and Aluminum, (6) Nickel, Copper, Chromium, and an element selected from the group consisting of Platinum, Palladium, Rhodium, Ruthenium, Rhenium, Vanadium, Zirconium, Tungsten, Gold, Osmium, Iron, and Aluminum, (7) Chromium, (8) Copper and Chromium, (9) Copper plus one of the elements selected from the group consisting of Platinum, Palladium, Rhodium, Ruthenium, Rhenium, Vanadium, Zirconium, Tungsten, Gold, Osmium, Iron, and Aluminum, (10) Chromium and an element selected from the group consisting of Platinum, Palladium, Rhodium, Ruthenium, Rhenium, Vanadium, Zirconium, Tungsten, Gold, Osmium, Iron, and Aluminum, (11) Copper, Chromium, and an element selected from the group consisting of Platinum, Palladium, Rhodium, Ruthenium, Rhenium, Vanadium, Zirconium, Tungsten, Gold, Osmium, Iron, and Aluminum.
While the protective material 34 may be formed out of a single alloy as described above, each of the elements may also be placed in separate layers on the base material. It has been found that placing separate successive layers of each individual element instead of alloys thereof provides sufficient protection as desired and lowers the material cost. For example, if a base material is Iridium or an Iridium alloy, Copper may be applied as a first layer through plating and then Nickel may be applied as an outer layer through a successive plating option. Of course, Chromium could be substituted for the Copper to achieve similar corrosion resistant results. Of course, various orders of arrangement may also be used with the Nickel being on the inner layer and in direct contact with the base material. The inventors have also found that any arrangement of layers for protective materials including Copper, Nickel, and Chromium may be used, however one particularly useful protective layered material is formed by plating a Copper first layer 34a to the base material 36, a second layer 34b of Chromium adhered to the Copper through a plating operation and then a third layer 34c of Nickel adhered to the Chromium through a plating operation, as illustrated in an exaggerated sectional view in
By using a thin layer as described above, during the firing of the spark plug or component of the spark plug in a furnace during the manufacturing process and potentially the later operation of the spark plug in an engine, the protective material 34 becomes diffused into the base material 36, so that the protective material and base material are diffused together so that a definite boundary between the protective material 34 and base material 36 may be hard to determine, as illustrated in
As the spark plug in operation has the base material 36 diffused into the protective material 34 and the protective material 34 diffused into the base material 36, it is very difficult during operation for the protective material 34 to become separated from the base material 36 as may happen with thicker cladded materials. For example, a clad base with an outer layer having a thickness greater than 0.12 mm and more particularly a thickness of more than 0.25 mm, may have dissimilar thermal profiles due to the dissimilar materials which may have become separated over time as the spark plug continually fluctuates between hot and cold thermal cycles. Therefore, providing a thin layer that becomes diffused into the base material instead of having distinct individual layers allows the spark plug to increase the longevity of operation through increased spark erosion resistance, increased corrosion resistance, as well as increased durability.
The spark plug 10 including the spark portion 30 may be made through any known method. The manufacture of spark plugs is well known, including the addition of a spark portion 30 on the center electrode 20 and/or the ground electrode 12. In the present invention, the spark portion 30 may be bonded, resistance welded, laser welded, or attached through any known method to the center electrode 20 and/or ground electrode 12. The spark plug 10 generally includes a metallic shell, an insulator, and the center electrode 20 disposed in the insulator such that the spark portion 30 on the center electrode 20 projects toward the ground electrode 12 with the discharge surface 40 (
The insulator is typically formed out of Alumina and has a passage through which the center electrode 20 extends. The metallic shell is formed out of a cylindrically shaped metal sleeve including threaded portions which thread into an engine block. The metallic shell is typically formed out of plain carbon steel but may be stainless steel or other materials.
The spark plug 10 may be made through any known method. The manufacture of spark plugs is well known including the addition of a spark portion 30 on the center electrode 20 and/or ground electrode 12. In the present invention the spark portion 30 may be bonded, resistance welded, laser welded, or attached through any known method. The spark plug 10 generally includes a metallic shell, an insulator, and the center electrode 20 disposed in the insulator such that the spark portion 30 on the center electrode 20 projects toward the ground electrode 12 with the discharge surface 40.
The spark portion 30 is generally first formed by forming the base material 36 from Platinum, Palladium, Rhodium, Iridium, Ruthenium, Rhenium, or alloys thereof. The base material 36 of the spark portion 30 may be formed through any known method. The base material 36 may be formed in metal sheets, discs, wires, or rods through hot forming, hot rolling, or hot wire drawing. Another method of forming the base material 36 is to take a metal powder and melt the powder to form the base material 36. The melting process may be done through arc melting, beam melting, laser melting, high frequency induction melting, plasma melting, or any other known method.
With the base material 36 formed in approximately the desired shape, typically in the form of an elongated rod or wire, the protective material 34 is then added to the base material 36 forming the rod or wire. The protective material 34 may be added through processes such as electrolytic on non-electrolytic plating, electrodeposition, sputtering, flame spraying, or even co-extrusion. It is key that the thickness of the protective layer when added to the base layer is not more than 0.25 mm, and more particularly it is helpful if the protective layer is less than 0.12 mm. Of course, any other means of providing a thin layer of less than 0.25 mm and more particularly less than 0.12 mm on the outside surface of a base material may be used to apply the protective material 34 to the base material 36. Once the spark portion 30 is formed with a protective material 34 on the outside of the base material 36, the elongated portion is cut, stamped, or pressed to the appropriate length and the individual pieces are prepared to be attached to either the center electrode 20 or the ground electrode 12.
Methods of attaching the spark portion to the ground electrode 12 and/or center electrode 20 include welding such as by resistance, laser, or other means to the center or ground electrode 12/20. Another method is to form impressions or depressions on the outer surface of the spark portion 30 to create mechanical locking mechanisms (not illustrated). The center electrode 20 is drilled out to the same diameter as the spark portion 30 and the spark portion 30 is inserted into the hole (
The center electrode 20 is illustrated in
The protective layer 34 may also be added to the base material 36 by successive steps. More specifically, if a protective layer containing three elements is desired, the elements may be added successively with three distinct layers forming the protective layer. These layers may then be diffused together by heat or chemical treatment, or may diffuse together during operation in the engine.
Methods of attaching the spark portion 30 to the ground electrode 12 and/or center electrode 20 include welding such as by resistance, laser or other means to the center electrode 20 and/or ground electrode 12. Another method is to form impressions or depressions on the outer surface of the spark portion 30 to create a mechanical locking mechanism. The center electrode 20 is drilled out to the same diameter as the spark portion 30 and the spark portion 30 is inserted into the created hole. The center electrode 20 is then heated such as with a laser so that the metal melts around the rod and forms into the depressions on the outer surface of the rod.
The protective material may be further enhanced through chemical or heat treatment. The heat or chemical treatment may occur before or after the spark portion 30 is attached to the center electrode. For example, heat treatment of the spark portion 30 may occur during the final firing of the spark plug 10 so that the connection between the base material 36 and the protective layer 34 is enhanced by the protective layer 34 becoming diffused into the base material 36. The diffusing of the materials may happen so that the interface between the two layers creates a diffuse boundary layer instead of a distinct boundary. Furthermore, diffusing the interface between the two layers allows a more intimate connection at the molecular level as the two materials become similar, each having a portion of the other diffused within while providing the desired spark erosion resistance on the discharge surface as well as the desired corrosion resistance on the outer circumference.
During the manufacturing process, the protective material is at least partially diffused into the base material, which provides enhanced protection from corrosion. More specifically, during the firing of the glass seal, such as at temperatures above 530° C., the protective material starts to diffuse into the base material. For example, when a Nickel protective material 34 becomes diffused into a base material 36 of Iridium, the Iridium Nickel alloy provides enhanced protection that surpasses the performance of either Nickel or Iridium by itself. Therefore, the protective material forms a diffused area 39, as illustrated in
The foregoing discussion discloses and describes an exemplary embodiment of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims that various changes, modifications and variations can be made therein without departing from the true spirit and fair scope of the invention as defined by the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/790,215, filed Apr. 7, 2006, the entire disclosure of that application being considered part of the disclosure of this application and hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60790215 | Apr 2006 | US |